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Abstract

Phosphorene, a two-dimensional form of black phosphorus, offers unique opportunities for quantum device
applications due to its pronounced in-plane anisotropy. In this thesis, we investigate how this anisotropy in-
fluences electronic and spin properties in phosphorene quantum dots and rings, focusing on key phenomena
such as Aharonov-Bohm oscillations (Chapter. 5), Wigner molecule formation (Chapter. 6), vortex structures
(Chapter. 7), Nagaoka ferromagnetism (Chapter. 8), and electrical spin manipulation (Chapter. 9). Through
a combination of theoretical modeling, configuration interaction methods, and time-dependent simulations
(Chapter. 3), we capture the intricate many-body effects that emerge from strong electron-electron interac-
tions. Our results show that anisotropy can significantly modify interference patterns, stabilize correlated
electron configurations, and enable tunable spin states, suggesting new strategies for controlling quantum
behavior in quantum dot systems. These findings, presented through a collection of five published articles,
highlight phosphorene’s potential as a platform for next-generation quantum devices, while also pointing to
promising avenues for future research, including experimental validation. By demonstrating the feasibility
of engineering anisotropy-driven phenomena, this work lays the groundwork for leveraging phosphorene’s

unique properties in a broad range of nano-electronic and quantum applications.
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Streszczenie

Fosforen, dwuwymiarowa forma czarnego fosforu, oferuje unikalne mozliwosci zastosowan w urzadzeni-
ach kwantowych ze wzgledu na wyrazna anizotropi¢ w plaszczyZnie. W niniejszej rozprawie badamy,
w jaki spos6b ta anizotropia wpltywa na wlasciwosci elektronowe i spinowe fosforowych kropek kwan-
towych i pierScieni, koncentrujac si¢ na kluczowych zjawiskach, takich jak oscylacje Aharonova-Bohma
(rozdzial. 5), tworzenie molekut Wignera (Rozdziat.6), struktury wirowe (Rozdziat.7), ferromagnetyzm Na-
gaoki (Rozdziat.8) i elektryczna manipulacja spinem (Rozdzial.9). Dzigki polaczeniu modelowania teo-
retycznego, metod interakcji konfiguracyjnych i symulacji zaleznych od czasu (Rozdzial. 3), uchwycil-
iSmy skomplikowane efekty wielu ciat, ktére wylaniaja si¢ z silnych oddziatywan elektron-elektron. Nasze
wyniki pokazuja, ze anizotropia moze znaczaco modyfikowaé wzorce interferencyjne, stabilizowaé sko-
relowane konfiguracje elektronowe i umozliwiaC przestrajalne stany spinowe, sugerujac nowe strategie kon-
trolowania zachowania kwantowego w uktadach kropek kwantowych. Odkrycia te podkreslaja potencjat
fosforenu jako platformy dla urzadzern kwantowych nowej generacji, wskazujac jednoczesnie obiecujace
kierunki przysztych badai, w tym weryfikacje eksperymentalna. Demonstrujac wykonalno$¢ inzynierii
zjawisk napedzanych anizotropia, praca ta ktadzie podwaliny pod wykorzystanie unikalnych wtasciwosci

fosforenu w szerokim zakresie zastosowan nanoelektronicznych i kwantowych.
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Chapter 1

Introduction

In the domain where quantum mechanics intersects with material science, two-dimensional (2D) materials
present remarkable new properties. Among these atomically thin structures, phosphorene [1]—the mono-
layer form of black phosphorus—has emerged as a promising candidate for next-generation nanoelectron-
ics. Its unique characteristics position it between the gapless graphene [2] and the wider-gap transition metal

dichalcogenides, offering new possibilities for electronic and optoelectronic applications.

The isolation of the first graphene flakes in 2004 [2] transformed the landscape of material science,
leading to the rapid emergence of a new frontier in this field. The fabrication of 2D materials opened novel
lines of inquiry and exploration, as these materials exhibit properties fundamentally linked to their low di-
mensionality that are often absent in their bulk counterparts. The electronic structures of 2D materials can
be significantly altered by external factors such as strain or electric fields. Many 2D materials exhibit di-
rect band gaps, allowing for greater efficiency in optoelectronic applications. Quantum confinement to a
plane leads to a modified density of states, which can enhance many-body effects. Surface effects, negligi-
ble in bulk, become dominant in 2D materials, profoundly affecting properties like chemical reactivity and
electrical conductivity. In few-layer 2D materials, weak van der Waals interactions between layers allow
for layer-dependent properties and facilitate the engineering of heterostructures. These unique characteris-
tics of 2D materials indicate potential for both exciting new physics and novel applications across various

technological domains.

This paradigm shift in material science, while largely driven by graphene’s exotic properties, was also
propelled by other newly discovered 2D materials in their monolayer forms. These include transition metal
dichalcogenides (TMDs) [4-6] with stoichiometry MXs such as MoS» [3]; transition metal oxides [7] like
MoOs [8, 10]; hexagonal boron nitride (h-BN) [9]; MXenes [11] and elemental 2D materials such as phos-
phorene, silicene [12, 13], germanene [14] and stanene [15]. Notably, MXenes, silicene, germanene, and
stanene do not exist in layered bulk form in nature. These atomically thin layered materials are artificially
synthesized on substrates via chemical vapor deposition or epitaxial growth. The stability issues [16, 17]
and lack of free-standing forms in nature have limited the potential of these materials. Only stanene as a
free-standing form [15], synthesized using an unconventional technique employing femtosecond laser abla-
tion; and silicene in encapsulated form [13], synthesized with epitaxial growth have been reported. Black

phosphorus, on the other hand, is the thermodynamically most stable allotrope of phosphorus and is demon-
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1. Introduction 2

strated to be air-stable for many days using encapsulation by h-BN or Al,O3 layers [18-20]. Thus, graphene
and black phosphorus stand out as the only stable elemental 2D materials derived from naturally occurring
layered solids, offering a unique platform for exploring fundamental physics due to their chemical simplicity

compared to compound 2D materials like TMDs or hBN.

Black Phosphorus

Figure 1.1: (a) An illustration of the phosphorene crystal structure with views from three axes and a 3d
representation. The direction ’a’ is the zigzag crystal direction, and direction ’c’ is the armchair crystal
direction. (b) Shows ADF-STEM image of black phosphorus depicting the puckered structure as in the
illustration above. The image is reprinted with permission from Ref [21] by R. Wu et.al. Copyright 2015,

American Vacuum Society.

The monolayer form of black phosphorus (BP), known as phosphorene, was first reported in theoretical
and experimental studies in 2014 [1]. Unlike the planar structure of graphene, phosphorene forms a puckered
honeycomb lattice. Atomic-resolution ADF-STEM of black phosphorus reported in Ref. [21] reveals its
puckered crystal structure [See Fig. 1.1(b)]. In this structure, each phosphorus atom is sp? hybridized and
bonded to three neighboring atoms, resulting in a nonplanar configuration. Black phosphorus belongs to the

2D orthorhombic lattice system with in-plane lattice parameters of a ~ 3.31 A, c~4.34Aandan interlayer

T. Thakur Electron States Confined in Phosphorene QD



1. Introduction 3

distance, b/2 ~ 5.4 A [21]. The crystal exhibits two distinct in-plane directions: zigzag and armchair, as
illustrated in Fig. 1.1(a). In few-layer systems, the layers are stacked via van der Waals interactions, with

each layer shifted relative to adjacent layers, forming an AB stacking arrangement [23].

Mormalized PL intensity

[ ]
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T

Figure 1.2: (a) The ARPES image depicting the band structure of bulk BP. The curvature of bands in ZT' and
ZU direction is largely different. The experiment performed by L. Li et al. in Ref [1] and reproduced with
permission from Springer Nature. (b) 4-ARPES image 2-layer showing anisotropy of bands. Images from
Ref.[24]. Copyright 2023 Margot et.al. (Licensed under CC-BY 4.0). (c) The DFT-calculated (dashed lines)
and GW-calculated (solid lines) band structures of monolayer black phosphorus. Reprinted with permission
from Ref. [25]. Copyright 2014 by the American Physical Society. (d) Shows the PL spectra of BP for 1
to 5 layers, depicting the variability of bandgap with the number of layers. The spectra were obtained by
Ref. [26] copyright 2015, Jiong Yang et al.(Licensed under CC BY-NC-SA 4.0).

This anisotropic crystal structure gives rise to highly anisotropic electronic, optical, and mechanical
properties, making phosphorene a unique and fascinating candidate for both applications and fundamental
physics studies, and setting it apart within the diverse landscape of 2D materials. The anisotropy is evident in
the band structure of black phosphorus in two orthogonal reciprocal lattice directions reported using angle-
resolved photoemission spectroscopy (ARPES) in Fig. 1.2(a). The potential and limitations of phosphorene
can be contextualized by comparing it to other prominent 2D materials, viz. graphene, MoS9, and h-BN.
These materials span a spectrum of electronic behaviors—from semi-metallic zero gap graphene to wide

gap insulator h-BN—with phosphorene and MoS, occupying intermediate positions as semiconductors.

Apart from h-BN with band gap of about 5.9 eV (bulk, indirect) to 6.1 eV (monolayer, direct), Table 1.1
shows key properties of other three materials as reported in several works. The experimental and theoretical
works reveal that BP has a highly tunable direct bandgap (0.3-2.0 eV) and remains direct from monolayer
to bulk forms unlike MoSs. The tunability of the band gap with number of layers can be seen from the
photoluminescence spectrum obtained by Yang et al. in Fig. 1.2(b) The wide range of direct band gap
allows for efficient light emission and absorption, crucial for optical applications across a broad spectral
range. The thermal conductivity of both materials is of similar orders, nevertheless, much lower than that of

graphene, but phosphorene shows a large anisotropy in the conductivity depending on the crystal direction.

T. Thakur Electron States Confined in Phosphorene QD



. Introduction

Property Black Phosphorus Graphene MoS,
Lattice Structure Orthorhombic (cmce) Hexagonal (P63/mmc) Hexagonal (P63/mmc)
Electronic Structure Semiconductor Semimetal Semiconductor
Bulk Bandgap 0.3 eV (Direct) [25, 36] OeV 1.29 eV (Indirect) [3]
Monolayer Bandgap 1.1-2.0eV OeV ~1.9eV
(Direct) [25, 36, 37] (Direct, few layers) [3]
Mobility (cm?/Vs) ~1000 (10 nm, RT) [1] ~200,000 79 (few-layer, RT) [58]
200-300 (5 nm, RT) [36, 38] (suspended) [50] 100 (20-30 nm) [59]
4000 (1.5 K, ~10 nm) [18] 2,000-5,000 40 (35 nm) [60]

Theoretical:
10,000-26,000 [39]

(on substrate) [9]

130 (theoretical) [61]

Thermal Conductivity
(Wm~1 K1)

Zigzag: ~40
Armchair: ~20
(>15 nm) [40]
Zigzag: ~86
Armchair: ~34
(>100 nm) [41]
Zigzag: 30.15
Armchair: 13.65

(theoretical, monolayer) [42]

(4.84 10 5.3) x 103 [51]

~52 (few-layer) [62]
44-50 (4-layer)
48-52 (7-layer) [63]

Electrical Conductiv- | Up to 250 (< 20 nm, RT) [38] ~ 1.46x10% (13-2) x 1073
ity (S/cm) (graphene on Cu) [52] [58, 64]
Seebeck  Coefficient | ~335 (bulk, RT) [43] ~100 -400 to -100,000
(uV/K) ~175 (monolayer, theory) [44] | (monolayer, RT) [53] (monolayer) [65]
Up to 250 (monolayer,
RT)
Up to 550 (few-layer,
RT) [66]
Spin-Orbit  Coupling | Armchair: 1.7 27.26 x 1073 [54] 0.27t02.5
(meV-A) (Theory) Zigzag: 14 (at 50/300 V/nm) (MoS, / BixTes
(at electric field 2.6 V/cm) [45] | 0.106 x 1072 [55] heterostructures,
Armchair: -1.79 (at 50/300 V/nm) intrinsic field) [67]
Zigzag: 1.03
(at electric field 0.1 V/cm) [46]
Exfoliation Energy | 22 [47] 21 [47] 18 [47]
(meV/A?) (Theory)
Current On/Off Ratio ~10% (6.5 nm, RT) [1] no real ‘off” state upto 2.1 x 107 [68, 69]

~2x 103 (6-10 nm, RT) [48]
~1x107 ( < 8nm, RT) [49]

100 (bilayer, RT) [56]
70 (nanoribbon, RT) [57]

Table 1.1: Comparison of key properties for phosphorene, graphene, and MoS,. RT: Room temperature, all

values from experiments unless mentioned otherwise

T. Thakur Electron States Confined in Phosphorene QD
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Figure 1.3: (a) and (b) depict the plateaus in the resistance with voltage and magnetic field for a black
phosphorus field-effect transistor (FET), the plateaus illustrate the quantum Hall effect in black phosphorus,
revealing its true 2D nature. Reprinted (adapted) with permission from Ref. [27] by G. Long. et al. Copyright
2016 American Chemical Society.

This anisotropy can be exploited in applications where directional heat flow is required, which is not possible
using MoSs or graphene.

The band extrema at I' point (see Fig. 1.2) is not exactly parabolic in both planar directions, leading
to anisotropic effective masses. Consequently, all the characteristic lengths associated with phosphorene
will also be anisotropic. The thermal de Broglie wavelength [81] and Thomas-Fermi screening length [82—
85] change with anisotropy and reduced dimensionality. Theoretical calculations have shown the effective
masses of phosphorene to exhibit strong anisotropy with m../mg. = 7.75 [77], 6.59 [39], 5.1 [74]; and
experimentally extracted m,, = 0.9m, and mg. = 0.18m, with ratio m, /m4. = 5.0 for 4-layers of black
phosphorus [25]. As an example, at temperature of 4K, and with the effective masses m,, = 0.85m, and
Mge = 0.17m, [75] (notably much larger than isotropic effective mass of GaAs), the thermal de Broglie
wavelengths for phosphorene would be A, ~ 90 nm in armchair direction and A,, ~ 40 nm in zigzag di-
rection. These effects in the phosphorene significantly influence the transport properties, many-body effects
and quantum interference phenomena, as can be seen from the properties in Table 1.1 and further chapters
of this thesis.

For electronic applications, phosphorene demonstrates promising characteristics for field-effect transis-
tors (FETs). Its high carrier mobility (~1000 cm?/Vs for 10 nm samples) approaches that of graphene on
substrate while maintaining a significant bandgap, which is crucial for achieving high on/off ratios ( 10°).
This combination addresses the limitations of graphene’s lack of bandgap and MoSs’s lower mobility. In
2019, long-term air-stable FETs made using black phosphorus, approaching the ballistic limit were re-
ported [22, 49]. While phosphorene transistors show promising potential, there’s still room for improvement
to match the best silicon devices. However, phosphorene’s performance is already within a useful range for
many applications. Phosphorene’s electrical conductivity (up to 250 S/cm for thin flakes) and moderate See-

beck coefficient (~335 1 V/K) also suggest potential for thermoelectric applications. In the quantum regime,

T. Thakur Electron States Confined in Phosphorene QD



1. Introduction 6

the anisotropic extrinsic Rashba spin-orbit coupling provides a platform for spin-based quantum informa-
tion processing, where the strong anisotropy offers a unique opportunity for engineering qubits with novel
characteristics, as will be discussed in this thesis. Additionally, the gated system made of BP has been re-
ported to exhibit quantum Hall effect, with Landau level filling factor observed up to v = 2 [27] as shown in
Fig. 1.2(c, d). There have even been reports of fractional quantum Hall effect in BP indicating that electrons
are strongly interacting and that the material can host topological states and superconductivity [28]. The
underlying physics in phosphorene is very rich, and experiments can reveal new quantum phenomena.

As we move from bulk to 2D materials, quantum confinement effects become increasingly prominent,
giving rise to new and intriguing physics with potential applications. An even more confined form of black
phosphorus appeared as nanocrystals or quantum dots (QDs). These nanocrystals have already enhanced the
material’s optoelectronic properties to produce highly efficient blue light-emitting elements [29, 30]. The
exceptional performance of phosphorene in FETs, coupled with the enhanced properties observed in more
confined nanostructures, naturally directs research towards even greater confinement in the form of quantum
dots. The dots, functioning as artificial atoms, represent the maximum degree of electronic confinement and

provide an ideal platform for studying quantum phenomena and developing quantum technologies.

Motivation of the thesis

While nanocrystal QDs have shown promise, gate-defined quantum dots offer additional advantages for
precise quantum state manipulation. Electrostatic quantum dots, created through local electrostatic poten-
tial or gates, similar to FETs, have been shown to exhibit extraordinary properties in some materials like
MoSs, [31], WSes [32], intrinsic silicon [33], carbon nanotubes [34], and various other 2D materials [35].
These gate-defined quantum dots offer an ideal platform to further exploit phosphorene’s unique electronic
properties at the nanoscale, as they have an advantage over the ensemble of nanocrystal QDs through their
ability for precise control and measurements. Nanocrystal QD ensembles, due to their size distribution, as
seen in Ref. [29], can be studied using optical spectroscopy. However, they suffers from inhomogeneous
broadening, which limits the measurement precision. On the other hand, transport spectroscopy on the gated
electrostatic QDs [31-35] is performed on a single dot. In the weak coupling limit, this technique resolves
the spectra, including the excited states with the precision down to a fraction of a pueV. This method de-
termines the gate voltages for which the confined chemical potentials align the transport window, defined
by the chemical potentials of the source and the drain. Furthermore, the charging diagram, particularly as
a function of the external magnetic field, provides insights into the single-electron spectra, the evolution
of the confined system from zero magnetic field to integer and fractional quantum Hall regime, electron-
electron interactions, spin interactions, and the coupling of separate QDs to form artificial molecules. These
high-precision measurements and charging diagrams are crucial for accurately determining energy levels,
studying complex quantum interactions, and observing subtle quantum effects, all of which are essential for
developing quantum technologies and understanding quantum phenomena in phosphorene.

At the start of this PhD project, there was no literature addressing properties of quantum dots defined
in phosphorene by electrostatic potential, albeit a large attention was attracted by nanoflakes in spite of the

fact that the gating technology for phosphorene transistors was already mature. This PhD research aimed
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to provide a theoretical description of the electron states confined in electrostatic quantum dots in phos-
phorene, with special attention paid to the effects of the effective mass anisotropy. The anisotropy of the
conduction band leads lowers the symmetry of states confined in radially symmetric systems and is relevant
for e.g. Quantum rings and Aharonov-Bohm oscillations in the ring-like confinement. The heavy electron
effective masses can enhance the electron-electron interactions and produce strongly correlated states that
can be discussed in the context of Wigner molecules and fractional quantum Hall states. Crystal anisotropy
enables charge density distribution in the Wigner phase in real space to be studied using the scanning probe
techniques [76]. Additionally, the electron-electron interactions can also be tuned and manipulated by ad-
justing the orientation of QDs in space with gates. Such tuning can optimize certain properties of interest,
for example, Nagaoka ferromagnetism in QD array or induce Wigner crystallization with a specific orienta-
tion. The ttransport spectroscopy provides precise measurements to study spin-orbit interaction effects and

the anisotropy can be utilized for engineering QD qubits with properties tunable with orientations.
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Chapter 2
Quantum Confinement

In this chapter, we review the fundamental theoretical concepts and the quantum confined systems that we
consider for our subsequent investigations in phosphorene. To establish concrete foundation for the concepts
and terminologies which will be used for the rest of this PhD thesis, we begin by briefly discussing the idea of
confinement, a fundamental principle that plays an important role in understanding the quantum properties

of low-dimensional materials.

2.1 Introduction to Quantum Confinement

2.1.1 Quantum Confinement: Theory

A state of a system in quantum physics is represented by the wavefunction (q) (q denotes set of coordi-
nates), with the quantity |+/(q)|?dq being the probability to find the system in the volume element dgq. Now,
if for ¢ — o0, [¢(q)|> — 0 i.e. the system cannot extend to infinity—the state of the system is said to be a
bound or confined.

The number of bound states depends on the potential shape. Infinite wells support infinite bound states,
while finite wells allow only a limited number. In atoms, the Coulomb potential, 1/7, supports an infinite
number of bound states, as do potentials that vanish asymptotically as ~ r~° with s < 2 [78]. In contrast,
quantum dots with electrostatic confinement lack singularities and have rapidly vanishing potentials, leading
to only a finite number of bound states. This distinction is crucial for designing quantum devices, affecting
available energy levels for quantum state manipulation and spectroscopy. Despite of the fundamental differ-
ences in confinement of atoms and quantum dots, both exhibit discrete energy levels, shell structure, strong
interactions and excitation properties from external fields, hence quantum dots are aptly referred to as the
artificial atoms.

Although the principles of quantum confinement are similar to those in atomic systems and other text-
book examples, their behavior in solid-state environments introduces additional complexities due to the
underlying crystalline medium. The periodic potential of a perfect lattice in the material modulates the free
particle wavefunction of the electron resulting in the ‘Bloch states’. The confinement potential is then acting
on these Bloch electrons with modified momentum and the effective mass. The energy scale of the potential

created by a lattice of atomic nuclei typically ranges from 1-10 eV, whereas the scale of confinement poten-
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tial introduced by gating is on the order of few hundred meV. Also, the size of the artificial confinement is
much larger than the periodicity of the crystal.

The continuum of the energies available to a free electron is replaced by a few discrete levels or bands
of nearly continuous energies. Meanwhile, the parabolic dispersion curve is also is modified depending
on the material’s properties. These distinct electronic structures and carrier distributions in different ma-
terial classes significantly influence the behavior under quantum confinement. In metals, where the Fermi
energy lies within the band, the free electron density is very high (~ 1023 cm™3) [79], resulting in short
Thomas-Fermi screening length(~A) making the electrostatic confinement very difficult. On the other hand
in insulators, the large band gap prevents the availability of mobile carriers in the conduction band for con-
finement. Semiconductors, with their Fermi level in the band gap and moderate carrier densities, have an
ideal setting for electrostatic quantum confinement. The relatively small density of carriers can be effec-
tively manipulated by external fields, and the generally parabolic band structure near extrema allows for
well-defined confined states.

Constraining a quantum system to a 2D plane instead of a three-dimensional space induces significant
changes in confinement. In bulk materials, the density of states, g(E), can be evaluated within the nearly
free electron approximation framework. The change in dimensionality is clearly reflected in the energy
dependence of the density of states. For a 3D system, the dependence is given by gsp(E) ~ FE1/2 while
for 2D materials like phosphorene, gop(E) ~ ©(E — E,,) where © represents the Heaviside step function
at subband energies E,,, for a nanowire g1 p(E) ~ (E — En,m)_l/ 20(F — E,, ) and for confined system
like quantum dot gop (E) ~ 0(E — Ey, 1) [80].

Phosphorene’s anisotropic masses [75] further increase the complexity of the problem by breaking sym-
metry and influence various physical properties. Together with the low dimensionality and anisotropy, quan-
tum confinement in phosphorene leads to various interesting and unique results which will be discussed later

in later sections of this thesis.

2.1.2 Quantum Confinement: Experiments

While the theoretical understanding on the confinement is necessary, it is not sufficient. The ultimate de-
termining factors for quantum confinement arise from experimental design and implementation constraints.
Material imperfections, particularly point defects, introduce local potential perturbations that significantly
modify the electronic structure [86—88]. Even an isolated point defect is expected to impact switching in
ferroelectric devices [89], while structural defects in 2D materials can substantially alter their intrinsic prop-
erties [90]. Along with the effects from the imperfections and defects in the crystal of target material, the
environmental factors such as temperature [91] and mismatch effect [92] can induce strain perturbing the
band structure. The gates and the material can induce a charge fluctuations, which alters the confinement
potential by adding noise to the ideal static potential [93, 94]. The design and the scale of confinement are
governed by the geometry of the gates and dots, their capacitance and the tunnel resistance [95]. Measuring
different properties of a quantum dot requires transport spectroscopy [96-99], which comes with its own
limitations. Consequently, the design of quantum confinement must also adhere to the constraints imposed

by transport spectroscopy measurements.
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Nevertheless, many of these limitations can be effectively managed, making it possible to experimen-
tally realize single quantum dot [99], double dots [100-102], an array of dots [103, 104] or even a non-
elementary ring-shaped confinement [105] (of the order of hundreds nm) experimentally. Beyond the mere
possibility of confinement, experimental techniques in this field have matured over many years, making
them a well-established tool rather than a barrier to studying quantum confinement in phosphorene. There-
fore, throughout this PhD thesis, it is assumed that experimental techniques can generally be figured out and
the focus of this thesis is purely on the theoretical understanding of the physics involved in confinement in
phosphorene. In many cases, this understanding remains valid at the quantum scale of the dot, irrespective

of its exact dimensions.

2.2 A Review of Confined Systems

2.2.1 Quantum Dots

As discussed earlier, a quantum dot is equivalent to an artificial atom where the motion of electron or the
where particle motion is restricted in all spatial dimensions through a confining potential. In 2D materials
like phosphorene, where carriers are inherently planar, additional confinement is achieved via nanostruc-
ture fabrication or electrostatic gating, or a combination of both. Nanoflakes (~ 5nm) are widely stud-
ied [30, 106-114] and are relatively easy to fabricate; but limit precise quantum state control, typically
requiring ensemble optical spectroscopy, where inhomogeneous broadening reduces accuracy. In contrast,
electrostatic gating enables precise control and high-resolution transport spectroscopy, making it ideal ap-

proach for investigating rich physics introduced by phosphorene’s anisotropic effective masses.

Gate-defined electrostatic quantum dots, typically fabricated with characteristic dimensions of ~
100nm, function as artificial charge containment systems for conduction band electrons. As these charge
islands are further reduced in size by manipulating the confinement potential, the capacitance, C, reduces
to a very small value (about 10~3 pF), thereby increasing the energy cost of adding the extra electron to
the charge container. At this stage, if the charging energy exceeds the thermal energy of the electrons, i.e.
e?/C > kpT, the system enters the Coulomb blockade regime—a quantum mechanical state where elec-
tron occupation remains constant and isolated from environmental electrons. This phenomenon forms the
fundamental basis for precise measurement and control of single-electron states in gate-defined quantum

dots.

The experimental investigation of these systems is usually conducted through tunneling, precisely con-
trolled through capacitive coupling to metallic gates. A prototypical experimental configuration uses a
transistor-like geometry using source and drain electrodes for transport measurements, complemented by
gate electrodes for potential modulation as shown in Fig. 2.1(a). The confinement potential is induced in
the material via the gate structures, while the transport properties are generally measured through current
flow in source and drain gates. The discrete nature of the QD energy levels manifests in suppressed current
through the source-QD-drain channel until sufficient source-drain bias is applied to overcome the energy

level difference. Through careful engineering of tunnel barriers, single-electron tunneling can be achieved,
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Figure 2.1: (a) A schematic of typical gated quantum dot device. Gate changes the confinement potential and
source and drain leads are used to measure the quantum transport of the electron. Bottom part of schematic
shows possible energy levels of the source, QD and drain. (b) SEM of a single QD device quipped with
transport measurements fabricated using silicon nanowire by Angus et al. [33]. (c) Vertical architecture
single QD in GaAs heterostructures by Kouwenhoven et al. [115]. (d) Single QD device with quantum
point contact as means of measurements using GaAs based heterostructures by Vandersypen et al. [117]. (b)
Reprinted (adapted) with permission from Ref. [33]; Copyright 2007 American Chemical Society. (¢) Used
with permission of IOP Publishing, Ltd, from Ref. [115]; permission conveyed through Copyright Clearance
Center, Inc. (d) Reprinted from Ref. [117], with the permission from AIP Publishing.

enabling precise control over electron occupation down to the few-electron regime. A much detailed review

on the theory of quantum dots for transport spectroscopy can be found in Ref. [95, 115].

The prototypical tunneling measurement shown in Fig. 2.1(b) can be implemented experimentally in
various ways. Few of the experiments which employed gated quantum dots largely similar to the schematic
is shown in Fig. 2.1. Angus et al. [33] fabricated a single gated quantum dot using silicon nanowire, scan-
ning electron microscopy (SEM) micrograph of such a device is shown in Fig. 2.1(a). Here, electron motion
is restricted to one dimension and further confined by barrier gates V1 and Vps, forming the quantum
dot. The dot’s occupation and potential are controlled via the plunger gate Vp and the connecting gate V3,
while transport measurements are conducted by varying the source-drain bias. A similar but more intricate
setup was designed for forming a quantum dot in suspended bilayer graphene [116]. Both of these serve
as examples of quantum dot devices with lateral geometry. In contrast, an equivalent setup can be formed
with vertical geometry as demonstrated by Kouwenhoven et al. [115] with GaAs heterostructures shown in
Fig. 2.1(c). The general principles of the measurements remain exactly the same as those for lateral geome-
try. The SEM images at bottom of Fig. 2.1(c) illustrate the control over the shape of the dots created using
gating techniques. The current measurements in the transport spectroscopy discussed affect the quantum
state of the dot. A much favorable type of measurement can be done using quantum point contact [117],

wherein the measurement is done in form of charge sensing. SEM of one such experiment on GaAs het-
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erostructures is shown in Fig. 2.1(d). The gates T, M, and R define the the quantum dot ( shown as dotted
circle), gates R and Q make a quantum point contact and the gate P is the plunger gate. All these experi-
ments demonstrate the maturity of technology involved in fabricating gated quantum dots and the possibility
to perform such experiments based on phosphorene.

Transport spectroscopy in electrostatically defined quantum dots provides high-precision insights into
quantum confinement, probing both single-particle and many-body states. With energy resolution down to
the peV scale, it advances fundamental quantum physics and material-specific studies. Excited state spec-
troscopy through transport measurements has provided detailed maps of quantum dot energy levels for 1 to
12 electrons in a single dot, analyzing both single-particle and collective excitations through singlet-triplet
transitions, as well as spin polarizations and Hund’s rule for QD [118]. A spin in the quantum dot acts as a
magnetic impurity and couples with electrons in the leads, enabling direct observation of the Kondo effect
(manifested as conductivity in the zero-bias regime) in various flavors [119, 120]. The ability to achieve
near complete control over the spin of individual electrons paves the way for investigating single-spin dy-
namics in solid-state environments [121]. Beyond spin degrees of freedom, gated quantum dots enable
precise manipulation and readout of valley states as well as the valley-orbit and valley-spin coupling in
the system [122-126]. The spin qubit formed in a gated quantum dot can be benchmarked and utilized for
phase-sensitive coherence measurements, facilitating the creation of high-fidelity quantum gates with supe-
rior performances [127-129]. Specially designed and biased quantum dots can also function as nanoscale
charge-sensing devices [130, 131]. Additionally, quantum chaotic systems can be studied within quantum
dots [132-135]. The quenching of kinetic energy in magnetic field, along with electron occupation con-
trol, allows the electrostatic quantum dots to reveal the effects of strong correlation effects and many body
physics, including fraction quantum Hall effect and Wigner crystallization at a finite scales [136—140].

In this thesis, we specifically study theoretically strongly correlated state of Wigner molecules, a finite
form of Wigner crystallization and also the vortex structure in these Wigner molecules inside quantum dot.
The high anisotropic mass and anisotropy of phosphorene is expected to reveal rich physical phenomena,
with gating techniques increasing feasibility of observing these theoretical results in experiments. We will

now discuss the Wigner molecules and vortex structures in phosphorene quantum dot.

Wigner Molecules

Electron-electron interactions often dictate a material’s electronic properties, sometimes beyond single-
particle band theory. While weak interactions allow a quasiparticle description, strong interactions induce
complex phenomena, altering electronic, magnetic, and structural behavior. For instance, various kinds of
exchange interaction along with repulsion between the electrons in material can lead to ferromagnetic, an-
tiferromagnetic, ferrimagnetic or even exotic phases like skyrmions and spiral orders [144—-149]. In certain
rare-earth compounds, strong interactions between localized and conduction electrons can lead to the for-
mation of heavy fermions, where quasiparticles acquire a thermal effective mass on the order of 1000 times
the bare electron mass [150, 151]. Additionally, strong correlations can result in the fractionalization of
electron charge and spin, leading to novel quantum states [152, 153]. Moreover, in narrow-band materials,

strong on-site Coulomb repulsion can induce Mott insulating behavior, where electron localization prevents
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conduction despite a partially filled electronic band [154, 155]. In contrast, at low electron densities, long-
range Coulomb repulsion can dominate kinetic energy, resulting in Wigner crystallization, where electrons
arrange themselves into a periodic lattice to minimize energy [156—159]. In 3D, strong interactions give rise
to emergent states like heavy fermions and Mott insulators. Lower dimensions enhance interactions, lead-
ing to fractional quantum Hall states and Wigner crystallization (for low densities) in 2D, and spin-charge
separation in 1D Luttinger liquids. In a quantum dot, where the electron interactions are the strongest, the

opportunity to study these emergent phenomena is presented.

Wigner crystallization occurs in low density electron systems where the electron electron interaction
energy is higher than the Fermi level. The onset of such crystallization is characterized by the dimensionless
Wigner-Seitz radius, g, which must exceed a critical value of approximately 37 (in atomic units) to ensure
sufficiently low electron density [160, 161]. However, observing a true Wigner crystal in real materials is
extremely challenging due to multiple disruptive factors. Quantum and thermal fluctuations destabilize the
long-range order necessary for crystallization, while impurities, defects, and disorder can further disrupt
Wigner ordering by pinning electrons in random positions rather than allowing them to form a well-defined
lattice. Additionally, background charge screening from the lattice or surrounding electron gas weakens
Coulomb interactions, reducing the tendency for crystallization. Imaging 2D Wigner crystals is challenging
because the measurement technique must balance high spatial resolution, single-electron sensitivity, and
minimal disturbance to the electron lattice. The high sensitivity requires strong coupling to the crystal, while
low perturbation demands weak coupling, creating a trade-off between the two. Nevertheless, electrons in
a moiré superlattice can have sufficiently large charge density variations to be observed using STM with
graphene sensing layer and has been observed only recently in 2021 by Li ef al. [76]. Fig. 2.2(a) shows
the topography image of the moiré superlattice formed using the WSeo/WSs heterostructures underneath
graphene monolayer. Likewise, Fig. 2.2(b) shows the dI/dV maps of the Wigner crystal formed at the
filling factor of n = 2/3. These electron crystal structures are shaped by a moiré superlattice potential that
traps electrons rather than the crystallization due to repulsion which can form even in absence of a periodic

potential.

Therefore, direct observation of Wigner crystal had not been ideally realized during this stage of the PhD
work. Only recently in 2024, after this PhD’s work on Wigner molecules, Tsui et al. finally directly observed
the Wigner crystal states with the predicted triangular lattice independent from the underlying lattice [162].
Fig. 2.2(c) shows the topography of the underlying lattice of ultra clean bilayer graphene, while Fig. 2.2(d)
shows spatially resolved tunneling current modulation §/,;. within the same area clearly indicating Wigner

crystal structure.

Gated quantum dots offer a more feasible opportunity to explore strong electron interactions by enabling
the study of Wigner crystallization in its finite form, i.e. Wigner molecules. The ability to tune both the dot
size and electron occupation in a QD makes it possible to achieve the low-density criterion required for
Wigner ordering. In QDs with an isotropic effective mass, the confined charge density mirrors the symmetry
of the confinement potential. So for these circular QDs, the Wigner phase only occurs in inner coordinates of
the dot. Along with this, quantum fluctuations and charge sensitivity pose challenges for direct observation

of electron density in quantum dots. Nevertheless, gated quantum dots show signatures of spatially correlated
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Figure 2.2: (a) Topography of the W Ses /W Sy moiré superlattice. (b) dI/dV maps of the Wigner crystal
formed at the filling factor of n = 2/3 in the superlattice shown in (a). (c) Topography of ultra clean bilayer
graphene. (d) §1;. maps showing the Wigner crystallization in the same region as (c). (a,b) were reproduced
with permission from Springer Nature from Ref. [76]. (c,d) were reproduced with permission from Springer
Nature from Ref. [162].

states in the excitation spectra [163] and lower symmetry Wigner molecules are predicted to appear in
laboratory frame [164, 165].

The effective mass of electron in phosphorene [75] is much larger than that of electrons in 2DEG fab-
ricated with commonly used GaAs heterostructures [165]. The higher effective mass resulting in stronger
correlations and anisotropy lowering the symmetry. Both these favorable conditions are naturally fulfilled
by gated quantum dots in phosphorene. We therefore examine the circular and rectangular confinement po-
tential of the quantum dot for various number of electrons and predict the observation of Wigner molecules
in laboratory frame along with the clear spectral signatures within the transport spectroscopy resolutions.
Later in 2024, using the moiré superlattices with twisted WS», a crystal made of Wigner molecules was
directly observed [166].

Vortices in FQHE

Wigner molecules are an emergent correlated state in confined geometries purely driven by Coulomb in-
teraction. As strong magnetic fields are applied to these electron arrangements, the system transitions from
purely Coulomb driven spatial ordering to a regime where both interaction and magnetic effects interplay. At
sufficiently high magnetic fields, the kinetic energy is quenched to the lowest Landau level, and the strongly
correlated electrons in Wigner molecules begin to exhibit fractional quantum Hall characteristics. QDs pro-
vide a perfect chance to study these interplay of magnetic field and Wigner crystallization in a controlled,
measurable environment.

The integer quantum Hall effect (IQHE) occurs when a two-dimensional electron gas is subjected to a
strong perpendicular magnetic field at low temperatures, leading to quantized Hall conductivity [167]. The
system’s energy levels (Landau levels) are quantized as E,, = hw?(n + 1/2) where w. = eB/m and B is
applied magnetic field. The discrete energy is contributed by harmonic oscillators centered at x¢ = l%k:y,
where g = \/m is called the magnetic length. Therefore, ideally all the electrons with any momentum

k, will have the same energy given by £,,. The Landau level is highly degenerate, containing e B /27h states
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per unit area. The number of Landau levels filled is then defined as the “fill factor’, v/, and is exactly quantized
to integers. When the Fermi level lies between Landau levels, the bulk is insulating, and Hall conductivity
is quantized. When it aligns with a Landau level, extended edge states contribute to conduction, producing
peaks in longitudinal conductivity. In realistic systems with disorder or finite temperature, Landau levels
broaden, leading to Hall conductivity plateaus at exactly o,,, = vh/ e?.

When the interaction between electrons are considered at high magnetic fields, electrons try to minimize
Coulomb repulsion, exchange interactions become important, new collective excitations or quasiparticles
with fractional charge and statistics appear [168, 169]. This leads to plateaus forming at exactly fractional
filling factor v = a/b where p, ¢ are integers [170, 171]. For only odd ¢ fractions, the Laughlin wavefunction
¥ =T1(2 — 2,) @Y exp(1/43" |2|?) with coordinates of electrons z; = x; + iy; and filling factor is
an excellent approximation to describe the system at filling factor v = 1/(2p + 1), where electrons at fixed
positions impose zeros of order 2p + 1, reflecting strong correlations beyond Pauli exclusion and Coulomb
repulsion. In the composite fermion approach, electrons bind to 2n vortices, reducing the Aharonov-Bohm
phase and experiencing an effective magnetic field B* = B — 2n¢, mapping the fractional QHE to an inte-
ger QHE of composite fermions [172, 173]. Regardless of the specific theoretical framework, the emergence
of zeros and vortex clusters remains essential for describing the fundamental physics of the system.

The small size of the system of gated quantum dot allows to investigate the fraction quantum Hall
regime accurately using exact diagonalization. With exact diagonalization, fractional fillings factors beyond
the Laughlin’s description can also be studied. Similar to Wigner molecules, structure of vortices and the
underlying physics have been discussed for circular quantum dots with isotropic effective mass [174, 175].
At extremely high magnetic fields in a QD, the kinetic energy is quenched in the lowest Landau level and
the correlations and interactions dominate. The anisotropy of phosphorene allows the Wigner molecules to
appear in lab frame and thus the FQHE can be studied near this regime. Both these strongly correlated phe-
nomena were separately investigated for anisotropic materials or Fermi surfaces [141-143]. In phosphorene
quantum dots, the interplay of extremely strong magnetic fields and tightly confined electrons is expected
to give rise to rich and complex physics, significantly different from conventional quantum dot systems.

Therefore, we study the cluster of vortices in Wigner molecules formed in gated phosphorene QD.

2.2.2 Quantum Rings

Quantum rings (QR) are nanoscale structures where charge carriers are confined to a ring-like geometry.
Unlike quantum dots, quantum rings allow for electron motion along a closed loop. Similar to QDs, however,
quantum rings can give insight into various unique phenomena and be utilized for applications.

The wavefunction of electrons traveling around the ring acquires a quantum phase dependent on the
magnetic flux threading the ring, providing a tool to investigate the effect of electromagnetic fields on a
quantum object. This phase, known as Aharonov-Bohm phase [176], although not observable, results in
distinctive behavior due to quantum interference. The distinct behavior manifests as oscillations in discrete
energy levels and in the current or conductivity as a function of the magnetic flux in the transport measure-
ments [177-180]. An ideal one dimensional quantum ring with a circumference L will have energy levels

givenby E,, = (n+ ®/®q) h?/2mL?, where &y = h/e is the flux quantum. Therefore, many-body ground
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Figure 2.3: (a) AFM image of QRs formed with help of Stranski-Krastanov growth model. (b) Micrograph
of the quantum ring taken with the unbiased AFM-tip showing white oxide layer ‘written’ onto the surface
creating depletion region in 2DEG underneath. (c¢) Transmission electron microscope image of GaAs/AlAs
core—multishell nanowires. (d) SEM image of a closed-loop Aharonov Bohm interferometer depicting the
gates to form the ring-form potential minima for electron in 2DEG underneath. (a) Reprinted (adapted) with
permission from Ref. [195]. Copyright 2008 American Chemical Society. (b) Reproduced with permission
from Springer Nature from Ref. [105]. (c) Reprinted (adapted) with permission from Ref. [198]. Copyright
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Reproduced with permission from Springer
Nature from Ref. [190].

state of electrons inside a QR has a non-dissipative current even without the presence of voltage differ-
ence [181-183]. The electrons maintain their phase throughout the system and hence QRs can be used to
study quantum coherence and interference phenomena. Additionally, the geometry of quantum rings natu-
rally leads to periodic boundary conditions, making them excellent tools to investigate topological quantum
phases and geometric phases [184—186]. Due to their coherence properties, QRs can thus be used as qubits
in quantum computing architectures, as well as magnetic field sensors [188, 189] and nanoscale interferom-
eters [190, 191].

Quantum rings can be fabricated using several experimental techniques, each with distinct advantages.
One common method involves the self-assembly of semiconductor quantum dots through strain-driven
growth or Stranski-Krastanov (SK) growth [192], where specific growth conditions lead to the formation
of ring-like structures [193, 194]. Lee et.al. [195], using this method has demonstrated formation of In-
GaAs quantum rings transformed from InAs quantum dots as shown in Fig. 2.3(a). Another widely used
technique is lithographic patterning, where electron beam lithography (EBL) and etching processes define

nanoscale ring geometries on a semiconductor substrate [196]. Fuhrer et.al. fabricated on AlGaAs-GaAs
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heterostructures and locally oxidized surface of the heterostructures by applying a voltage between the con-
ductive tip of an atomic force microscope (AFM) and the 2DEG [105, 197]. This resulted in depletion of
2DEG underneath the oxidized part, thus ‘writing’ the quantum ring structure onto the surface as shown
in Fig. 2.3(b). Additionally, nanowire-based quantum rings can be created by selective material deposition
around a nanowire core [198] as shown in Fig. 2.3(c). The self-assembled QRs, while produce high quality
QR, lack in control over individual ring placement and uniformity. In contrast, nanowire-based quantum
rings are prone to defects and lithography techniques can also suffer from etching induced defects. Electro-
static gating techniques allow for dynamic tuning of quantum ring structures in two-dimensional electron
gases (2DEGs). Using this approach, Chang et.al. created an Aharonov-Bohm interferometer formed by
gating GaAs/AlGaAs heterostructures [190] as shown in Fig. 2.3(d). While each method enables the study
of quantum interference effects, persistent currents, and Aharonov-Bohm oscillations, this PhD work is fo-
cused on electrostatic gating due to its high control and tunability for investigating the physical phenomena
theoretically. The current state of the art techniques thus enable the fabrication of gated quantum rings in

phosphorene.

2.2.3 Multiple Quantum Dots

Building on the understanding of single-gated quantum dots in phosphorene (Section. 2.2.1), multiple quan-
tum dots add complexity and tunability, forming artificial molecules that enable studies of coupling, elec-
tron correlations, and emergent few-electron effects. By controlling the interdot tunneling through the gates,
as described in Fig. 2.1, along with the charge distributions via confinement gates, and spin interactions
with electric and magnetic fields; multiple quantum dots serve as a platform for investigating molecular-
like states, quantum coherence, and exotic magnetic phenomena. Their behavior is particularly sensitive to
the underlying material properties, including anisotropic effective mass and strong electron-electron inter-
actions, making phosphorene-based multiple quantum dots a promising candidate for studying correlated
electron physics as well as potential quantum computing applications. To investigate this behavior experi-
mentally and understand the properties of these gated quantum dots, transport measurements are crucial.

By tuning the gate voltages relative to the discrete energy levels in the quantum dots, one can measure
conductivity as a function of these voltages to obtain a charge stability diagram. This diagram reveals the
Coulomb blockade (described in Sec. 2.2.1) and the electron occupation in each QD. Fig. 2.4(a) shows
the charge stability diagram for a double quantum dot fabricated in bilayer graphene [199]. The numbers
‘(1,2)” indicate the range of voltage where the left dot is occupied with one electron and right with two.
Suppressed current regions correspond to energy gaps between charge states, while finer voltage resolution
reveals Pauli spin blockade [Fig. 2.4(b)] shows the suppression of current due to the spin blockade along
with the schematic of the process [200]. This occurs when a triplet state cannot transition to a singlet due to
spin conservation, enabling electron spin readout. Such behavior facilitates studies of charge transport, spin
physics, magnetic ordering, and quantum information applications.

Achieving precise control over charge and spin states in quantum dots requires sophisticated fabrication
techniques. Nevertheless, recent advancements in material engineering and gate control have enabled the

realization of highly tunable multidot arrays. In 2016, Zajac et.al. fabricated a 12-dot scalable device featur-
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Figure 2.4: (a) Charge stability diagram obtained for double quantum dots in bilayer graphene. (b) A closer
look at the transport current plot as a function of left and right gate voltages illustrating spin blockade
phenomena. Inset shows the schematic of process at blue () and pink (+) points. (a) Reprinted (adapted)
with permission from Ref. [199]. Copyright 2020 American Chemical Society. (b) Reprinted figure with
permission from Ref. [200]. Copyright 2005 by the American Physical Society.
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Figure 2.5: (a) False-color SEM image of array of nine quantum dots with overlapping gate architecture with
three charge sensor QDs in undoped Si/SiGe heterostructures. (b) False-color SEM image of the crossbar
array device employing 16 coupled quantum dots with four charge sensors in each corner of the array on
Ge/SiGe heterostructures. (a) Reprinted figure with permission from Ref. [103]. Copyright 2016 by the
American Physical Society. (b) Figure adapted from Ref. [104] (Licensed under CC BY).
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ing nine dots in array and remaining three as charge sensors, demonstrating high degree of control over the
occupation of the dots [103]. The device is shown in Fig. 2.5(a), fabricated in Si/SiGe heterostructures. An
even more complex device consisting of quantum dots in 4x4 array was fabricated on Ge/SiGe heterostruc-
tures using the crossbar control approach as shown in Fig. 2.5. Using this method, Borsoi et.al. were able to
control the dot occupancies to an odd charge occupancies as well as selectively tune the interdot coupling

inspired from dynamic random-access memories [104].

Phosphorene based quantum dots is an especially compelling platform for exploring the underlying
physics due to their highly anisotropic electronic properties and intrinsic spin-orbit coupling. The inter-
play between strong electron-electron interactions and the directional dependence of the effective mass in
phosphorene quantum dots introduces novel regimes of confinement, potentially modifying charge stability
patterns and spin blockade characteristics. This thesis investigates phosphorene as a next-generation quan-
tum dot material, which enables unconventional charge and spin dynamics not present in isotropic systems.
As fabrication techniques advance, leveraging the unique properties studied in this thesis may open new av-
enues for quantum computing and strongly correlated electron physics. Specifically, we delve into Nagaoka

ferromagnetism and spin control via electric dipole spin resonance.

Nagaoka Ferromagnetism

Nagaoka theorem provides a rigorous mathematical framework demonstrating how a ferromagnetic ground
state can emerge in a nearly half-filled Hubbard model under certain conditions [201]. Specifically, in the
limit of an infinite onsite Coulomb repulsion (U — o0) and a single hole doped into a half-filled lattice,
the system favors a fully spin-polarized state. This effect arises from the delocalization of the hole, which is
more efficient when the other electron spins are aligned, preventing destructive quantum interference. Such

a system is crucial to understand itinerant ferromagnetism and strongly correlated electron systems [202].

QD arrays, as discussed earlier in Sec. 2.2.3, turn out to be ideal platform for experimentally exploring
Nagaoka ferromagnetism due to their tunable electronic properties. The tunable voltages controlling the
electron occupation in each dot and the tunneling coupling between these dots, make it possible to phys-
ically simulate the lattice models such as Hubbard model [203-205]. One of the significant applications
of quantum simulators is in studying strongly correlated electron systems, where conventional computa-
tional techniques, such as mean-field approximations or density functional theory (DFT), often fail. Many
forms of quantum simulators have been developed and are reviewed in Ref. [206, 207]. Cold atom sys-
tems, for example, have been used to realize the Fermi-Hubbard model, providing insights into phenomena
like Mott insulators and high-temperature superconductivity [208, 209]. Similarly, quantum dot arrays have
been used to realize Fermi-Hubbard model and its emergent phases, but with a better control over single
sites, higher operating temperatures, faster operations due to strong coupling and integration with already
advanced semiconductor technologies [210, 211]. In particular, small quantum dot arrays such as triangular
or square arrangements, allow direct realization of Nagaoka’s conditions, where a single hole in the half
filled system can induce spin alignment. Dehollain et.al. tested and observed the Nagaoka ferromagnetism

in quantum dot array formed in AlGaAs/GaAs heterostructure [212], the confined electrons having isotropic
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Figure 2.6: SEM image of QD array device utilized to simulate and test the Nagaoka theorem with real elec-
trons. Inset shows the schematic of the array showing the relevant tunnel couplings and on-site interaction

parameters from Hubbard model. Reproduce with permission from Springer Nature from Ref. [212].

effective mass, lower than that of phosphorene and isotropic hopping parameters. Fig. 2.6 shows the SEM
image of the QD array fabricated with gating to tune the hopping and confinement of the confined electrons.

While Nagaoka’s theorem predicts ferromagnetism in an idealized scenario, real materials and quantum
dot arrays often exhibit competing interactions that give rise to different magnetic orders. In the presence of
strong superexchange interactions or lower hopping amplitudes, an antiferromagnetic ground state may be
favored. Additionally, spin-orbit coupling and disorder can destabilize Nagaoka ferromagnetism, leading to
more complex magnetic textures. Defects or impurities in the material can affect the electron densities and
interference to subvert the spin polarization. In cases where one of the hopping is slowly removed to break
the loop, the itinerant ferromagnetism may be lost providing proof for Lieb-Mattis theorem. This thesis

specifically tests the robustness of Nagaoka ferromagnetism against these two competing factors.

Electric Dipole Spin Resonance

Nagaoka ferromagnetism is examined through itinerant electrons and strong correlations, where the spin po-
larization state is an emergent collective spin state. On the other hand, selective coherent spin manipulation
(which are crucial for spin qubit implementations) can also be explored using multiple coupled quantum
dots. While spin-orbit coupling (SOC) in materials might compete with the collective Nagaoka ordering,
it can be exploited for the selective spin manipulation. SOC provides the coupling between the electron’s
motion and spin, facilitating the spin control through external electric fields via ‘Electric Dipole Spin Reso-
nance (EDSR)’.

Spin-orbit coupling (SOC) in semiconductors arises from intrinsic and extrinsic factors like inversion

asymmetry or band distortion at interfaces, giving rise to phenomena such as the spin Hall effect, spin-orbit
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torques, and the broader field of spin-orbitronics [213]. In quantum dots, Rashba SOC plays a key role
in electron dipole spin resonance (EDSR) and spin control. In EDSR, an alternating electric field induces
electron oscillations, causing spin rotations via SOC. A full spin flip occurs when the AC field frequency
matches the spin transition energy. In gated quantum dots, these spin transitions are directly observable in
transport spectroscopy, as discussed earlier.

Experimental realization of the spin manipulation in QD systems is already within the design limits of
gating techniques [219]. Nowack et.al. achieved coherent control of an electron’s spin with electric fields
mediated by spin-orbit interactions [220]. A similar spin qubit was fabricated in silicon metal-oxide semi-
conductor QD, with artificially induced SOC through micromagnet, but was driven predominantly by ‘flop-
ping’ a single electron between two quantum dots [221]. A much more complex driving via subharmonics
of the resonant frequency was achieved in GaAs double QD system through enhancement from Landau-
Zener-Stiickelberg-Majorana interference [222]. Many other forms of spin qubits with varying degrees of
advantages and disadvantages are reviewed in Ref. [223-225].

Most of the double QD systems are fabricated in III-V semiconductor heterostructures and they suffer
from dephasing due to electron-nucleus effects [214-216]. Spin qubits benefit from longer spin coherence
time, which allows for more reliable and coherent quantum gate operations. Therefore, faster spin opera-
tions are generally sought after to overcome the difficulty of dephasing [216, 217]. Phosphorene, on the
other hand, has the bottom of conduction bands contributed majorly from p-orbitals [218], eliminating the
extra effort to overcome the dephasing barrier. The much larger effective mass of phosphorene compared to
GaAs may lead to strong driving with smaller amplitudes of electric fields, enabling fast spin manipulations
anyway. Additionally, the anisotropic effective mass and the anisotropic spin orbit coupling in phosphorene
can allow accommodating spin qubits with varying characteristics in a single material by just changing the
orientation of gating or QDs. We therefore study a system of gated double QD in phosphorene driven by AC

electric field.
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Chapter 3

Methodology

After establishing the theoretical framework that describes electron correlations and quantum confinement
in electrostatic quantum dots, we turn to numerical methods to quantitatively analyze our system. For each

system described in Sec. 2.2, a model Hamiltonian describing the quantum system is constructed.

3.1 Theoretical Model

The tight-binding approach offers a microscopic description of the electronic structure, accounting for the
atomic-scale details of phosphorene’s puckered honeycomb lattice. This method is particularly useful for
capturing the material’s inherent anisotropy and complex band structure. The model Hamiltonian used is

given by

guBo
Hrp = Z Lij Pij CICJ‘ + z V;c;rci + TZ 3.1

ij i

Here t;; are hopping parameters from site  to j, V; is external potential at site 4 and the third part is the
Zeeman splitting term, with the magnetic field pointing in z direction. The term p;; is the Peierls phase
which takes into account the extra phase acquired by electron when it moves from site ¢ to j in magnetic
field B due to the symmetric gauge A = (By/2, Bz /2,0) and is given by p;; = exp (i § fg A dl).

rri(nm) | tr(eV)
t1 | 0.222 -1.22
to | 0.224 3.665
ts | 0.334 -0.205
ty | 0.347 -0.105
ts | 0.423 -0.055

Table 3.1: Distances r;; and their respective hop- ~ Figure 3.1: Phosphorene crystal structure illus-
ping energies t;; between sites for monolayer trated with the tight-binding hopping parameters

black phosphorus [226]. given in Table. 3.1.

The hopping parameters are taken from Ref. [226] and values are listed in Table. 3.1. We use tight-

binding method to obtain the energy spectrum in the case of quantum rings and Wigner molecules. However,
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for studying larger and larger systems, the computational demands of tight-binding calculations can become
prohibitive.

In contrast, effective mass models provide a more computationally efficient framework for investigating
quantum confinement in phosphorene. These models approximate the band structure near the relevant energy
extrema, allowing for the study of larger systems and more complex confinement geometries. We describe
the system in effective mass approximation using the simplest approach given by the Hamiltonian

2 2
h = (—ih;x + eAx> /2mgy + <—z’h§; + eAy> /2my + Vexi(z,y) + gupBo./2 . (3.2)

Where the effective masses are calculated for the conduction lowest band near the extrema.

In phosphorene however, the bands are anisotropic and deviate from parabolic near conduction and
valence band extrema [see Fig. 1.2(a)]. A precise continuum model description would therefore require
coupling of conduction and valence bands, like & - p model [70]. However, this coupling remains small in
phosphorene due to its large band gap [71, 72] and the nearly linear Landau levels in monolayer phospho-
rene [73, 74] make the nonlinear correction negligible as well. As a result, the single-band effective mass
approximation accurately reproduces the energy levels of confined systems [75]. The single-band effective
mass approach is especially valuable for phosphorene due to its strongly anisotropic band structure, which
can be captured through crystal direction dependent effective masses. The effective masses we use through-
out this thesis are mq. = m; = 0.17037m, and m., = m, = 0.85327m.. A detailed comparison of the
charging spectrum calculated using tight-binding Hamiltonian in Eq. 3.1 and using single-band effective
mass Hamiltonian in Eq. 3.2 is given in Chapter. 5. By using this model, the low-energy spectrum of con-
fined systems can be obtained with good agreement to tight-binding results, while avoiding the additional
computational cost of the full tight-binding method.

The differential equation or the eigenvalue problem can be solved numerically through various methods.
For a system of non-interacting electrons or a single electron, we simply discretize the real space in a gauge
invariant way [227] and employ the tight-binding model in Eq. 3.1 or the single-band effective mass model
on Eq. 3.2 to solve the differential equation with finite difference method. These single electron energies
and eigenstates obtained are used to study quantum ring with single electron. For rest of results for sys-
tem with multiple electrons, we use a technique called ‘configuration interaction’ to investigate interaction,

correlations and many-body effects.

3.2 Configuration Interaction

The general many-body Hamiltonian comprises of kinetic energy, external potential energy and interaction

energy terms and can be written as:

H =Y "hi(r)+ Y Viulrij) . (3.3)
i i,5>1
When the interaction potential energy Vi, is of the scale of external potential Vi, the energy contribu-

tions from interactions are no longer perturbative. For eg. the electrostatic interaction energy for classical

point electrons just 50 nm (10 nm) apart in Al2Os is already ~ 3 meV (~ 16 meV). A Gaussian wavepacket
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of electron with effective mass 0.1m, in harmonic potential spread across 50 nm (10 nm) will have kinetic
energy of scale ~ 0.08 meV (~ 1.91 meV). Furthermore, the antisymmetrization requirement for fermionic
wavefunctions imposes constraints on single electron calculations, as exchange effects fundamentally alter
the system’s behavior, necessitating multi-electron approaches.

Mean-field methods like Hartree-Fock and density functional theory use approximate exchange-
correlation energies and efficiently handle weak to moderate interactions, while quantum Monte Carlo
technique extends these capabilities into more strongly correlated regimes and are beneficial especially
for systems with large number (> 10) number of electrons [228-234]. Strong-coupling models such as the
Hubbard model capture key features of extreme electron-electron interactions but often simplify the under-
lying physics. In contrast, exact diagonalization combined with full configuration interaction provides an
essentially exact treatment for small systems, fully accounting for all many-body effects without relying on
approximations, making it superior and within computational reach for studying very small systems like a
few-electron quantum dot in the strong-correlation limit [235].

We describe here the full configuration interaction method mathematically. In our method, we mostly use
exact diagonalization to obtain the numerical set of eigenfunctions and energies for single electron system.
In principle, this can also be done in any favorable basis such as polynomials and Gaussians as performed
in the analysis of vortex structures in Wigner molecules (c.f. Chapter. 7). For n, electrons in the system,
the electrons motion is correlated due to Coulomb repulsion as well as exchange is also correlated due to
Pauli exclusion principle. Unlike the Hatree-Fock method where only one Slater determinant is used, full
configuration interaction wavefunctions are constructed with linear combination of all possible Slater deter-
minants. Thus, interaction potential and Slater determinants handles the electron correlations and exchange

correlations. The general state is given by,

) = c|Di) (3.4)
. ATT 160
where, |D;) = NGw pigne sgn(pZ)IZI \(bpi(l)) (3.5)

The single electron exactly diagonalized orthonormal eigenstates (orbitals) |¢;) are used to create Slater
determinants |D;). In above Eq. 3.5, ‘p;(1)’ is the index at [th position of p; permutation out of total n,!
permutations in the symmetric group &,,, and 1/+/n.!is the normalization factor. Matrix elements of single
particle and two particle operator in this general state |¥) can be calculated using Slater-Condon rules,
eliminating all the inner products where three or more orbitals differ [236]. The surviving matrix elements

are:

For diagonal :
Ne
(D;|HID;) = > & (3.7)
%

For non-diagonals :
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(Di|HID;) = >~ TT TT s9mes) (050, )l Y- Vimlran) 621, ()
pi€Gn, I m a,b>a

= > Z sgn(p;)

pi €Gn, a,b>a

(62 (2) 68 ) Vin(ra) 1690 ()8 () G

where Viy(rqp) = 1/4me - 1/|rqp| where we consider phosphorene is embedded in AloO3 with e = 9.1 ¢
[237] and the integral near r4;, = 0 is calculated using Monte Carlo integration. This matrix constructed
using the basis of all combinations of Slater determinants or configurations, is then exactly diagonalized
to obtain many electron eigenstates and energies. As the number of single electron eigenstates used to
construct the basis is increased (gets closer to a complete set), the ideal solution of the full configuration
interaction method approaches the exact solution. This convergence can easily be seen in the ground state
energy. Along with the Slater-Condon rules for determinants, each state that electron @ and b are in must
have same spin state on either side of the inner product, i.e. in Eq. 3.8, spin eigenvalue of ]qﬁ]ga) (rq) ) must
be the same as spin eigenvalue of |¢g )(a) (rq) ), given spin is a good quantum number. Later, we introduce
Rashba spin-orbit coupling in Chapter. 9 where the spin is not a good quantum number and the integration
is over both spinor wavefunctions of single-electron eigenfunctions. Similar symmetry considerations on
parity can further simplify the matrix constructions when applicable.

The diagonalization is performed numerically using Lanczos algorithm [238, 239] using the ARPACK
library for Fortran. It is possible to further speedup the calculations at expense of accuracy by restricting
the value of excited orbitals, i.e. p;j(a) or p;(b) to perform ‘restricted configuration interaction’ method
[236]. The number of single-electron eigenstates, the highest excited state index, and the density of the
discretized grid are carefully balanced to ensure convergence while minimizing computational cost. The
convergence can be further improved by introducing an extra repulsive potential at center of the QD to
mimic the repulsion of electrons at single electron calculation stage, and its contributions can be removed
for multi-electron calculations. This technique was especially used to calculate the convergent solutions for

Wigner molecules. Electron density and pair correlation functions were calculated in similar way as Eq. 3.8.
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3.3 Time Dependent Calculations

For the time evolution and spin manipulation by electric dipole spin resonance (EDSR) in quantum dots, we
use the time dependent Scrodinger equation with the Hamiltonian where constant and time dependent part
are separable as

H(t)=Hy +V'(t). (3.9

This Hy can be single electron or multi-electron Hamiltonian. If the eigenstates of the Hamiltonian H are
| n) such that, Hy [n) = E,|n), we use the ansatz for wavefunction as linear combination of the stationary
eigenstates with the time evolution governed of the states |n) only governed by the time independent part

and that of coefficients governed only by the time dependent potential V’(t). The ansatz is given as
= gn(t)e M n) (3.10)
n

Using the time dependent Scrodinger equation with Hamiltonian H(¢), we can obtain a set of coupled

differential equations for evolution of each coefficient,

. 8 m t / —1 —bBEn
—ih gat( ) :;m\v (t)|n) e (Em—E )t/hgn(t) . (3.11)

This set of differential equations is then solved using Crank-Nicholson scheme numerically to obtain the
occupancy |g,(t)|? in nth state at any time .

For single electron, the transition matrix element 7, 0o = (m|V'(t)|n) can be calculated easily since
the eigenstates are known from exact diagonalization. Transition matrix elements for multi-electron case
can be calculated, similar to Eq. 3.8.

Ne MNe

(wV'(t) Z S II H ¢t ¢j sgn(p; <¢H(Z)(rl)\V’( )| oy (7m) (3.12)

1,J Di€ Gne l
We studied EDSR system with a sinusoidally oscillation polarized electric field. Thus substituting the
form of time dependence V'(t) = >, eF'r; sin(wt) we get.

Ne  Te

(W|V'(1) Z Z H H c; ¢j sgn(pj) (ﬁﬂ 0 (r)] Zansm (wt \(b(]) ( m))

1,J Pi€ G'n.e l

-3 ¥ Z ¢; ¢ sgn(p;) (94, (ri.) | eFrisin(wt) |6, (i)

,J Di € Gne e
= Z Z Z c; cj sgn p] T]I((ze)) p5(ie) (3.13)
,J pi€ Gne le

Using these tools along with the results from full configuration interaction, we studied the resonance

spectrum and the spin flip times of a double quantum dot system in phosphorene.
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Chapter 4

Summary of Articles

4.1 Aharonov-Bohm oscillations in phosphorene quantum rings: mass
anisotropy compensation by confinement potential

Thakur, T., & Szafran, B. Physical Review B, 105(16), 165309 (2022).

We investigate the Aharonov-Bohm (AB) effect in a quantum ring electrostatically defined in a phosphorene
monolayer. The strong anisotropy of effective masses in phosphorene disrupts the usual persistent current
circulation in a circular quantum ring, preventing ground state AB oscillations. However, we demonstrate
that by deforming the confinement potential into an elliptical shape, the anisotropy can be compensated,
restoring oscillatory behavior and ground-state parity transformations with AB periodicity.

We employ both tight-binding and effective mass models to analyze the system. We find that for a
specific ratio of the ellipse’s semi-axes, the spectrum of the system becomes identical to that of a circular
quantum ring with an isotropic effective mass. This is explained by the identification of a generalized angular
momentum operator that commutes with the continuum Hamiltonian for this special ratio, leading to level
crossings rather than avoided crossings for states of the same parity and spin. Additionally, we analytically
show that in the limit of diminishing width of the ring, the energy spectrum of compensated Hamiltonian
approaches that of ideal 1D quantum ring.

The paper further explores the two-electron case, where Coulomb interactions break the commutation
of the modified angular momentum operator with the Hamiltonian. However, AB oscillations in the ground
state energy still appear, albeit not as clearly as in the single-electron case, when the confinement potential is
properly tuned. The results are discussed in the context of potential experimental realizations, suggesting that
these effects could be observed using transport spectroscopy techniques. The study provides a theoretical
framework for engineering quantum rings in phosphorene that exhibit AB oscillations despite strong mass
anisotropy. However, the results are not limited to phosphorene, as the treatment is general and valid for any

material with anisotropic effective masses.
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4.2 Wigner molecules in phosphorene quantum dots

Thakur, T., & Szafran, B. Physical Review B, 106(20), 205304 (2022).

We investigate the formation of Wigner molecules from up to five electrons in electrostatically confined
phosphorene quantum dots. Due to the large effective masses in phosphorene, electron charge separation
occurs even in relatively small quantum dots, facilitating the observation of Wigner crystallization. The study
finds that the anisotropic effective mass in phosphorene allows Wigner molecules to form in the laboratory
frame, with charge density distributions that do not always reflect the symmetry of the confinement potential
due to an extra asymmetry introduced by the effective mass anisotropy.

For circular quantum dots, we find that Wigner molecules form for two and four electrons but not for
three and five electrons. A system with five electrons shows a transition between two charge configura-
tions as the magnetic field is varied, one with well-separated single electron islands (Wigner molecule) and
another where the charge configuration is a superposition of equivalent charge configurations. The study
also explores elongated quantum dots, showing that Wigner molecule formation is more favorable when the
longer axis is aligned with the zigzag direction (where the effective mass is heavier), while alignment along
the armchair direction suppresses crystallization due to the lower effective mass.

The results highlight spectral signatures of Wigner crystallization, such as nearly degenerate ground
states at zero magnetic field, spin polarization at low magnetic fields, and distinct energy gaps between low-
energy states. These features suggest that transport spectroscopy could be used to experimentally confirm
Wigner molecule formation in phosphorene quantum dots. The existence of Wigner molecules for two and
four electrons and not for three, indicates that inter-electron distance is not the only factor for the formation
of these structures. The study uses a configuration interaction approach with an optimized single-electron

basis to handle strong electron-electron interactions efficiently.
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4.3 Vortex structure in Wigner molecules

Thakur, T., & Szafran, B. Scientific Reports, 13(1), 9707 (2023).

This article investigates how vortices, zeros in the many-body wave function with associated phase windings,
form and evolve within Wigner molecules in quantum dots under high magnetic fields. We focus on the
role of anisotropy, either from the external confinement or the electron effective mass, in controlling the
spatial arrangement of these vortices. In isotropic systems, vortex rearrangements occur abruptly at angular
momentum transitions, whereas, in anisotropic settings the evolution is smooth as the magnetic field varies.

For a system with an isotropic effective mass, the study shows that extra vortices initially emerge at the
edges of the confined electron system under fractional quantum Hall conditions and then gradually migrate
toward the electrons. In this case, the vortices are typically aligned along a line perpendicular to the axis
of a linear Wigner molecule, shifting to lie along the molecule’s axis at the lowest Landau level filling
factor v ~ 1/5. By contrast in phosphorene, where the effective mass is strongly anisotropic, the vortex
behavior depends critically on the orientation of the Wigner molecule. When the molecule is aligned along
the armchair direction, the vortices remain off the axis, while for alignment along the zigzag direction the
vortices transfer to the axis already at a filling factor of nu = 1/3. This transfer process is accompanied by
the creation and subsequent annihilation of an antivortex near an electron’s position.

Overall, the work provides a detailed theoretical analysis using exact diagonalization and a configuration
interaction approach, of how magnetic field, electron correlations, and anisotropy interplay to determine the
vortex structure in Wigner molecules. These insights deepen our understanding of fractional quantum Hall
states and Wigner crystallization in low-dimensional systems, and they may help guide future experiments

aiming to resolve vortex configurations in anisotropic materials like phosphorene.
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4.4 Nagaoka ferromagnetism in an array of phosphorene quantum dots

Thakur, T., & Szafran, B. Scientific Reports, 13(1), 18796 (2023).

In this article, we explore how a nearly half-filled array of quantum dots in phosphorene can exhibit itinerant
ferromagnetism driven by strong electron—electron interactions. Using a continuum effective mass Hamilto-
nian, we study a square array of four quantum dots populated with three electrons. This configuration is ideal
for investigating Nagaoka ferromagnetism as per the theorem’s conditions of one less than half. According
to the theorem the interactions should promote a fully spin-polarized state

The study models the quantum dots with Gaussian confinement potentials, and the geometry of the
array, specifically the separations in the armchair (y,) and zigzag (u,) directions plays a crucial role in
compensating for the anisotropic hopping. By varying these parameters, we construct a phase diagram that
maps the transition between low-spin and high-spin (Nagaoka ferromagnetic) ground states. The results
reveal that an optimized geometry, with p; = 6.8 nm and p,, = 5.2 nm, can yield a Nagaoka gap as large
as approximately 230 peV, a value that is promising for experimental observation.

Furthermore, the paper investigates the robustness of the ferromagnetic state against structural imper-
fections. When one quantum dot is shifted, thereby transitioning the array from a square to a quasi one di-
mensional chain, the ferromagnetic ordering is suppressed (in agreement with Lieb-Mattis theorem). Shifts
along the zigzag direction proving more effective in destabilizing the high spin state than those along the
armchair direction. Similarly, the study examines potential detuning of one dot and finds that while moder-
ate detuning leaves the ferromagnetic state intact, larger detuning that either traps an electron or effectively
removes a dot from the low-energy sector leads to a transition to a low spin ground state. We showed that
the mechanisms breaking the Nagaoka ordering are different for positive and negative detuning, and hence
the transition occurs for uneven values of detuning.

Overall, the work demonstrates that by judiciously tuning the geometry of the quantum dot array, one
can overcome the challenges imposed by effective mass anisotropy in phosphorene to stabilize Nagaoka
ferromagnetism. It also tests the robustness of this spin polarized ordering against the position and detuning

of one of the quantum dots, while suggesting mechanisms for the resultant states.
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4.5 Electrical manipulation of the spins in phosphorene double quantum
dots

Thakur, T., Peeters, F. M., & Szafran, B. Scientific Reports, 14(1), 18966 (2024).

We study how electron spins can be controlled using AC electric fields in a double quantum dot system
formed in monolayer phosphorene. Exploiting the inherent anisotropy of phosphorene, both in its effective
masses (light along the armchair direction, heavy along the zigzag) and its predicted anisotropic spin—orbit
coupling, we study electric dipole spin resonance (EDSR) driven by an oscillating electric field. We employ
a single-band effective mass Hamiltonian combined with configuration interaction techniques to simulate
the time evolution of a two-electron system and analyze singlet—triplet transitions.

The interplay of spin—orbit coupling and asymmetry in the confinement potential results in avoided
crossings between the singlet and triplet states, with the dipole transition matrix elements showing a max-
imum peak at specific potential detuning. This peak corresponds to a region where the detuning flips the
ground state spin of the system, and thus becoming most effective detuning to control spins using electric
fields.

The study reveals that by adjusting the external AC field near and away from this regime, coherent
spin-flip transitions (Rabi oscillations) can be induced on a sub-nanosecond timescale, a favorable charac-
teristic for qubit applications. Furthermore, we compare dots arranged along different crystallographic axes,
demonstrating that the orientation significantly influences interdot tunneling and the rates of spin transi-
tions. We find that detuning can be used as a knob to turn the same quantum dots to function as spin-like and
charge-like qubits, with the advantage of stability against charge noise and fast spin-flip times respectively.

We also discuss higher-order (multi-photon) and Landau-Zener-Stiickelberg-Majorana transitions, il-
lustrating how these processes can be leveraged to further control the spin dynamics. Overall, the work
shows that phosphorene double quantum dots in phosphorene offer a promising platform for fast, electri-
cally driven spin manipulation with the potential for high fidelity and tunability, making them attractive for

quantum computing applications.
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Chapter 5

Aharonov-Bohm oscillations in phosphorene
quantum rings: mass anisotropy

compensation by confinement potential

Reprinted with permission from Thakur, T., & Szafran, B. Aharonov-Bohm oscillations in phosphorene
quantum rings: Mass anisotropy compensation by confinement potential. Physical Review B, 105(16),
165309 (2022). Copyright 2022 by the American Physical Society.
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We consider the Aharonov-Bohm (AB) effect on a confined electron ground state in a quantum ring defined
electrostatically within the phosphorene monolayer. The strong anisotropy of effective masses in phosphorene
quenches ground-state oscillations for a circular ring because of interrupted persistent current circulation around
the ring. An elliptic deformation of the confinement potential can compensate for the anisotropy of the effective
masses and produce ground-state parity transformations with the AB periodicity. Moreover, a specific ratio of
the semiaxes is determined for which the spectrum becomes identical to that of a circular quantum ring and
an isotropic effective mass. We identify a generalized angular momentum operator which commutes with the
continuum Hamiltonian for the chosen ratio of the semiaxes that closes the avoided crossings of energy levels for
states of the same parity and spin. Ground-state oscillations for the two-electron ground state are also discussed.

DOI: 10.1103/PhysRevB.105.165309

I. INTRODUCTION

Phosphorene [1] or a monolayer form of black phosphorus
[2—4] is extensively studied for optics [5], field-effect tran-
sistors [2,6,7], and quantum Hall effects [8—10]. Unlike the
half-metallic graphene, phosphorene is a direct gap semicon-
ductor that can host the electrostatic lateral confinement of
electrons. The electrostatic fields produce a clean confinement
in gated two-dimensional systems for the investigation of the
single-electron and interaction effects [11] in carrier traps. A
particular form of the lateral confinement that attracts a lot of
attention is the quantum ring [12]. The annular confinement
allows for persistent current circulation in the presence of
an external magnetic field, with the spectrum and magnetic
response which is periodic with the Aharonov-Bohm period-
icity [13]. The periodicity of the spectrum of a phosphorene
ring defined as a rectangular flake of the crystal with a central
opening has been studied in Ref. [14], including the effect of
the zigzag and armchair edges of the crystal. The purpose of
this paper is to investigate a clean quantum ring defined within
phosphorene by an external potential that keeps the electrons
off the edges of the crystal and is not affected by its details.

The anisotropy of the phosphorene crystal structure [4]
results in a strongly anisotropic electron effective mass [2,15—
18] that is much larger along the zigzag chains of ions [16]
than in the perpendicular direction. The anisotropy prevents
the persistent current flow in the electron ground state con-
fined in a circular ring. However, current circulation can be
restored by deforming the confinement potential to an elliptic
form. Then, the spectrum acquires a braided pattern of even-
and odd-parity energy levels, which cross with the Aharonov-
Bohm period. Moreover, we propose a geometry for the
elliptic confinement in which a modified angular momentum
operator, with one of the Cartesian coordinates rescaled, com-
mutes with the Hamiltonian and the energy spectrum becomes

2469-9950/2022/105(16)/165309(7)
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similar to the one of an electron in a circular quantum ring
with isotropic effective mass. For a confined electron pair
interacting with the Coulomb potential, the operator no longer
commutes with the Hamiltonian, but the Aharonov-Bohm
oscillations of the ground-state energy appear for a tuned
confinement potential.

II. THEORY
A. Tight-binding model

We work with the phosphorene monolayer (see Fig. 1)
using the Hamiltonian

Hrp =Y tupucic+ Y _Viciex + gusBo/2, (1)
K k

where the first sum describes the hopping between the neigh-
boring atoms. The values for #;; (see Table I) are taken
from the five-parameter effective tight-binding Hamiltonian
of Ref. [17]. The positions of the ions in the phosphorene
crystal [3] are plotted in Fig. 1 with the zigzag chains oriented
along the y direction. In Eq. (1), py; are the Peierls phase
shifts that the electron acquires from the vector potential along

the line between k and [ ions, py = ei%f"kl A4l We consider
the magnetic field perpendicular to the monolayer (0, 0, B)
with the vector potential taken in the symmetric gauge A =
(—%, %, 0). In Eq. (1), V4 stands for the external potential
on the ion k. The spin Zeeman effect is introduced by the last
term of the Hamiltonian.

The g factor for phosphorene of g &~ 2.03 was determined
using the k - p theory by Junior ef al. [19]. Zhou et al. [20]
indicated the value of g = 2.14 for monolayer black phos-
phorus. On the other hand, experiments have determined the
value of g=2=+0.1 [21] and g~ 1.8-2.7 [22] and some
have even reported g = 5.7 £ 0.7 at low filling factors [23].

©2022 American Physical Society
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-04 x (nm)o 0.4

FIG. 1. Ions in phosphorene monolayer placed on two planes
separated by a distance of 0.213 nm. The lines link the neighbor ions
with the largest hopping energies (in-plane neighbors, green lines,
hopping energy —1.22 eV) and (neighbors of separate planes, red
lines, hopping energy 3.665 eV) (see Table I).

Nevertheless, the spin Zeeman term produces only a linear
shift in the energy defining the spin splitting. The magnetic
field promotes the spin-down energy levels to the ground
state sooner or later on the magnetic field scale. We focus on
avoided crossings or crossings of the states of the polarized
spin. The absence or presence of Aharonov-Bohm oscillations
will not be affected by the value of the g factor. Therefore, the
spin Zeeman term is calculated with the value g = 2.

B. Effective-mass Hamiltonian

Part of the results of this work is obtained in the continuum
approximation to the tight-binding Hamiltonian. We use a
single-band effective-mass operator,

9 2 3 2
Hep = [ —ih— + €A, 2my + | —ili— + €A, 2my
0x ay ’
+V(x,y) + gupBo,/2, (2)

with the effective-mass parameters derived by fitting the
tight-binding spectrum to the harmonic oscillator spectrum in
Ref. [24] with mass about five times heavier for the carrier
motion along the zigzag chains of the crystal (see Fig. 1),
my; = 0.17037mg and m, = 0.853 27myg. The effective-mass
Hamiltonian is diagonalized using the finite-difference tech-
nique.

TABLE 1. Hopping energies according to Ref. [17] for a single
black phosphorus layer. The left column shows the distance between
the ions and the right column the hopping energy #,; applied in the
tight-binding Hamiltonian (1).

7 (nm) ti (eV)
0.222 —1.22

0.224 3.665
0.334 —0.205
0.347 —0.105
0.423 —0.055

C. Confinement potential

We attempt to compensate for the anisotropy of the effec-
tive masses by the anisotropy of the confinement potential. For
that purpose, we use the following external potential,

V(x,y) = tma’[p(x,y) — RP, 3)

with p(x, y) = /x% + y2/a, where « is a parameter that con-
trols the anisotropy of the potential. The potential vanishes for
points (x, y) forming an ellipse,

)C2 y2

R? + aR?
We take the confinement energy /iw = 6 meV. Changing o
we keep the area within the ellipse fixed taking R = o~ /R,
with R, = 30 nm, so that the number of magnetic flux quanta
threading the ellipse is the same for a given magnetic field
B independent of «. For R, = 30 nm a flux quantum threads
the ring at 1.43 T, which is the period of the energy spectrum
on the B scale for a strictly one-dimensional (1D) circu-
lar quantum ring. We use « < 1 so that the half length of
the major axis a of the ellipse is oriented along the x axis
a=R=oa""*R, and the half length of the minor axis is
b= ./aR = a'/*R,.

In this work, we focus on the confined electron states of the
conduction band. In the continuum Hamiltonian, the bottom
of the conduction band is set as the reference energy level. The
tight-binding spectrum produces the conduction- and valence-
band extrema spaced by the energy gap. For a finite flake,
the spectrum also contains in-gap states that are localized at
the edge of the flake and the spectrum is not symmetric with
respect to the center of the energy gap [14]. Reference [14],
which used the same tight-binding parametrization [17], pro-
vides the lowest conduction-band state energy level of ~0.4
eV for a square flake with a side length of 8 nm in the absence
of an external potential. In this paper, we are interested in
states confined in the external potential that are independent of
the details of the edge and thus correspond to an infinite crys-
tal. However, the calculations are carried out in an elliptical
flake for which the position of the ions satisfies the condition
x* +y*/a < R2. We take the flake large enough to contain all
the discussed states within the confinement potential so that
the results are independent of R;. However, for V = 0, the
conduction-band states occupy the entire flake, and the results
depend on R, [25]. The dependence on the lowest-energy
level in R, is well approximated by the dependence Ey(Ry) =
C/R? 4+ Ew, where C = 673.31 (meV nm?) and E, = 340
meV. The RS‘2 dependence is due to the finite-size effect, that
is, the kinetic energy due to localization in a finite flake, and
E+ = 340 meV is the estimated position of the bottom of the
conduction band for an infinite crystal. In the results presented
in the following we shift down the tight-binding energies
by Eco.

= 1. ()

III. RESULTS AND DISCUSSION

A. Single-electron solutions

The low-energy spectrum of a circular ring (o« = 1) is plot-
ted in Fig. 2(a) [Fig. 2(b)] for the tight-binding (TB) model
(continuum model). The TB results [Fig. 2(a)] here and below

165309-2
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FIG. 2. (a) The tight-binding and (b) continuum Hamiltonian
eigenvalues for @ = 1. The blue and red lines show the spin-down
and spin-up energy levels, respectively. The tight-binding energy lev-
els in (a) were shifted down by E,, = 340 meV (see text in Sec. II B).
(c) shows the confinement potential and (d) the ground-state charge
density for B = 0 calculated using the continuum model.

are shifted down by 340 meV. The results of both approaches
are nearly identical. The ground state of a circular ring is
localized in two islands near the y axis on the opposite sides of
the ring center [Fig. 2(c)]. The wave function confinement im-
plies a contribution to the kinetic energy which is large along
the x axis due to the low value of mass m,. In consequence
the ground-state wave function is far from the x axis, and no
persistent current circulation is possible in the ground-state.

The lowest spin-up and spin-down energy levels of
Figs. 2(a) and 2(b) are twofold degenerate with respect to the
parity. Degeneracy results from the lack of tunneling of the
wave function across the x axis [Fig. 2(d)]. In the excited state
part of the spectrum, one can see pairs of energy levels that
cross in a braidlike pattern. The corresponding states have
opposite parities, hence the crossings of the levels. These
oscillations are reminiscent of the angular momentum transi-
tions for a circular ring with isotropic effective mass [12,26].

With o < 1 the confinement area on the y axis becomes
thinner and the one along the x axis wider [see Fig. 3(c)
for o = 1.2;’;——;]. The confinement energy along the y axis
increases and that along the x axis decreases. The x axis
is now accessible for the ground-state electron [Fig. 3(d)].
The ground-state degeneracy is lifted, and the ground-state
crossings of energy levels of opposite parity are observed
[Fig. 3(a,b)].

In Fig. 4(a) we plotted a magnified view of the low-energy
part of the spectrum. By Ay we denote the energy splitting of
the lowest even- and odd-parity energy levels taken at B = 0,
which defines the range of the ground-state energy oscillations
as functions in the external magnetic field. The braided two
energy levels cross with the Aharonov-Bohm period. The

E (meV)
E (meV)
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FIG. 3. Same as Fig. 2 only for o = 1.2%,
)Tl);

second quantity marked in Fig. 4(a) by A, is the width of
the avoided crossing of even-parity energy levels taken at
B~1775T.

Decreasing the anisotropy parameter to o« = % we find
that the ground-state charge density [Fig. 5(d)] is constant
along the confinement potential minimum [Fig. 5(c)]. The
continuum spectrum [Fig. 5(b)] contains crossings of energy
levels in the entire spectrum. For the tight-binding model
[see also Fig. 4(b)] we find the parity-related crossings of the
energy levels in the ground state as in Fig. 3, and only narrow
avoided crossings are found between the first and second

2.9 3
285 2.95
Agl:
2.8
; ; 2.9
[) [4]
g 275 IS
w w 285
2.7
2.
2.65 8
2.6 2.75
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

B (T) B (T)

FIG. 4. Magnified view of the low-energy part of the tight-
binding spectrum for (a) o = 1.2% and (b) ¢ = Z—: [Fig. 6(a)].
Letters “e” and “0” near the energy levels in (a) mark the even- and
odd-parity energy levels that are eigenstates of the parity operator
with the eigenvalues +1 and —1, respectively. A, is the even-odd-
parity splitting at B = 0 and A, is the width of the avoided crossing
between the lowest even-parity energy levels for B >~ 7.75 T. The red
arrow in (b) shows the avoided crossing A., here of the width of 13
ueV (see Table II).
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FIG. 5. Same as Fig. 2 only fora = 'y:% In (b) the colors indicate

the eigenvalue of the angular momentum I. operator, and in (a) the
colors describe the spin as in Fig. 2.

excited energy levels of the same parity. The one marked by
the red arrow in Fig. 4(b) corresponds to A, = 13 ueV. A,
attains its minimal value for o = 2. Values of Ay and A,
calculated with the tight-binding approach for varied « are
summarized in Table II.

B. Angular momentum in the rescaled space

The crossings of the energy levels in the spectrum of
Fig. 5(b) suggest that an additional symmetry is present in
addition to the parity. With the substitution y' = y//a and
o= % the Hamiltonian (2) becomes

" " [ 9? N 9> N e232( N
= —— — - —(x
o 2m, \ 0x?  3y? 8my, Y
eB | ,
+5—=L+ V(0 = R) +gusBo:/2, (5)

2 /mem,

TABLE II. The spacing A, between the lowest-energy levels of
even and odd parity for B = 0 [see Fig. 4(a)] and the A, width of the
avoided crossing between the two lowest-energy levels of even parity
[Fig. 4(a)] as a function of the eccentricity parameter « for B >~ 7.75
T. The results are calculated with the tight-binding approach.

o a/(mg/my) Ay (meV) A, (meV)
1 2.238 0.001 0.673
0.894 2 0.012 0.414
0.536 1.2 0.061 0.137
0.469 1.05 0.096 0.046
0.447 1 0.113 0.013
0.424 0.95 0.104 0.028

with p” = \/x? + ¥’ and the z component angular momentum
operator in the deformed space I, = ih(y’;—x — xaiv,). The con-
finement potential acquires circular symmetry upon rescaling
of the y coordinate and the Hamiltonian commutes with [
operator. The crossings of the eigenstates of the effective-mass
Hamiltonian are due to the symmetry which upon rescaling
of the y coordinate is no longer hidden. The [ eigenvalues
are given by color in Fig. 5(b). The ground state undergoes
I, angular momentum transitions similar to the ones found
for circular quantum rings with isotropic electron effective
mass [26]. Note that the applicability of the I/ operator is
not limited to quantum rings, but it can also be used to any
potential profile which is radially symmetric for the rescaled
y coordinate.

C. 1D limit

For a narrow radial confinement (large w) the low-energy
part of the spectrum occupies the same state of radial quan-
tization and there is essentially one degree of freedom of
motion along the ring. The Hamiltonian (5) put in circular
coordinates reads

g 1a+a2 1;2+ B,
em — 2me \ p' 9p’ 3,0/2 p/2 2 z

2p2

e“B
+ 8—p’2 +V(p' —R), (©6)
1y

where we neglected the spin Zeeman term. For strong con-
finement (large w) the radial profile of the wave function no
longer depends on lz’ or B. Then, the terms with the deriva-
tives with respect to p’ and the external potential produce the
same energy contribution for all the states involved. With this
contribution set as the reference energy level, we obtain the
energy spectrum of the form

272 2p2
l e’B eB
E(,B) = 4 R + —1, 7
3 2mR 8my 2u ¢ @)

where = /mymy. With R = (52)'/*R. one obtains an ex-
pression that is symmetric in the effective masses,
P12 B2 , ¢€B

E(,B) = 2M12é§ + e R’ + m

2o e\

- ( - +1Z> , ®)
where @) =2 =22 js the flux quantum and ® = BrR2.
The final result with the geometric average of the effective
masses is identical to that of the circular ring with an isotropic
effective mass [26].

Figure 6 shows the 2D continuum Hamiltonian (6) spectra
with the spin Zeeman effect excluded for Ziw = 6 meV in
Fig. 6(a), iw = 120 meV in Fig. 6(b), and the results of the
1D formula in Fig. 6(c). In Fig. 6(a) we see a diamagnetic shift
of the spectrum to higher energy. The period of the Aharonov-
Bohm oscillations is slightly larger than in the 1D results due
to compression of the wave function by the external magnetic
field that decreases average p’ below R.. For the radial wave

L;
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FIG. 6. The energy spectrum of Hamiltonian (5) with g = 0 for
(a) hw = 6 meV, (b) hw = 120 meV, and (¢) the 1D formula (8). The
color of the lines gives the /] operator eigenvalue.

function confined stronger around R, in Fig. 6(b), we see the
results approach the results for the analytical formula (8).

D. Two-electron spectrum

The electron-electron interaction potential does not com-
mute with the I operator, so the presence of the ground-state
oscillations is not given a priori. We calculated the two-
electron energy spectrum in the continuum approach using the
Hamiltonian

|

47'[6()6 ry ’

H2e = Hem(rl) + Hem(rZ) + (9)
where H.p, is the single-electron Hamiltonian (2), and € = 12
is taken. The two-electron Hamiltonian is diagonalized in
the basis of the two-electron Slater determinants constructed
from the 30 lowest-energy single-electron eigenfunctions of
Hamiltonian (2).

For both « =1 [Fig. 7(a)] and o« = % [Fig. 7(c)] at
B = 0 the ground state is fourfold degenerayte, with singlet-
and triplet-energy levels of the same energy. The exchange
interaction is zero since the electrons form single-electron
islands that are completely separated. For « =1 the lo-
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FIG. 7. The two-electron energy spectrum [(a), (c), ()] and the
ground-state charge density [(b), (d), (f)] calculated using continuum
model for (a), (b) B=0anda =1, (¢), (d) « = %, and for (e), (f)
a = 1.7"=.1n (a), (c), and (e) the color of the lines corresponds to
the z component of the total spin.

calization of the charge density formed a single-electron

island already without interaction [Fig. 2(d)]. For o = %
the electron-electron interaction separates the electron density
to the opposite ends of the longer semiaxis of the ellipse
[Fig. 7(d)]. A more or less uniform electron distribution is ob-
tained for o = 1.7% [Fig. 7(f)]. In this case, the ground state
for B = 0 is a singlet which is not degenerate with the triplet.
The field of about 0.5 T promotes the triplet to the ground
state. Periodic avoided crossings are observed in the ground
state, which are similar to the ones found for a system with
an isotropic effective mass but in an anisotropic quantum ring
[27]. For the circular ring, the triplet energy levels correspond
to odd values of the total angular momentum (L) [28] that
correspond to the negative parity (—1)~. In our two-electron
system, only the parity is a good quantum number. In Fig. 7(e)
we see a series of avoided crossings between the ground state
and the first excited state. The avoided crossings obtained for
the spin-polarized two-electron levels are observed due to the
same—odd—parity of these levels, which is in contrast to
the single-electron ground state where the crossings of energy
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levels corresponding to opposite parity were observed in the
ground state.

E. Discussion

The spectra of confined quantum rings are experimen-
tally studied for annular-shaped traps defined in gated
two-dimensional electron gas [29]. The current transport for
electron traps weakly coupled to the electron reservoirs is
governed by the Coulomb blockade [11,30], with the single-
electron current passing through the system only when the
chemical potential of the confined N-electron system falls
within the transport window defined by the Fermi levels of
the source and drain. The technique can also be used for
detection of the excited part of the spectra when the corre-
sponding energy level enters the transport window [29,30].
The transport spectroscopy allows for reconstruction of the
energy spectra with a precision of the order of a few ueV [29]
with the Aharonov-Bohm periodicity as the signature of the
angular confinement. The gated quantum rings can exhibit an
elliptically deformed confinement potential as in Ref. [29] in
particular.

The gating techniques for phosphorene have been devel-
oped [2,6,7] and applied for fabrication of the field-effect
transistors. The ringlike potential can be defined electrostati-
cally in a plane plate capacitor system with a tubular electrode
protruding from one of the plate electrodes with the phos-
phorene layer embedded in a dielectric [31,32]. For a similar
gating system defined for electrons on liquid helium surface,
see, e.g., Ref. [33].

The results of this paper indicate the way to observe the
Aharonov-Bohm effect for the system confined by the exter-
nal potential in phosphorene. For circular quantum rings the
Aharonov-Bohm oscillations can only be observed in the ex-
cited part of the spectrum since in the degenerate ground state
the electron density forms separated islands and the persistent
current circulation is interrupted. For an elliptical deformation
of the confinement potential, the oscillations of the ground-
state parity appear with the Aharonov-Bohm periodicity. The
amplitude of these oscillations has been determined (see A
in Table II). Based on results of Ref. [29] one can expect
that for o < 1.2%‘_ the ground-state oscillation should enter

the experimental resolution.

For a specifically chosen eccentricity parameter o one can
reduce the spectra to those that are characteristic to a circular
quantum ring with an isotropic effective mass. We explained
this effect analytically in the effective-mass approximation
that indicates an additional symmetry found for a value of «
and the spectra that agree with the tight-binding ones up to
an avoided crossing in the excited energy spectra found in the
latter, which is minimal for the optimal value of o = :’n’—‘ (see

A, in Table II). The width of the avoided crossing shoulii also
be accessible for an experimental study.

IV. SUMMARY AND CONCLUSIONS

We have studied the ground-state energy oscillations in a
quantum ring potential defined within monolayer black phos-
phorus with the tight-binding and effective-mass models. In
a circular quantum ring, the strong anisotropy of the effec-
tive mass produces a ground state localized along the axis
related to the heavier mass. The current circulation around
is possible for an elliptic ring. A braided pattern of even-
and odd-parity energy levels is then observed in the ground
state with crossings appearing with the Aharonov-Bohm pe-
riodicity. In particular, for the ellipse with the ratio of the
semiaxes equal to the effective-masses ratio, the electron den-
sity becomes uniform along the ring. Then, the single-electron
energy spectrum becomes similar to that of a circular quantum
ring with an isotropic effective mass equal to the geometric
average of the effective masses along the two crystal direc-
tions. We demonstrated that the angular momentum in the
rescaled space I/ is definite in the single-electron Hamilto-
nian eigenstates. We provided an analytical formula for the
spectrum in the 1D limit. The applicability of the I, operator
exceeds the quantum rings and can be used for modeling
other confined systems in phosphorene. For two electrons, an
elliptical deformation of the ring produces avoided crossings
in the ground state due to the same parity of low-energy
spin-polarized states appearing periodically on the magnetic
field scale.

ACKNOWLEDGMENTS

This work was supported by the National Science Centre
(NCN) according to decision DEC-2019/35/0/ST3/00097.
Calculations were performed on the PLGrid infrastructure.

[1] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and
P. D. Ye, ACS Nano 8, 4033 (2014).

[2] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H.
Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

[3] S. Fukuoka, T. Taen, and T. Osada, J. Phys. Soc. Jpn. 84, 121004
(2015).

[4] M. Akhtar, G. Anderson, R. Zhao, A. Alruqi, J. E.
Mroczkowska, G. Sumanasekera, and J. B. Jasinski, npj 2D
Mater. Appl. 1, 5 (2017).

[5] G.Zhang, S. Huang, F. Wang, and H. Yan, Laser Photonics Rev.
15, 2000399 (2021).

[6] D. He, Y. Wang, Y. Huang, Y. Shi, X. Wang, and X. Duan, Nano
Lett. 19, 331 (2019).

[7] X. Li, Z. Yu, X. Xiong, T. Li, T. Gao, R. Wang, R. Huang, and
Y. Wu, Sci. Adv. 5, eaau3194 (2019).

[8] G. Long, D. Maryenko, J. Shen, S. Xu, J. Hou, Z. Wu, W. K.
Wong, T. Han, J. Lin, Y. Cai, R. Lortz, and N. Wang, Nano Lett.
16, 7768 (2016).

[9] G. Long, D. Maryenko, S. Pezzini, S. Xu, Z. Wu, T. Han, J. Lin,
C. Cheng, Y. Cai, U. Zeitler, and N. Wang, Phys. Rev. B 96,
155448 (2017).

[10] J. Yang, S. Tran, J. Wu, S. Che, P. Stepanov, T. Taniguchi, K.
Watanabe, H. Baek, D. Smirnov, R. Chen, and C. N. Lau, Nano
Lett. 18, 229 (2018).

[11] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

165309-6



AHARONOV-BOHM OSCILLATIONS IN PHOSPHORENE ...

PHYSICAL REVIEW B 105, 165309 (2022)

[12] V. M. Fomin, Physics of Quantum Rings (Springer, Cham,
2018).

[13] Y. Aharonov and D. Bohm, Phys. Rev.
(1959).

[14] L. L. Li, D. Moldovan, P. Vasilopoulos, and F. M. Peeters, Phys.
Rev. B 95, 205426 (2017).

[15] R. Schuster, J. Trinckauf, C. Habenicht, M. Knupfer, and B.
Biichner, Phys. Rev. Lett. 115, 026404 (2015).

[16] J. Qiao, X. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat. Commun.
5, 4475 (2014).

[17] A. N. Rudenko and M. I. Katsnelson, Phys. Rev. B 89,
201408(R) (2014).

[18] A.N. Rudenko, S. Yuan, and M. I. Katsnelson, Phys. Rev. B 92,
085419(R) (2015).

[19] P. E. Faria Junior, M. Kurpas, M. Gmitra, and J. Fabian, Phys.
Rev. B 100, 115203 (2019).

[20] X. Zhou, W. K. Lou, D. Zhang, F. Cheng, G. Zhou, and K.
Chang, Phys. Rev. B 95, 045408 (2017).

[21] L. Li, E Yang, G. J. Ye, Z. Zhang, Z. Zhu, W. Lou, X.
Zhou, L. Li, K. Watanabe, T. Taniguchi, and K. Chang, Nat.
Nanotechnol. 11, 593 (2016).

[22] N. Gillgren, D. Wickramaratne, Y. Shi, T. Espiritu, J. Yang, J.
Hu, J. Wei, X. Liu, Z. Mao, K. Watanabe, and T. Taniguchi, 2D
Mater. 2, 011001 (2014).

[23] F. Yang, Z. Zhang, N. Z. Wang, G. J. Ye, W. Lou, X. Zhou, K.
Watanabe, T. Taniguchi, K. Chang, X. H. Chen, and Y. Zhang,
Nano Lett. 18, 6611 (2018).

115, 485

[24] B. Szafran, Phys. Rev. B 101, 235313 (2020).

[25] With o = :Z—i for R, = 25,30,35,...,70 (in nm) we obtain
the lowest conduction-band energy level at 341.066, 340.764,
340.559, 340.415, 340.328, 340.266, 340.184, 340.161, and
340.138 (in meV), respectively.

[26] S. Viefers, P. Koskinen, P. S. Deo, and M. Manninen, Physica E
21, 1 (2004).

[27] V. M. Fomin, V. N. Gladilin, J. T. Devreese, N. A. J. M.
Kleemans, and P. M. Koenraad, Phys. Rev. B 77, 205326
(2008).

[28] J.-L. Zhu, Z. Dai, and X. Hu, Phys. Rev. B 68, 045324 (2003).

[29] A. Fuhrer, S. Luescher, T. Ihn, T. Heinzel, K. Ensslin, W.
Wegscheider, and M. Bichler, Nature (London) 413, 822
(2001).

[30] L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha,
R. M. Westervelt, and N. S. Wingreen, Electron transport in
quantum dots, in Mesoscopic Electron Transport, edited by
L. L. Sohn, L. P. Kouwenhoven, and G. Schon, NATO Ad-
vanced Studies Institute, Series E: Applied Sciences, Vol. 345
(Springer, Dordrecht, 1997).

[31] W. Dickerson, V. Tayari, I. Fakih, A. Korinek, M. Caporali,
M. Serrano-Ruiz, M. Peruzzini, S. Heun, G. A. Botton, and T.
Szkopek, Appl. Phys. Lett. 112, 173101 (2018).

[32] B. Deng, V. Tran, Y. Xie, H. Jiang, L. Cheng, Q. Guo, X. Wang,
H Tian, S. J. Koester, H. Wang, J. J. Cha, Q. Xia, L. Yang, and
F. Xia, Nat. Commun. 8, 14474 (2017).

[33] B. Szafran, Phys. Rev. B 104, 235402 (2021).

165309-7



Chapter 6

Wigner molecules in phosphorene quantum
dots

Reprinted with permission from Thakur, T., & Szafran, B. Wigner molecules in phosphorene quantum dots.

Physical Review B, 106(20), 205304 (2022). Copyright 2022 by the American Physical Society.

43


https://doi.org/10.1103/PhysRevB.106.205304

PHYSICAL REVIEW B 106, 205304 (2022)

Wigner molecules in phosphorene quantum dots

Tanmay Thakur® and Bartlomiej Szafran

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland

® (Received 17 June 2022; revised 2 November 2022; accepted 9 November 2022; published 17 November 2022)

We study Wigner crystallization of electron systems in phosphorene quantum dots with the confinement of
an electrostatic origin with both circular and elongated geometry. The large effective masses in phosphorene
promote the separation of the electron charges already for quantum dots of relatively small size. The anisotropy
of the effective mass allows for the formation of Wigner molecules in the laboratory frame with a confined
charge density that has lower symmetry than the confinement potential. We find that in circular quantum dots
separate single-electron islands are formed for two and four confined electrons but not for three trapped carriers.
The spectral signatures of the Wigner crystallization to be resolved by transport spectroscopy are discussed.
Systems with Wigner molecule states are characterized by a nearly degenerate ground state at B = 0 and are
easily spin-polarized by the external magnetic field. In electron systems for which the single-electron islands are
not formed, a more even distribution of excited states at B = 0 is observed, and the confined system undergoes
ground-state symmetry transitions at magnetic fields of the order of 1 T. The system of five electrons in a circular
quantum dot is indicated as a special case with two charge configurations that appear in the ground state as the
magnetic field is changed: one with the single electron islands formed in the laboratory frame and the other
where only the pair-correlation function in the inner coordinates of the system has a molecular form as for
three electrons. The formation of Wigner molecules of quasi-1D form is easier for the orientation of elongated
quantum dots along the zigzag direction with heavier electron mass. The smaller electron effective mass along the
armchair direction allows for freezing out the transverse degree of freedom in the electron motion. Calculations
are performed with a version of the configuration interaction approach that uses a single-electron basis that
is preoptimized to account for the relatively large area occupied by strongly interacting electrons allowing for

convergence speed-up.

DOI: 10.1103/PhysRevB.106.205304

I. INTRODUCTION

Electron gas with Coulomb interactions dominating over
the kinetic energies forms a Wigner crystal [1-4]. Its fi-
nite counterparts, e.g., Wigner molecules [5-21] are formed
in quantum dots at low electron numbers in spatially large
systems [5] or in a strong magnetic field that promotes the
single-electron localization [22,23].

The confined charge density in quantum dots defined in
materials with isotropic effective mass reproduces the sym-
metry of confinement potential. For this reason in circular
quantum dots, separation of the electrons in the Wigner phase
occurs only in the inner coordinates of the system spanned by
relative electron-electron distances [22]. For lowered symme-
try, the Wigner molecules can appear in the laboratory frame
[24], with the special case of one-dimensional systems that is
studied with much of attention [6,9,16,20,21].

Phosphorene [25-28] is a particularly interesting material
for Wigner-molecule physics due to the large electron effec-
tive masses and their strong anisotropy [29-35] Large masses
reduce the kinetic energy as compared to the electron-electron
interaction energy. Lowering the Hamiltonian symmetry by
the effective mass anisotropy is promising for observation of
the Wigner molecules in the laboratory frame.

Phosphorene quantum dots [36—43] in the form of small
flakes have been extensively studied, in particular from

2469-9950/2022/106(20)/205304(13)
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the point of view of optical properties. In this work we
consider a clean electrostatic confinement that keeps the con-
fined electrons off the edge of the flake. In finite sheets of
graphene, the edges inhibit the Wigner crystallization [12].
Advanced phosphorene gating techniques have been devel-
oped [26,28,44-46] for, e.g., fabrication of the field-effect
transistors [26,44,45] and experimental studies of the quantum
Hall effects [47-50] are carried out. Therefore the formation
of clean electrostatic quantum dots [51] in phosphorene is
within experimental reach.

Ordering of the electron charge in Wigner molecules of
single-electron islands in quasi 1D systems [6,9,16,20,21]
reduces the electron-electron interaction energy at the cost of
increasing the kinetic energy due to the electron localization.
In GaAs systems with low electron band effective mass of
0.067my, conditions for Wigner molecule formation occur
only in very long systems of hundreds of nanometers [16]
already for four electrons. On the other hand, the light electron
mass in GaAs favors the reduction of the 2D confinement to
an effectively 1D form with all the electrons occupying the
same state of quantization for the transverse motion. Hence,
the large effective masses in phosphorene are promising for
producing the Wigner molecules in systems of relatively small
sizes, but may inhibit formation of 1D confinement.

In this paper, we consider the formation of Wigner
molecules in the laboratory frame for a few electrons confined

©2022 American Physical Society
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in circular and elongated quantum dots for varied confine-
ment orientation and look for spectral signatures of Wigner
crystallization to be experimentally resolved. We use the
configuration interaction approach [7,52-55] that requires an
optimized single-electron basis [56—58] for convergence due
to the strong electron-electron interaction effects [59] in phos-
phorene.

This paper is organized as follows. In the Theory section,
we describe the applied computational approach. In the Re-
sults section, we first describe the results for circular quantum
dots and next the Wigner molecules in quasi-one-dimensional
confinement oriented along the zigzag and armchair crystal
directions. Section IV contains the discussion of the ex-
perimentally accessible signatures of the Wigner molecule
formation in the laboratory frame. Summary and conclusions
are given in Section V. In the Appendix, we include details
on the single-electron wave functions used for optimization of
the basis, the choice of the computational box, and the spectra
without the Zeeman interaction.

II. THEORY

In this section, we describe the finite difference method
applied to the continuum Hamiltonian of a single electron
in phosporene (Sec. ITA), the model potential (Sec. IIB),
and the configuration interaction approach (Sec. IIC)
with optimization of the single-electron basis allowing for
faster convergence of the configuration interaction approach.
Section II D describes the formula for extraction of the charge
density and pair correlation functions for discussion of the
Wigner crystallization of the confined system.

A. Single-electron Hamiltonian

We use the single-band approximation for Hamiltonian
describing the electrons of the conduction band of monolayer
phosphorene [35,60]

9 2 3 2
Hy = | —ih— +eA; ) /2m + | —ii— +eA, ) /2m,
dx ay

+W(X’Y)+8MBBGz/2a (1)

where W (x, y) is the confinement potential. In Eq. (1), we use
the effective masses m, = 0.17037my for the armchair crystal
direction (x) and m, = 0.85327my for the zigzag direction (y).
The values for the masses were determined in Ref. [35] by
fitting the confined energy spectra of the continuum single-
band Hamiltonian to the results of the tight-binding method.
A detailed comparison of the spectra as obtained by the con-
tinuum model to the tight-binding ones is given in Ref. [35]
for the harmonic oscillator potential and in Ref. [60] for the
annular confinement. In Eq. (1), we take the Landé factor
g = go =2 after the k - p theory of Ref. [33]. The values
of experimentally extracted g-factors vary; in particular an
increase with respect to go was reported [59] at low filling
factors, which is attributed [33,59] to strong electron-electron
interaction effects in black phosphorus. The electron-electron
interaction in this work is treated in an exact manner. The spin
Zeeman term leads to the spin polarization of the confined
system. The exact value of the magnetic field producing the
spin polarization is affected by the adopted g-factor value,

but no qualitative effect for the Wigner crystallization of the
charge density is expected as long as the spin-orbit coupling
is absent. The spectral features of Wigner crystallization for
g = 0 are discussed in Appendix.

We work with a square mesh with a spacing Ax in
both the x and y directions. The Hamiltonian acting on
the wave function ¥, , = W(x,, x,) = W(uAx, nAx) in the
finite-difference approach reads

2

HoV), . = W(%ywv — Vg1~ Cy*wlwﬂrl)
72
+ m(z C \Ilu 1,n C:wy.-&-l,n)
y
gupB
+ Wy Wiy + 23 o, )

where C, = exp(—iz AxA,) and C, = exp(—i;AxA,) intro-
duce the Peierls phases [61] for the description of the orbital
effects of the perpendicular magnetic field (0, 0, B). For cal-
culation of the phase shifts, we use the symmetric gauge A =
(Ac, Ay, A;) = (—By/2, Bx/2,0). Hamiltonian (2) is diago-
nalized in a finite computational box with the infinite quantum
well set at the end of the box (see Appendix).

B. Model potential

For evaluation of a realistic confinement potential W, we
use a simple model with a phosphorene plane embedded in a
Al,O3 dielectric that fills the area between two parallel elec-
trodes [Figs. 1(a) and 1(b)]. A higher (lower) potential energy
for electrons is introduced at the top (bottom) electrode. The
bottom electrode is grounded and contains a protrusion that
approaches the phosphorene layer. As a result, the electro-
static potential within phosphorene forms a cavity that traps
the electrons of the conduction band. The model is a vari-
ation [62,63] of a gated GaAs quantum dot of Ref. [64].
Below we use two models: one with a circular protrusion
[Fig. 1(a)] and the other with a rectangular one [Fig. 1(b)].
The latter is used in the following to study the case close
to the 1D confinement. The confinement potential to be used
in the Hamiltonian is given by W (x, y) = —eV (x, y, z,), with
the electrostatic potential V that we evaluate by solving the
Laplace equation —V?V = 0 and z,, is the coordinate of the
phosphorene layer. For evaluation of the potential we use
the finite element method similar to the one applied in
Ref. [63] for a charge-neutral phosphorene plane. The con-
finement potential at the monolayer is plotted in Fig. 1(c) for
the circular protrusion of Fig. 1(a) and in Fig. 1(d) for the
rectangular protrusion of Fig. 1(b).

C. Diagonalization of the N-electron Hamiltonian

The system of N-confined electrons is described with the
Hamiltonian

Hy = ZHom + Z 4MO€ o 3)

We take the dielectric constant € = 9 assuming that the phos-
phorene is embedded in Al,Os.
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FIG. 1. Schematics of model systems for evaluation of the confinement potential. The phosphorene monolayer is embedded in a dielectric
that fills the space between electrodes of the plane capacitor configuration. The lower metal electrode contains a circular (a) or rectangular
(b) protrusion. The upper electrode is kept at a higher potential energy —eV, = 0.25 eV for the electrons than the lower one —eV; = 0. The
protrusion introduces an inhomogeneity of the electric field within the capacitor that forms the confinement potential for the electrons of the
conduction band. We use /; + hy + h; = 150 nm and &; = 50 nm. For the circular protrusion (a) we take 4, = 50 nm and for the rectangular
one (b) 1, = 30 nm. The radius of the protrusion in (a) is R = 50 nm, and the sides of the rectangle in (b) have lengths /; = 80 nm and /, = 30
nm. The confinement potential on the phosphorene plane is plotted in (c) and (d) for the circular and rectangular protrusions, respectively. The

origin in (c) and (d) is the symmetry center of the protrusion.

In the standard configuration-interaction method
[7,52-55] the N-electron Hamiltonian is diagonalized
on the basis of Slater determinants constructed with the
single-electron Hamiltonian H, eigenstates. Each of the Slater
determinants defines a configuration, e.g., a distribution of
electrons over the single-electron states. The number of Slater
determinants to be used in the calculation is established by a
study of the convergence of the energy estimates. Reaching
convergence in the present calculation is challenging because
of the strong electron-electron interaction in phosphorene
[59]. The energy of the ground state estimated for N = 4 at
B =0 in the circular potential of Fig. 1(c) is plotted with
the black line in Fig. 2(a) as a function of the number of the
lowest-energy single-electron states v that span the Slater
determinant basis. The Hamiltonian Hy commutes with the
operator of the z component of the total spin and also with
the parity operator due to the point symmetry of the potential.
The symmetries allow for a few-fold reduction of the number
of basis elements. In Fig. 2, the four-electron ground state
at B = 0 is the spin singlet S, = 0 of an even spatial parity.
Only Slater determinants of these symmetries contribute
to the ground-state wave function. For v = 60, the Slater
determinants set counts (640) = 487 635 elements, of which
only about 94 500 determinants correspond to S; =0 and
either even or odd parity. The right vertical axis in Fig. 2(a)
shows the number of Slater determinants of the spin-parity
symmetry that are compatible with and contribute to the
ground state.

The convergence of the CI method using the Hj single-
electron eigenstates (black line in Fig. 2(a)) is slow. The
electron-electron interaction has a pronounced effect on
the electron localization, since the electrons in phospho-

rene are quite heavy as compared to those in, e.g., GaAs,
and the deformation of the charge density in terms of the
single-electron energy is cheap. This in turn results in a high
numerical cost of the convergent calculations that require
a large number of single-electron states to be included in
the convergent basis. Therefore, due to the strong electron-
electron interaction, the set of H, eigenstates is not the best
starting point for a convergent CI calculation. The literature
indicates a number of methods to speed-up the convergence,
including the HF+CI method [56-58] where the basis for
the CI method is based on the Hartree-Fock single-electron
spin-orbitals. In the HF4-CI approach, the mean-field effects
of the electron-electron interaction are accounted for already
in the single-electron basis and the CI is responsible only
for description of the electron-electron correlation effects that
evade the mean-field treatment. The HF charge density in the
unrestricted version of the method breaks the symmetry of
the confinement potential and its restoration is challenging
[65,66] on its own at the CI stage. Convergence speed-up by
the choice of the single-electron basis is achieved [67,68] with
the natural orbitals [69,70] introduced by Lowdin [71].

In this work, we apply a simple approach that allows for the
convergence speed-up by replacing the potential W in Hy by
another potential that produces single-electron wave functions
of the low-energy spectrum that cover a larger area than the
ones for the bare potential W. For preparation of the single-
electron basis, we diagonalize the single-electron Hamiltonian
H| with the potential

W' =W + Vyexp(—(x? + y*)/d?). %)

The Hy, eigenfunctions are used for the Slater determinants
to diagonalize the Hamiltonian Hy. Vp and d of Eq. (4) are
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FIG. 2. (a) Ground-state energy for four electrons confined in
circular quantum dot as a function of the number of single-electron
eigenstates used for construction of the basis for B = 0. For the
black (red) line, the eigenstates of the single-electron Hamiltonian
H, (Hamiltonian H;) with the bare confinement (confinement with
a central Gaussian with V; = 8 meV and o = 35 nm were used).
(b) Energy shift that appears when the states with triple or quadruple
excitations above the single-electron 32nd energy level are excluded
from the basis constructed using Hy (black) and H (red) eigenstates.
[(c)—(k)] The ground-state charge density in the x > 0, y > 0 quarter
of the QD as obtained using the Slater determinants basis constructed
with Hy [(¢), (f), and ()], H; [(d), (2), and ()], and Hy [(e), (h),
and (k)] Hamiltonians using v = 24 [(c)—(e)], 40 [(f)—(h)], and 60
[(i)—(k)] lowest-energy single electron wave functions.

used as variational parameters in terms of the N-electron
energy [72]. The results for four electrons and the basis of
the H eigenstates for optimized Gaussian parameters given
by the red line in Fig. 2(a) exhibit a substantial convergence
speed-up with respect to Hy basis. In particular, the basis of
H| eigenstates with v = 36 and about 12 thousand elements
produce a similar ground-state energy estimate as the H
basis with v = 52 and as much as about 53 thousand Slater
determinants.

Figure 2(a) contains also the results obtained with eigen-
functions of Hamiltonian Hj (green line) using potential
W’ (x,y) = W(x)/s, where s is the scaling factor of the bare
potential with its variationally optimal value of s = 2.13. The
scaling enlarges the area covered by the low-energy single-
electron wave functions in a manner that becomes equivalent
in terms of the four-electron ground-state energy for the one
using W’ potential for v > 32. The low-energy single-electron
wave functions for W, W', and W” potentials are given in
Appendix.

Figures 2(c)-2(k) shows the ground-state charge density in
the x > 0, y > 0 quarter of the QD as obtained for v = 24
(first row of plots), 40 (second row of plots), and 60 (third
row of plots) with the Hy (left column), A} (central column),
and Hy (right column) eigenfunctions. For v = 60 the results
are similar for all the three bases. For lower v, the results for
H, [Figs. 2(c) and 2(f)] and H| [Fig. 2(e)] the islands appear
closer to the origin than in the convergent result.

In order to illustrate the role of the modified potential in
the description of the electron-electron interaction, we plotted
in Fig. 2(b) the energy overestimate that is obtained once the
basis of Slater determinants is reduced by exclusion of all
configurations with more than two electrons [56] above the
32nd single-electron energy level. For the Hamiltonian Hj,
the cost of the limited basis is much larger than for H] and
grows fast with v. For Hj the overestimate is much lower. The
single-electron effects due to W’ potential are included in the
basis, and the double excitations that stay in the basis cover
most of the electron-electron correlation effects. A similar
result is obtained in the HF+CI method [57,58].

D. Charge density and pair correlation function

For analysis of the electron localization, we extract the
charge density and the pair correlation function from the N-
electron wave function W. The charge density is obtained as

N
p(r) = (W] Y 8(r; —1)|W). (5)

i=1
The pair correlation function extracts the relative localization
of the electrons with one of the carrier positions fixed

N
pr(r,ry) = (V| Z S —r)(r; —rp|¥).  (6)

i, j=1

In the following, we fix the position r of one of the electrons
near the local charge density maximum for a discussion of pj,
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plots. The spin density can be calculated as

N
poi(r) = (‘I‘IZS(IU' — )a;) (o] | W) , )

i=1

where the projection on the spin eigenstates uses |o;) that
stands for the single-electron spin eigenstate for ith elec-
tron. Similarly, the relative localization including the spin
configuration of the electron pair can be included in the p;,
pair-correlation function. In particular, opposite spin distribu-
tion can be obtained using spin projections

N
P, Tr) = (W] ) 8(ri —1)8(r; — 1)
i,j=1

X (leiBr)(eiBrl + |Bices) (Bieg DY), (8)

with the spin eigenstates |«) # |B).

III. RESULTS

In this section, we first (Sec. III A) discuss case for the
circular external potential where the formation of Wigner
molecules in the laboratory frame occurs due to anisotropy
of the effective mass. Section III B contains the results for
an elongated confinement potential near the quasi 1D confine-
ment limit.

A. Circular potential

We discuss first the relatively simple case for N < 4
(Sec. III A 1) where in the low-energy states the Wigner
molecule formation in the laboratory frame is present (N =
2 and 4) or absent N = 3. Section III A 2 covers the case for
N = 5 where states of both types are present in the low-energy
part of the spectrum.

1. Results for N < 4 electrons

The energy spectra for the circular potential [see Fig. 1(c)]
are plotted in Fig. 3. For N = 1 [Fig. 3(a)], the energy lev-
els for B = 0 are degenerate with respect to spin. For N =
2 [Fig. 3(b)], the ground state is an even parity spin sin-
glet which is replaced by an odd-parity spin-polarized triplet
for B~ 0.25 T. The energy spacing between the lowest-
energy states in Figs. 3(b)-3(f) are much smaller than for
the single-electron spectra, which is a signature of strong
electron-electron interaction [73]. The spin triplets that we
find correspond to odd spatial parity which is characteristic
to the two-electron system [19].

For N = 3 electrons [Fig. 3(c)], three different symmetry
states appear in the ground state starting from an odd-parity
spin doublet for B = 0. Above 1 T the ground state becomes
spin-polarized first in the odd parity and next, above ~4 T, in
the even parity state.

For N = 4 [Fig. 3(d)], the ground state at B = 0 is nearly
degenerate with respect to the parity and the spin. The ground
state at B = 0 is an even parity singlet. The spin polarization
in the ground state appears already for B >~ 0.03 T.

The results for N € [2, 4] can be summarized in the fol-
lowing manner.

411.7
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FIG. 3. Spectra for circular potential for N = 1 (a), 2 (b), 3 (c),
4 (d), and 5 (e) electrons. In (a), even and odd parity energy levels
are plotted with blue and green lines, respectively. In (b)—(e), the
even parity energy levels are plotted with the solid lines and the odd
parity energy levels with the dotted lines. In (e), the symbols of "+’
and ’o’ mark the states with (1,4) and (0,4) charge configurations,
respectively (see text). The color scale is separate for each figure and
given to the right of the plot.

205304-5



TANMAY THAKUR AND BARTLOMIEJ SZAFRAN

PHYSICAL REVIEW B 106, 205304 (2022)

N=2, 0:01 T MN=2 5T

— —w 0.16 — z ——m 0.2
40 40 1
20 T 20 &
2 o i e |
= S Eo =
- o =)
(= (=]
20 - .:—1' 20 - :u'
-40 | (a) -40 (b)
40 20 0 20 40 © 20 20 o0 20 40
% [nm) % (nm)
N=8, 0.01 T N=3,5T
0.12 0.12
40 - 4(;4 4
20 - T zo| %
— = L [ =4
E o E 5
c 0 Rl =0 | =
e T B :
0 - 2 2
40 (c) -40‘ (d)
a0 20 0 20 40 ° 40 20 0 20 40 °
¥ (nm) x {nm)
N=4, 0.01 T N=4,5T
g 02 0.2
40 ] 40 1
20 T 20 - &
E 5 E S
S0/ W - = S0/ S - =
> 8 > =
20 T -20 0
40} - (e) -40 (”
40 20 o0 20 a0 ° a0 20 o 20 a0
x {nm) x (nm)

FIG. 4. The ground-state charge density in the circular confine-
ment for N = 2 [(a) and (b)], 3 [(c) and (d)], and 4 [(e) and (f)] for
B = 0.01 (left column) and 5 T (right column).

(i) For even N the spectrum at B = 0 contains a few nearly
degenerate energy levels near the ground state. Already a low
magnetic field of a fraction of tesla leads to a complete spin
polarization in the ground state. The systems with N = 2 and
4 are also similar from the point of view of the Wigner molec-
ular charge density, which contains separate N single-electron
islands [Figs. 4(a), 4(b) and 4(e), 4(f)].

(ii) For N = 3 the ground state at B = 0 is exactly twofold
degenerate with respect to the spin, and a few ground-state
transitions appear in the field of the order of a few tesla before
the high field symmetry is established. The charge density
exhibits 4 local charge maxima Figs. 4(c) and 4(d). These are
not the single-electron islands. Furthermore, the charge den-
sity is smeared over the area between the maxima [Figs. 4(c)
and 4(d)] and does not vanish as effectively as for even N
[Figs. 4(a) and 4(b)] The three-electron charge density is not
ordered in the Wigner-molecule form.

The effects of the electron-electron correlation in the local-
ization of the carriers can be observed in the pair-correlation
function plots given in Fig. 5. For these plots, we fix the posi-
tion of one of the electrons [see ry in Eq. (6)] that is marked
by the cross in each panel of Fig. 5. For illustration of the
system reaction to the electron position, we fixed one of the
electrons slightly off the local density maxima of Fig. 5 near
the left (top) edge of the charge distribution in the left (right)
column of Fig. 5. For three electrons [Figs. 5(a) and 5(b)]

— ———m 0.016 o D016
Al N—3 { _wlr— N=3
20 | E 20 ‘ E
= = =
Eo M SEo i
. - e - B
220 *« 20 e
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FIG. 5. Pair correlation function plots for the circular confine-
ment potential. The spin-polarized ground state at B=35 T is
considered. The crosses indicate the position of the fixed electron
[see Eq. (6)].

the conditional probability exhibits two separate maxima. The
maxima move once the fixed electron position is changed
[cf. Figs. 5(a) and 5(b)], which corresponds to the ringlike
charge distribution in Figs. 4(c) and 4(d). On the other hand,
for N = 4, the probability maxima at the right and bottom
edges of the quantum dot stay in the same place when the
fixed electron position is changed [Figs. 5(c) and 5(d)]. Note
that for N = 4, the charge density produces the pronounced
single-electron maxima [Figs. 4(e) and 4(f)].

For N = 3, the single-electron islands forming a Wigner
molecule in the real space are not observed since the number
of local charge maxima is not equal to N [Figs. 4(c) and
4(d)]. The single-electron charge maxima can appear in the
real space when the symmetry of the confinement potential is
lowered [24] by, e.g., an off-center impurity. We use a weak
Gaussian perturbation introduced to the confinement potential
used in Hy,

Vp(x,y) = Dexp(—(x* + (y — y0)*)/R})., ©)

with parameters D = 0.125 meV, R, =5 nm, and yy, = 20
nm.

We considered the spin-polarized states at the magnetic
field, near the ground-state symmetry transition from even to
odd parity, below 4 T for N = 3 [Fig. 3(c)]. The blue lines
in Fig. 6 present the energy levels of a clean system adopted
from Fig. 3(c). The red lines show the energy levels for the
perturbed system. The off-center Gaussian impurity opens
avoided crossings between the energy levels (Fig. 6), which
for the clean potential correspond to opposite parity.

The charge density for the ground (excited) state of N = 3
is given in Figs. 7(a)-7(c) for the magnetic field that is swept
across the avoided crossing. The charge density outside the
avoided crossing [Figs. 7(a), 7(c), 7(d), and 7(f)] produces
four maxima along the ringlike charge distribution, which de-
viates from the point symmetry due to the V,, potential. At the
avoided crossing the wave functions from otherwise crossing
levels mix. In the ground state [Fig. 7(b)], three well-separated
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FIG. 6. The energy spectra with (red lines) and without (blue
lines) a Gaussian impurity [Eq. (9)] that perturbs the circular sym-
metry of the confinement potential. The energy levels for the clean
system (blue lines) are taken from Fig. 3(c). In Eq. (9), we apply
D =0.125 meV, yp = 20 nm, and R, = 5 nm.

single-electron islands appear and the charge density is low at
the center of the perturbation [(x,y) = (0, yo)]. The excited
state [Fig. 7(e)] at the avoided crossing produces a Wigner
molecule that is rotated by the m angle. In this sense, the
even and odd-parity N = 3 states for a clean potential can
be understood as superposition of states producing Wigner
crystallization in real space with two equivalent but rotated
charge distribution. This result for three electrons in circular
potential but anisotropic effective mass is similar to the ones
found previously for isotropic mass but anisotropic confine-
ment potential [74,75].

2. Five-electron system in the circular quantum dot

The five-electron systems has a more complex structure
than systems with two to four electrons due to two charge
distributions that appear in the low-energy spectrum [see
Fig. 3(e)]. In the ground state at B = 0, we find six nearly de-
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FIG. 7. The charge density for N = 3 [(a)—(f)] levels marked in
red in Fig. 6 for the circular quantum dot with an off-center Gaussian
impurity. The first row [(a)—(c)] shows the data for N = 3 ground
state. The excited state for 3 electrons is shown in the second row
[(d)—(f)]. The central column [(b) and (e)] shows the results at the
center of the avoided crossing displayed in Fig. 6.
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FIG. 8. The ground-state charge density for N = 5 electrons in
B =0.01(a), 1 (b), and 1.75 T (c)—see the spectrum in Fig. 3(e). In
(d), we plot the pair correlation function for the state of (b) one of
the electrons fixed at the position marked by the cross.

generate energy levels: a S, = £1 odd-parity doublet slightly
below S, = —3, —1, 1, 3 even parity quartet. The charge
density in all these energy levels is organized in the Wigner
molecule form that is plotted in Fig. 8(a) with one central
electron island and four others shifted off the center of the
QD forming a crosslike structure that we will denote as (1,4).
The near degeneracy of the ground state is a counterpart of
the four-electron ground state for N = 4, where the Wigner
molecule is also found. For five electrons the first excited
energy level at B =0 is a even parity S; = 1 doublet also
with (1,4) charge distribution. In several higher excited energy
levels the states at the energy of ~ 708.45 meV the charge
density is organized in a ringlike structure with four charge
density maxima without the single-electron islands. We will
denote this structure as (0,4). In higher excited levels, the
states with (1,4) and (0,4) structure interlace on the energy
scale. For B > 0.9 T, the ground state becomes fully spin-
polarized [Fig. 3(e)] and the (0,4) structure [Fig. 8(b)] appear
in the ground state. Above 1.7 T the spatial parity of the
ground state change from odd to even and the (1,4) struc-
ture [Fig. 8(c)] reappears in the ground state. In presence of
both types of states near the ground state—with and without
single-electron islands in the laboratory frame—the spectrum
contains the features of both N = 2, 4 (ground state near de-
generacy at B = 0) and symmetry transformations at higher
field as for N = 3.

The (0,4) state for five electrons has a similar character as
the three-electron ground state. For three electrons, the charge
density is a superposition of two equivalent configurations
one being an inversion of the other. The five-electron charge
configurations with the (0,4) state correspond to the superpo-
sition one or two electrons at the right/left ends of the charge
density near y = 0 line. One of the two equivalent structures
for five electrons can be observed in the pair correlation func-
tion plot of Fig. 8(d) for one of the electrons fixed at point
(—=29.4 nm,0).
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B. A linear confinement

We discuss two perpendicular orientations of the elongated
quantum dot to study the interplay of the potential and effec-
tive mass anisotropies.

1. Confinement along the zigzag direction

The spectra for the potential of Fig. 1(d) with the confine-
ment potential elongated along the y axis, i.e. in the direction
where the effective mass is larger, are given in Fig. 9. The
numbers (ny, n,) given in Fig. 9(a) near the energy levels
at B=0 (for B=0 and N =1 the parity with respect to
inversion along the x and y axes of the Hj eigenstates are
definite). The first excitation within x, the direction of thinner
confinement, occurs 3 meV above the ground state [see the
energy level marked by (1,0) in Fig. 9(a)] above five states
excited in the y direction. For N = 2 [Fig. 9(b)], the singlet-
triplet ground state the degeneracy is nearly perfect at B = 0.
For B > 0, the S, = 0 state remains twofold degenerate with
spin-singlet and spin-triplet energy levels that coincide in
energy. The separation of the electron charges [Fig. 10(a)] is
complete, and the system is effectively equivalent to a pair
of electrons in a double quantum dot with vanishing tunnel-
ing between the dots, which produces a vanishing exchange
energy [19,76,77]. The ground-state degeneracy at B = 0 is
also obtained for N = 3 [Fig. 9(c)]. The Wigner crystallized
charge density of the three-electron system at B = 0 is shown
in Fig. 10(b). Parity has no significant impact on energy once
the electron charges are separated and the S, = 41 energy lev-
els are twofold degenerate with respect to parity. Low-energy
spin-polarized states S, = %3 occur only in the odd parity.

For N = 4, the ground state at B = 0 is only close to the
degeneracy [Fig. 9(d)] with the even parity ground state at B =
0. The spin polarization S, = £4 occurs only in even parity
states. The structure of the low-energy spectrum is similar to
the one found for the circular quantum dot [Fig. 3(e)] with
even-odd parity splitting of energy levels reduced almost to
Zero.

The results of Figs. 9(c) and 9(d) for B > 0 indicate that for
N =3 (N = 4) the low-energy spin-polarized energy levels
occur only with the odd (even) parity symmetry. This is in
agreement with Ref. [16] that indicated that in 1D Wigner
molecules for N = 2M or N =2M + 1 with integer M the
low-energy spin-polarized state has the spatial parity that
agrees with the number M. Note that for N = 3 in the circular
potential [Fig. 3(c)], for which the Wigner molecules were not
formed in the real-space charge density, both odd and even
parity spin-polarized states appear in the ground state for a
range of magnetic field.

2. Confinement along the armchair direction

For the rectangular gate of Fig. 1(a) with the longer side
oriented along the x direction, the electron mass along the dot
is light and in the transverse direction the mass is heavy. For
the preceding subsection with confinement along the zigzag
direction [Fig. 9(a)], several lowest energy single-electron
states correspond to the same—ground state—energy level of
the quantization in the direction perpendicular to the quantum
dot axis. For the confinement along the armchair direction,
the large m, mass allow the states with excitations in the
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FIG. 9. Spectra for the potential of Fig. 1(d) elongated along the
zigzag crystal direction (y) for N = 1 (a), 2 (b), 3 (c), and 4 (d). In
(a), even and odd parity levels are plotted with blue and green lines,
respectively. Notation (ny, n,) close to B = 0 shows the number of
excitations (sign changes) in the wave function at OT. In (b)—(e), the
even parity levels are plotted with the solid lines and the odd parity
levels with the dotted lines. The color of the lines stands for S,. The
color of the lines in (b)—(d) shows the S, value.

direction perpendicular to the confinement axis to appear low
in the energy spectrum [Fig. 11(a)]. The first single-electron
state excited in the transverse direction is the second excited
energy level in Fig. 11(a) [see the energy level described by
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FIG. 10. Charge density for the B = 0.01 T ground state of the
quantum dot elongated along the y axis (zigzag direction, spectra
given in Fig. 9) for N = 2 (a), 3(b), and 4 electrons (c). The second
row of the plots indicates the results for the dot elongated along the
x direction (armchair direction, the spectra given in Fig. 11) for N =
2 (d), 3 (e), and 4 electrons (f). (i) corresponds to N =4 and B =
5 T. (g) and (h) show the pair correlation function for N = 4 and
the dot elongated along the x direction. The fixed position of one of
the electrons is marked by the cross. (g) shows the pair correlation
function for the other electrons with the same spin as the fixed one.
In (h), the spin of the other electrons is opposite to the one of the
fixed one.

(0,1)]. From this point of view, the system deviates from the
quasi 1D confinement, which should be characterized by a
large number of excitations along the quantum dot below the
energy when the first transverse excitation occurs. However,
the charge density of the N-electron states is elongated along
the x direction [see Figs. 10(d)—10(f)]. The lifting of the even-
odd degeneracy is observed in the spectrum for N =2 and
3 [Figs. 11(b) and 11(c)]. A lower value of m, allows for a
non-negligible electron tunneling between the single-electron
islands [cf. the charge density in between the single-electron
maxima for N =2 and 3 in Figs. 10(a), 10(d) and 10(b),
10(e)], thus lifting the degeneracy at B = 0. Near B = 0, the
spectrum for N =4 [Fig. 11(d))] has a distinctly different
character than for the zigzag confinement [Fig. 9(d)] and for
the circular confinement [Fig. 3(e)]. In both preceding cases
the electrons were separated in the single-electron islands
[Figs. 4(e), 4(f) and 10(c)]. The ground-state charge density
for the armchair confinement possesses two single-electron
islands at the ends of the dot and a lower but more extended
central maximum [Fig. 10(f) for B = 0.01 T and Fig. 10(i) for
B =5 T]. The charge densities of the two central electrons
do not separate into single-electron islands. The effect can be
attributed to both a large value of m, that allows the states
excited in the y direction to contribute to the interacting states
and a small value of m, which makes the formation of the
single-electron islands along the x direction more expensive
in terms of the kinetic energy.

86
85.5
85
S84.5
g 84
w83.5

(1,0) odd
83+ .

825+
82 (0,0) I ‘even 1 I (aL
0

T
I

170.5 _
170.4 1
21703 1

£
L1702
170.1F 1
170

362.7
362.6 N
_362.5
>
£362.4
“362.3
362.2

362.1

FIG. 11. Spectra for the potential of Fig. 1(d) elongated along
the armchair crystal direction (x) for N =1 (a), 2 (b), 3 (c),and 4
(d). In (a), even and odd parity energy levels are plotted with blue
and green lines, respectively. The notation (n,, n,) close to B =10
axis shows the number of excitations (sign changes) observed in the
wave function at zero magnetic field. The spin degeneracy is lifted
for B > 0 with the spin-down energy levels promoted by the Zeeman
interaction. In (b)—(d), the even parity energy levels are plotted with
the solid lines and the odd parity energy levels with the dotted lines.
The color of the lines stands for the spin. The color of the lines in (b)—
(d) shows the S, value. The color scale is separate for each figure and
given to the right of the plot.
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Fig. 10(g,h) shows the spin-resolved pair correlation func-
tion for one of the electron positions fixed in the point marked
by the cross for B = 0.01T. Fig. 10(g) (Fig. 10(h)) corre-
sponds to the electron distribution with the same (opposite)
spin as the fixed electron spin. The electrons at the central
maximum of the charge distribution [Fig. 10(f)] possess op-
posite spin. Note that, with the electrons of the extreme ends
of the dots, separated from the central density island, the
system at B = 0 acquires a singlet/triplet spectral structure
(Fig. 11(d)) similar to the one for the two-electron system in
the circular quantum dot (Fig. 3(b))—the central two-electron
system governs the form of the low-energy part of the spec-
trum.

IV. DISCUSSION

The systems confined in quantum dots weakly coupled to
electron reservoirs are studied with the transport spectroscopy
using the Coulomb blockade phenomenon [51,78]. In the
Coulomb blockade regime, the flow of the current across the
dot is stopped when the chemical potential of the confined N-
electron is outside the transport window defined by the Fermi
levels of the source and drain. For a small voltage drop be-
tween the reservoirs, the position of the chemical potential can
be very precisely determined. The chemical potential puy =
Ey — Ey_ is defined by the ground-state energies of systems
with N and N — 1 electrons [51,78]. The ground-state energy
crossing in the N electron system produces A-shaped cusps
in the charging line as a function of the external magnetic
field for the N-th electron added to the confined system, while
the ground-state transitions for the N — 1 system produces
V-shaped cusps. Transport spectroscopy allows reconstruc-
tion of the energy spectra with a precision of the order of a
few peV [79]. The results presented above indicate that the
formation of the Wigner molecule in the laboratory frame
leads to a near degeneracy of the ground state near B = 0.
The larger the electron separation in the single-electron charge
islands, the closer the degeneracy at B = 0. The ground state
becomes spin-polarized at low magnetic field and no further
ground-state transitions are observed. The systems without
the Wigner molecular charge density undergo a number of
ground-state transitions that also appear at higher magnetic
field. The transport spectroscopy technique can also be used
for detection of the excited part of the spectra when the cor-
responding energy level enters the transport window [78,79].
Detection of a dense set of levels near the ground state can be
used as a signature of Wigner molecule formation [10,11].

V. SUMMARY AND CONCLUSIONS

We have studied the system of a few electrons in an
electrostatic quantum dot confinement induced within a phos-
phorene layer. A version of the configuration interaction
approach dealing with the strong electron-electron interac-
tion effects has been developed. We indicated formation of
Wigner molecules with single-electron islands separated in
the real space in a system of realistic yet small size. In cir-
cular quantum dots, Wigner crystallization in the laboratory
frame occurs due to the lowered Hamiltonian symmetry with
the anisotropy of the electron effective mass. The Wigner

molecules appear in the laboratory frame when the distri-
bution of the single-electron islands is consistent with the
Hamiltonian symmetry. For circular quantum dots we found
Wigner molecules for two and four electrons but not for three
electrons, for which two-semiclassical configurations form
a resonance due to the conservation of the parity. For five
electrons in the circular confinement, two forms of the charge
density with or without single-electron islands appear in the
ground state depending on the value of the external mag-
netic field. Formation of the Wigner molecules in a quasi-1D
confinement calls for orientation of the confinement potential
with longer axis along the zigzag direction since larger effec-
tive mass promotes the single-electron islands localization and
the smaller armchair mass supports the quasi 1D confinement.
We studied the spectra for both circular and elongated quan-
tum dots to find the signatures of the Wigner crystallization in
real space. The systems with single-electron islands forming
Wigner molecules in the laboratory frame are characterized
by near degeneracy of the ground state at B = 0 followed
by spin polarization in low magnetic field and an energy gap
between the nearly degenerate ground state and excited states.
These features are missing for systems that do not form single-
electron islands. Resolution of these signatures is within the
reach of transport spectroscopy techniques.
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APPENDIX
1. Single-electron eigen-states with Hy, H;, and H{

Figure 2 presents the convergence of the CI method the
single-electron Hamiltonians Hy, Hj and Hj using the bare
QD potential W, the potential with the central repulsive
Gaussian (W’) and the reduced potential W”, respectively.
The low-energy single-electron wave functions are plotted in
Fig. 12 for the three Hamiltonians starting from the ground
state in the first row, and the subsequent excited states pre-
sented in the lower panels of Fig. 12. The seven lowest-energy
states have the same character for all Hamiltonians only with
states for H (central column of plots) and H{ (right column)
covering a larger area than the ones for Hy, which turns out to
speed-up the convergence of the CI method for the system of
size increased by the strong electron-electron interaction.

2. Choice of the computational box

The CI method uses the single-electron wave functions that
are obtained with the finite difference approach in a finite
computational box with the boundary conditions of vanishing
wave function at the edges of the box. The edges of the box
form effectively an infinite quantum well that has to be chosen
large enough to contain the few-electron system without per-
turbation to the low-energy states. The influence of the size
of the box on the results is given in Fig. 13 for the circular
quantum dot. For the circular quantum dot, we use the square
grid of points of the spacing of Ax = R/nx where R is the
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FIG. 12. Probability density of spin-down single-electron states
ordered from the ground state (v =1 — the first row) to eightth
excited spin-down energy level (v =9 — the last row). The left
column corresponds to the states of the bare circular confinement
with potential W (Hamiltonian Hy). The central column to the po-
tential W’ — with an added central Gaussian with 8 meV, 35 meV
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FIG. 13. The ground-state energy for a circular quantum dot
holding two (red line, left energy axis) and five electrons (blue line,
right energy axis) as a function of the radius of the computational
box for 60 single-electron eigenstates of Hamiltonian H; used in
construction of the basis for configuration interaction.

radius of the computational box and we take n, = 111. The
red (black) line in Fig. 13 shows the ground-state energy for
N =2 (N =5). The growth of the energy for small R is due
to the finite-size effect with the quantum well ground state
changing as 1/R?. For calculations for N = 2 the radius of
R = 50 nm is large enough while for N = 5 is has to be taken
as large as R = 80 nm.

3. Spectra without the spin Zeeman interaction

A striking difference in the energy spectra states with or
without the Wigner molecule in the ground state is revealed
for the circular potential once the spin Zeeman interaction is
removed. This is illustrated in Fig. 14 which reproduces the
data from Fig. 3 for g = 0. The systems with Wigner form
of the charge density, i.e., the single-electron islands in the
charge density, N =2 [Fig. 14(a)] and N =4 [Fig. 14(¢c)]
contain a nearly degenerate ground state with energy lev-
els of different parity that interlace in increasing B. The
separation of the electron charges in the separate, weakly
coupled, maxima produces a small energy difference due to
the parity, which is similar to the nearly degenerate ground
state for identical, weakly coupled quantum dots. The single
electron islands are formed by a relatively strong electron-
electron interaction and the weakness of the electron tunneling
between the islands can be deduced from the charge den-
sity plots of Figs. 4(a), 4(b) and 4(e), 4(f) for N =2 and
4. In both cases, the bunch of energy levels of the ground
state is separated by a distinct energy gap from the excited
states.

For N =3 [Fig. 8(b)], the parity of the ground state
changes in growing B as for even N but the spacing between

(Hamiltonian H;). The right column correspond to states obtained
with potential W” = 0.455 x W (Hamiltonian Hj). The parameters
of the central and the right column are optimized for diagonalization
of the four-electron system.
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FIG. 14. Spectra of N = 2, 3, and 4 electron systems in circular potential (as in Fig. 3) but without the spin Zeeman interaction. The blue

(red) lines show the energy levels of even (odd) parity.

the even and odd parity energy levels near the ground state is
much larger than for even N and no energy gap is observed

between the nearly degenerate ground state and the rest of the
spectrum.
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Vortex structure in Wigner
molecules
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We study clusters of vortices for Wigner molecules formed in the laboratory frame induced by
anisotropy of the external potential or electron effective mass. For anisotropic systems the ground-
state vortex structure undergoes a continuous evolution when the magnetic field is varied in contrast
to isotropic systems where it changes rapidly at angular momentum transitions. In fractional quantum
Hall conditions the additional vortices first appear on the edges of the confined system far from the
axis of a linear Wigner molecule and then approach the electron positions in growing magnetic field.
For an isotropic mass the vortices tend to stay at the line perpendicular to the Wigner molecule axis
and pass to the axis for the lowest Landau level filling factor of v = 1. In phosphorene the behaviour
of the vortices is influenced by a strong anisotropy of the electron effective mass. The vortices are
stabilized off the axis of the molecule when it is oriented along the armchair crystal direction. For the
molecule oriented along the zigzag direction the vortices are transfered to the molecule axis already
atv ~ % The transfer is associated with an antivortex creation and annihilation near the electron
position.

In fractional quantum Hall conditions, high magnetic field induces freezing of the kinetic energy to the lowest
Landau level that results in appearance of strong electron-electron correlations. As a result of the correlations
clusters of vortices appear in the ground-state wave function' . The vortices are zeroes of the wave functions
accompanied by phase winding'~ that are attributed to the external magnetic field flux quanta piercing the elec-
tron system®. Electron-vortices structures are used for construction of the composite fermion® wave functions.
The vortices with phase winding for the electrons at high magnetic field have their counterparts in the trapped
rotating Bose-Einstein condensates!®12.

Structures of vortices for circular quantum dots in isotropic mass materials have been discussed for the exact
diagonalization wave functions’". In addition to the formation of vortices, the electron-electron correlations
lead to Wigner localization'*-'%. The finite counterparts of the Wigner crystal in laterally confined systems are
called Wigner molecules'’=°. For circularly symmetric quantum dots, Wigner molecules are formed in the inner
coordinates of the system'® and for lowered symmetry they may appear in the laboratory frame® ! with distinct
single-electron islands in the charge density distribution. A lower symmetry of the system can be induced by
external potential?>~*! or by the effective mass anisotropy*2.

The venue of new materials motivated the research on quantum Hall states®>~** and Wigner crystallization
for anisotropic Fermi surface. Effects of anisotropic electron-electron interactions for quantum Hall states were
also studied**~*. The anisotropic effective mass for a single electron can be readily accounted for in the structure
of the Landau levels or Fock-Darwin states®*>*® with rescaling the electron coordinates producing a modified
angular momentum operator that commutes with the Hamiltonian. However, the central Coulomb interaction
is not compatible with the rescaled coordinates and calls for further theoretical treatment of the interacting
eigenstates® 946,

The purpose of the present paper is to study the fractional quantum Hall effect clusters of vortices in the
presence of Wigner crystallization in the laboratory frame space induced by anisotropy of external potential or
effective mass. We chose for the case study the phosphorene*’->° a material that exhibits a strong anisotropy of
the effective mass. The quantum Hall effects in phosphorene were subject to theoretical®® and experimental®'->*
investigations. Relatively large carrier effective masses in phosphorene provide favorable conditions for forma-
tion of Wigner localization, and their strong anisotropy®>-** paves the way for formation of Wigner molecules
to be observed in the laboratory frame®? and not only in the inner structure of the electron system. We find that
in quasi one-dimensional Wigner molecules the additional vortex clusters that appear with decreasing lowest
Landau level filling factor tend to stay off the axis of the molecule for an isotropic effective mass. The anisotropy
of the effective mass interferes with this process, strengthening or weakening this tendency depending on the
orientation of the Wigner molecule axis with the heavier mass direction.

33-40 32,41
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Theory
We work with a two-dimensional single-electron Hamiltonian with anisotropic effective mass and parabolic
confinement®'

3 2 d 2
h =(—ih— + eAx> /2my + <—ih— + eAy) /2my,
ox ay 1)

1
L (e 4 mei)

with the symmetric gauge A = (Ay, Ay, A;) = (—By/2, Bx/2,0) for perpendicular magnetic field B. In Eq.
(1) we use the effective masses® for phosporene m, = 0.17037mj for the armchair crystal direction (x) and
my = 0.85327my for the zigzag direction (y). The Hamiltonian with these mass parameters® reproduces
the results of the tight-binding approximation® for electron states confined laterally within the monolayer
phosphorene.

The single-electron wave functions ¢ are obtained by diagonalization of 4 in the basis of a product of poly-
nomials and a Gaussian

x 2 2
d)/l.(r) = Z C‘l)j'x"' y”y exp(—axx - ﬂy}/ )> (2)

v

where a, and a, are determined variationally and u numbers the 4 eigenstates in the energy order.

For analysis of the zeroes in the fractional quantum Hall regime we consider a spin-polarized system and
consider three electrons, which is the minimal electron number that allows for discussion of the zeroes of the
reduced wave function’"’.

For three electrons, we use the configuration interaction approach, i.e. we build a basis of antisymmetrized
products (Slater determinants) of single-electron wave functions

O(ri,r2,r3) = ) dy Al ()b (02) s (1)) 3)
n

where A is the antisymmetrization operator and pt; < > < 3. The expansion coeflicients d, are obtained by
diagonalization of the three-electron Hamiltonian

3 3 2
€
H=) h()+ —_—
Z (=) ) Z 4meeorij @)
i=1 i=1,j>1

We use the dielectric constant € = 9 for the phosphorene embedded in Al,Os.

The calculations for the discussion of wave function zeroes require highly convergent results. After diagonali-
zation of the /i operator, we use 98 lowest energy single-electron eigenstates for the construction of about 150
thousand three-electron Slater determinants that are used as a basis to provide convergence in the total energy
of a fraction of a peV.

Results and discussion

This section is organized as follows. We first provide the results for isotropic effective mass to set the reference for
discussion of the effects of the mass anisotropy. For the isotropic mass we discuss the passage from the circular
confinement to the quasi 1D confinement with the Wigner molecule in the laboratory frame. Next, we present
the results for phosphorene with the Wigner molecule oriented along the zigzag or armchair crystal directions.

Isotropic effective mass. The results for a circular potential iw = fiwx = hw, = 3 meV with an isotropic
effective mass m = m, = m,, = 0.17037my are summarized in Fig. 1. At high magnetic field the single-electron
energy levels with non-negative angular momenta form a band that tends to the lowest Landau level (Fig. 1a).
The three-electron spectrum presented in Fig. 1b exhibits the angular momentum transitions in the ground
state'®. The spin-polarized ground-state angular-momentum quantum numbers L take values that are multiples
of 3°. The eigenvalue of the spatial parity operator for a given L is (—1)’. In the following, we will refer to the
states with the negative (positive) eigenvalue of the spatial parity as odd (even) parity states. The Laughlin wave
function'—in form of the antisymmetric Jastrow factor attenuated by a Gaussian—provides an approximate
eigenstates for the ground states of odd parity. For the three-electron state at the lowest Landau level filling factor
ofv = %with odd n this wave function has the form

lz112 + |z2|* + |23|2)
212 (5)

x [(z1 — 22)(z2 — z3) (21 — 23)]",

‘1’1):% (21,22, 23) =exp(—

where z = x + iy, I3 = miwh, with ? = @* + »?/4 and the cyclotron frequency w. = e—mB. This wave function is

an eigenstate of the angular momentum for L = 3n, hence the relation between the angular momentum and the
lowest Landau level filling factor v = %7’9.
In the following we discuss the position of vortices of the reduced wave function”?, e.g. the three-electron

wave function for two fixed electron positions
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Figure 1. (a) Single-electron energy spectrum for an isotropic effective mass m, = m;, = 0.17037mg and
confinement potential fiwy = hwy, = 3 meV. The color of the lines corresponds to the angular momentum
eigenvalue. (b) The three-electron energy spectrum for the spin-polarized states calculated with respect to the
non-interacting ground state. (c) The electron density cross sections for the lowest-energy three-electron spin-
polarized states density for B = 1T, 10 T, and 20 T. (d) The logarithm of the reduced wave function f for two
electrons localized at (x = 0,y = %Y max), Where yy,qx corresponds to the maximal electron density calculated
along the y axis. The dip corresponding to the electron at y = ;4 is close to the numbers that denote the
ground-state angular momentum. The plots are calculated for B = 1,2, ...29 T. The lines for subsequent
magnetic fields are shifted by + 5 on the plot for clarity. Here, for presentation, we plot log(f + 10~1°) instead of
log(f) to make the dips of the wave function shallower.
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8(z; z1,22) = P(21,22,2). (6)

The reduced Laughlin wave function is a complex polynomial of degree 2n = 2 = 2L, that possesses two

n-fold zeroes at the electron positions: one at z = z; and the other at z = 2. In the context of phase circulation,
these zeroes are giant vortices with the phase of g that changes by 27 n under a rotation around the zero.

The Laughlin wave function is the exact? solution for the contact electron-electron interaction potential
within the lowest Landau level. For the Coulomb interaction potential 2nn — 2 zeroes detach from the fixed elec-
tron positions”® and the zeroes are single vortices with rotation of the phase by 27. In Fig. 1d we plot the loga-
rithm of the absolute value of the reduced wave function f(z) = |g(z; z1, z2)| with one electron fixed at (0, ynax)
and the other at (0, —¥mqx), where y,qx corresponds to the maximum of the electron density (Fig. 1c). The value
of Ymax decreases with increasing B for fixed value of the angular momentum, and increases in a discontinu-
ous manner once a larger L appears in the ground state at an angular momentum transition. In Fig. 1d, ymax
corresponds to the central dip of the reduced wave function. We denote the ground-state angular momentum
with integer values placed near zero at y = ¥ in the figure. For L = 3, the reduced wave function has only the
zeroes that correspond to the fixed positions of electrons. The next ground state at higher field, with L = 6 is of
the even spatial parity and does not correspond to the Laughlin wave function. For L = 9 and the filling factor
v = 3—covered with a Laughlin wave function—the number of zeroes is 6, e.g. three per fixed electron. We find
that the extra zeroes appear also on the y axis, one closer and one further apart from the potential center than the
electron position. The state with L = 12 is a non-Laughlin state with an extra zero in the confinement potential
center. For L = 15 (Laughlin filling factor v = 1) we find 5 zeroes per fixed electron position, etc.

Generally, for the state of the total angular momentum L diagonalized on the lowest Landau level basis with
single-electron states of non-negative angular momenta L = L; 4 L, + L3, the maximal degree of the reduced
wave function is L — 1 (for the minimal value of a sum L; + L, = 1). Therefore, for L = 15 one could expect up
to 7 zeroes per fixed electron and not 5 as in the Laughlin wave function. Since our calculation is not limited to
the lowest Landau level and covers also the states with negative single-electron angular momenta, the maximal
degree of the polynomial, and the number of zeroes of the reduced wave function could be even larger, but for
the circular quantum dot in the Lauglin state we resolve only the number of zeroes expected for the Laughlin
wave function, i.e. L/3 or n per electron. More zeroes may still appear in the region far away from the dots center,
where the electron density is negligible. The presence and location of zeroes far away from the region occupied
by the electron density have no significant effect for the system energy.

For confinement that deviates from the circular symmetry we find a mechanism of formation and annihilation
of antivortices, when the number of zeroes changes at a small magnetic field variation. To show this effect, let us
now consider a deviation from the circular symmetry of the confinement potential. We increase the confinement
energy in the x direction to ~wy, = 3.5 meV. The three-electron spectrum (Fig. 2a) can no longer be described
by the angular momentum, but the spatial parity is still defined for the Hamiltonian eigenstates. The quantum
mechanical expectation value of the angular momentum which is plotted in Fig. 2b possesses plateaux near even
and odd integer values for even and odd parity states, respectively. The steps between the plateaux correspond
to avoided crossings that open between the lowest- and second-energy states of the same parity (Fig. 2a). The
electron density on the plateaux [(Fig. 2¢,e,f,h) for odd-parity states near (L) = 3, 9 and 15] has the form of an
elliptically deformed ring. At the steps between the plateaux (Fig. 2d,g) local maxima appear in the density. These
densities are superpositions of two energy-equivalent semiclassical® charge configurations with the central
electron occupying one of the maxima at the x axis.

In Figs. 3, 4 and 5 we look at detailed behaviour of the zeroes of the reduced wave function of the lowest-
energy odd state (see also Supplementary Fig. S1 in the Supplementary Information) in the region of non-zero
charge density. Below 10 T—at the plateaux of (L) >~ 3—the zeroes appear only at the fixed electron positions.
At the step between the plateaux with average L of 3 and 9 two additional zeroes appear on the edges of the
reduced wave function [see the dips for 10.5 T in Fig. 3b]. These zeroes approach the fixed electron position
as B grows. At 12 T already at the plateaux of (L) > 9 the additional zeroes appear at the y axis (Fig. 3a) as for
the circular quantum dot (cf. Fig. 1d). The mechanism of the transition of the zeroes to the y axis is presented
in Fig. 4. Between 10.7 T and 10.8 T, the zero associated with the electron position is split into three zeroes, all
aligned at the y axis. In Fig. 4b the zero at the electron position is the central one in the cross configuration. The
phase of the reduced wave function plotted in Fig. 4c shows that four of the zeroes at the arms of the cross are
associated with a growth of the phase in the clockwise rotation around the zeroes. Only the phase at the central
zero decreases in the clockwise direction. In this sense, splitting of the zero at the fixed electron position cor-
responds to transformation of a single vortex (Fig. 4a) to a central antivortex and two vortices above and below
the antivortex (Fig. 4b,c). As B is increased further (Fig. 4d) the additional vortices at the y axis go further away
from the electron position and the two at the sides approach the central antivortex. Due to the vortex-antivortex
annihilation we are left with a single vortex at the electron position.

The reduced wave function for B = 20.5 T (Fig. 3b), that is, at the step between the plateaux with (L) of 9
and 15 (Fig. 2b) another two extra zeroes appear at a distance from the y axis. These zeroes approach the fixed
electron position as B grows (Fig. 3b) and the highest one on the y axis moves away from the electron position
(Fig. 3a) and leaves the picture. Between 22 T and 28 T the zeroes on the sides of the system relocate to the y axis
with a process involving the formation of an antivortex at the electron position (Fig. 5b,c) and two additional
vortices and next annihilation of the two vortices that approach the electron position along the x axis with the
antivortex at z; (Fig. 5d). This process is similar to the one seen above in Fig. 4.

Note that for a circular system and a state of a fixed angular momentum, the variation of the magnetic field
reduces to scaling the electron coordinates®® accompanied by a scaling of the positions of the vortices. For
systems with broken rotational symmetry we find a continuous evolution of the geometry of the vortex cluster
beyond a simple scaling.
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Figure 2. Results for an isotropic electron mass m, = m,, = 0.17037m with a weak anisotropy of the
confinement potential fiw, = 3.5 meV and fiw, = 3 meV. (a) The energy spectrum for spin-polarized three-
electron states minus three times the single-electron ground state energy. (b) The average value of the angular
momentum for the lowest-energy odd and even parity states. In (a) and (b) the values for odd parity states are
plotted in black and for the even parity ones in red. (c-h) The electron density for the lowest-energy odd parity

states.

Let us now look at the system with strong anisotropy of the external potential (Awx = 6 meV and hw, = 3
meV). The three-electron ground state is odd in the spatial parity (Fig. 6b) for any B and the spacings between the
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ground state and the higher energy levels are too wide for the avoided crossings to be resolved. The dependence
of the average angular momentum on B is smooth (Fig. 6¢). The charge density is organized in a linear Wigner
molecule (Fig. 6d-f) with single-electron islands that are increasingly localized in growing magnetic field.

For 8 T, the zeroes are observed only at the fixed electron position both in the exact calculation (Fig. 7a,b).
Additional zeroes appear at the edges of the plot for 16 T (Fig. 7b) and approach the zero associated with the
localized electron for higher field (Fig. 7b). At 34 T (Fig. 7b) two new zeroes appear at the sides of the Wigner
molecule, while the old ones remain aligned perpendicular to the orientation of the Wigner molecule. At still
higher magnetic field (Fig. 7c-h) we see (Fig. 7c,e,g) the flip of two zeroes close to the electron to the axis of the
Wigner molecule from the perpendicular alignment, which appears in the mechanism involving formation and
annihilation of the antivortex as seen above.

In Fig. 6b,c we additionally plotted with the dashed lines the results obtained for the ground state with a
basis limited to single-electron states with non-negative angular momentum. In the context of the number of
zeroes of the reduced wave function the limited basis is equivalent to the lowest Landau-level approximation.
Although at a high magnetic field the energies are similar on the scale of the plot, the differences are resolved on
the structure of the reduced wave function zeroes (Fig. 7c-h). In the limited basis (Fig. 7d,f,h) the antivortex is

log(f) (at. units)
log(f) (at. units)

y (nm) x (nm)

Figure 3. Logarithm of the reduced wave function for the lowest-energy odd-parity state for

my = my, = 0.17037my, hw, = 3.5meV and fiw, = 3 meV (as in Fig. 2) for two electrons localized at

(x = 0,y = £Ymax), Where y,,qx corresponds to the maximal electron density calculated along the y axis. (a)
Shows the cross section along the y axis, and (b) the cross section along the x direction for ¥ = ymqy. The plots
are calculated for B = 7 T do 30 T with steps of 0.5 T. The lines for subsequent magnetic fields are shifted by +
10 on the plot for clarity. In (a) we plot log(f + 10~!*) instead of log(f) to make the dips of the wave function
shallower. The snapshots of the reduced wave function on (x, y) plane for selected values of the magnetic

field are given in the Supplementary information (Supplementary Fig. S1). The dips in (b) are shallower since
the zeroes that appear off the y axis are displaced along the y axis by an amount that changes with B (see
Supplementary Fig. S1 in the Supplementary information).
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Figure 4. Logarithm of the reduced wave function for the lowest-energy odd-parity state for

my = my, = 0.17037my, hw, = 3.5meV and fiw, = 3 meV as in Fig. 2. Two electrons are fixed at (0, &ymax)s
where yqx corresponds to the maximal value of the electron density for B = 10.7 T (a), 10.8 T (b) and 10.9 T
(d), respectively. In (c) we plot the phase of the reduced wave function for B = 10.8 T.
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Figure 6. Results for an isotropic electron mass m, = m, = 0.17037mq with a strong anisotropy of the
confinement potential fiw, = 6 meV and hiw, = 3 meV. (a) Single electron spectrum. (b) The energy spectrum
for three electrons minus three times the single-electron ground state energy. (c) Average angular momentum
of the three electron system. In (a—c) the values for the even (odd) parity states are plotted in red (black). In

(b) and (c) the dashed black line shows the results for the ground-state calculated in the basis limited to the
non-negative average value of the angular momentum. (d,e,f) The electron densities at 12 T, 32 T, and 52 T,

respectively.
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Figure 7. Logarithm of the reduced wave function for the lowest-energy odd-parity state for m, = my = 0.17037my,

hwy, = 6 meV and ha)y = 3 meV as in Fig. 6. In the plots two electrons are localized at positions (x = 0,y = Yuax) where
Ymax corresponds to the maximal electron density calculated along the y axis. (a) Shows the cross section along the y axis and
(b) the cross section along the x direction for ¥ = y4x. The lines are plotted from 8 T to 54 T with steps of 1 T. In (a,b) the
lines for subsequent magnetic fields are shifted by + 5 on the plot for clarity. In (a) log(f + 107'4) is plotted instead of log(f)
to make the dips of the wave function shallower. In (c-h) we plot the reduced wave function on the (x, y) plane to illustrate the
behaviour of the vortices which move away from the y = y;4y position at higher B. The left column of plots—the complete
basis as everywhere else in this paper. The right column of plots—the basis limited to the single-electron states with non-
negative average angular momenta (the energy level marked with the dashed line in Fig. 6). Each row of plots corresponds

to the same value of the magnetic field. The vortex corresponding to the electron at (0, ¥4y ) is the one at the most central
position on the y axis. See also Supplementary Fig. S2 for the maps at lower magnetic fields.
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Figure 8. Results for the phosphorene m, = 0.17037mg, m, = 0.85327mj for confinement potential with equal
oscillator energies hw, = hiw, = 3 meV. (a) The single-electron energy levels. (b) The three-electron spectrum
minus three times the single-electron ground-state energy. In (a-b) the red (black) color stands for the even
(odd) parity states. (c) The average angular momentum for the even (red) and odd (black) parity energy level.
(d,e) The ground electron density for 20 and 50 T, respectively. (f) The electron density for the lowest even-
parity state at B =50 T.

not formed, and the extra zeroes accumulate around the electron position, but do not approach it as close as in
the exact calculation (Fig. 7¢,e,g).

Phosphorene: anisotropic effective mass. We now adopt the phosphorene parameters for the aniso-
tropic electron mass m, = 0.17037mg and m, = 0.85327my (Fig. 8). For equal oscillator confinement energies
hwy = hw, = 3 meV (Fig. 8) the Wigner molecular form of the density appears along the x axis due to the large
mass in the y direction (Fig. 8d,e). The three-electron spectrum and the dependence of the angular momentum
on B is similar to the one for the isotropic effective mass (Fig. 6b,c): the ground state has the odd spatial parity for
all B and the angular momentum for the ground state is a smooth function of B with no clearly defined plateaux.
The structure of zeroes is shown in Fig. 9. The extra zeroes appear and stay near the line perpendicular to the axis
of the Wigner molecule for the entire considered magnetic field range. No passage to the axis of the molecule
is found, as in the case with isotropic electron mass (Fig. 7a,c,e,g). For the maximal magnetic field considered
(54 T) the ground state average angular momentum exceeds 16/ (Fig. 8c). For the isotropic mass, the passage of
the zeroes from the axis perpendicular to the molecule axis to this axis appeared for (L) was around 15 (Figs. 6c,
7¢c,e,g) for 5 vortices per electron only for v ~ %

To separate the effect of the anisotropy of the Wigner molecule from the anisotropy of the mass, we have
produced the Wigner molecule oriented along the y axis by decreasing the confinement energy hw, to 1 meV
(Fig. 10). The character of the spectrum and angular momentum dependence on B remains similar to that for
the molecule oriented along the x axis, but the zeroes structure is very different. In Fig. 10f,g we have plotted the
cross sections of the reduced wave function along the axis of the molecule (Fig. 10f) and a line perpendicular
to the axis along the x direction for y = y,,4.. Now, the axis of the molecule is aligned with the direction of the
heavier mass. The zeroes come from the sides of the main zero (Fig. 10g—the first extra two for 8 T and 9 T, and
the next extra pair for 16 T and 17 T), but get aligned with the y axis (Fig. 10f). The behaviour of the zeroes in
Fig. 10f,g resemble rather the case of a weakly anisotropic confinement for isotropic effective mass (Fig. 3) than
the results for the Wigner molecule presented above.

The tendency of the vortices to stay at the line perpendicular to the Wigner molecule was present for the
isotropic mass (Fig. 7). This tendency is strengthened for the Wigner molecule with the anisotropic effective
mass when the axis of the molecule is perpendicular to the direction of the heavier mass (Fig. 9) and weakened
or nearly lifted (Fig. 10f,g) for the axis of the Wigner molecule aligned with the direction of the heavier mass.
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Figure 9. Logarithm of the reduced wave function for the lowest-energy odd-parity state for phosphorene

my = 0.17037mq, m, = 0.85327mg and equal oscillator energies hwy, = hiwy, = 3 meV (the same parameters
as in Fig. 8). Two electrons are fixed at (0, £x4x) points where X4 corresponds to the maximal value of the
electron density. The vortex corresponding to the electron at (0, x;,4y) is the one at the most central position

on the x axis. The lines show the cross section along y direction for x = x4, and are plotted from 5 T to 54 T
with steps of 1 T. Each line for growing magnetic field is shifted along the vertical axis by + 5. X4« stands for
the location of the maximal charge density of the extreme charge islands—see Fig. 8e,d. Maps at (x, y) plane for
selected magnetic fields are given in Supplementary Fig. S3 in the Supplementary information.

The strong tendency of the vortices to be repelled from the Wigner molecule axis when it is aligned with the
lighter magnetic field (Figs. 8 and 9) can be understood in the following manner. The effect is observed for both
the exact calculation and in the limited basis corresponding to the lowest Landau level approximation (Fig. 7c-h).
Diagonalization of the three-electron Hamiltonian in the basis of the lowest Landau level is equivalent to the
diagonalization of the Coulomb interaction only, since all the states correspond to the same kinetic-energy”?®.
Within the quasi-1D Wigner molecule the electrons are ordered along its axis in a way that does not essentially
change with the magnetic field. Incorporation of the vortices to the axis of the molecule affect the electron dis-
tribution in the inner coordinates of the system. The variation of the wave function in the direction of the lighter
electron mass is associated with a larger increase in the kinetic energy. When the axis of the Wigner molecule
coincides with the lighter electron mass the basis of the accessible low energy states does not allow the reloca-
tion of the vortices to the axis, while it is still possible for the orthogonal orientation of the molecule (Figs. 6, 7).

The charge density distribution in Wigner phase can be studied using the scanning probe techniques'*. How-
ever, the location of the vortices is a feature of the wave function that is not directly accessible to the experiment.
The number of vortices per electron is deduced from conductance plateaux in experiments on electron gas in the
fractional quantum Hall conditions. For systems confined in the quantum dots the quantity that is readily derived
from the Coulomb blockade spectroscopy is the energy of the system. This experimental technique provides
resolution of the energy with a precision below 10 pLeV at temperature of 0.1 K*. The positions of the vortices
are relevant for the energy. The exact diagonalization results of this work provide information for modeling with
simpler variational wave functions.

At large magnetic fields the odd-parity ground-state is separated by an energy gap of only about 0.25 meV
from the first excited state which is of an even parity (see Fig. 6b or Fig. 8b at the end of the magnetic field scale.
Small spacings between the energy levels is used as a signature of the Wigner physics®. The gap corresponds to
a thermal excitation of about 2.9 K. For a strictly 1D quantum wires a thermal enhancement of Wigner oscilla-
tions in a range of temperatures at the onset of the formation of a Wigner molecule was reported®. The present
system is not strictly 1D. In Fig. 8f we plotted the charge density of the lowest excited state. The central single-
electron island is split in two, so one should expect that the thermal excitations will in our case rather destablize
the charge density in terms of islands containing a single electron each. However, as pointed above experiments
can be carried out at temperatures as low as 0.1 K.
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Figure 10. Results for the phosphorene m, = 0.17037myg, m, = 0.85327my for hwy = 3 meV and hwy = 1
meV. (a) The single-electron energy levels. (b) The three-electron spectrum minus three times the single-
electron ground-state energy. In (a,b) the red (black) color stands for the even (odd) parity states. (c) The
average angular momentum for the even (red) and odd (black) parity energy level. (d,e) The ground electron
density for 0 and 20 T, respectively. (f,g) Logarithm of the reduced wave function for the lowest-energy odd-
parity state for phosphorene—cross sections along the y (f) and x axis (g). Two electrons are fixed at (0, £¥max)
points where x4y corresponds to the maximal value of the electron density. The vortex corresponding to the
electron at (0, yuax) is the one at the most central position on the y axis. The plots are calculated from 1 T to 20 T
with steps of 1 T. The values for each subsequent B is shifted up by 5 along the scale.
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Summary and conclusions

We have discussed the vortex clusters for Wigner molecules induced by anisotropy of confinement and anisotropy
of the effective mass using an exact diagonalization approach. The ground states in one-dimensional Wigner
molecules possess negative spatial parity as the Laughlin wave function. The observed number of vortices per
electron for average angular momentum agrees with the ones predicted by the Laughlin function. As the magnetic
field and average angular momentum increase, additional vortices appear from the lateral sides of the Wigner
molecule and next approach the electron position. For the anisotropy of confinement alone, the vortex clusters
tend to appear off the axis of the molecule and pass to the axis only for filling factor of v é When the axis
of the molecule coincides with the lighter hole mass, the additional vortices are stabilized off the Wigner mol-
ecule axis. On the contrary, for the Wigner molecule axis aligned with the heavier mass direction, the vortices
are transferred to the axis of the molecule already at v >~ % The transfer of vortices from the perpendicular to
the parallel to the axis of the molecule is accompanied with antivortex formation and annihilation that can be

described only with the basis not limited to the lowest Landau level.
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The data that support the findings of this study are available from the first author (T.T.) upon reasonable request.
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Nagaoka ferromagnetism
in an array of phosphorene
quantum dots

Tanmay Thakur & Barttomiej Szafran™*

We consider an array of four quantum dots defined in phosphorene containing three excess electrons,
i.e., in the conditions of near half filling when itinerant Nagaoka ferromagnetism is expected to
appear in a square array with isotropic interdot hopping. The interdot hopping in the array arranged
in a square inherits the anisotropy from the form of the phosphorene conduction band. We apply the
configuration interaction method for discussion of the appearance and stability of the spin-polarized
ground state and discuss the compensation of the effective mass anisotropy by the geometry of

the quantum dot array. Our study shows strong stability of Nagaoka ferromagnetism for optimized
geometry of the array, with the Nagaoka gap as large as ~ 230 peV. A phase diagram for the
ground-state spin ordering versus the geometric parameters of the array is presented. We study the
suppression of the ferromagnetism in a transition of the 2 x 2 array to a quasi-1D chain and indicate
that the shift of one of the quantum dots away from the array center is enough to transform the
system to a quantum dot chain. A shift in the zigzag crystal direction induces the low-spin ground
state more effectively than a shift along the armchair direction. We also discuss the robustness of the
spin ordering against detuning one of the dots. The ferromagnetic ground-state survives as long as
the detuning is not large enough to trap one of the electrons within a single quantum dot (for positive
detuning) or remove one of the quantum dots of the accessible energy range (for negative detuning).

The Hubbard model has been a catalyst for the development of novel and fascinating physics since it first
appeared. Although originally meant to provide an understanding of itinerant ferromagnetism in transition
metals’, the variants of this model explain complex phenomena like Mott transition?, superconductivity®*,
ferrimagnetism® , antiferromagentism® , etc. The model has not only been used to theoretically investigate
strongly correlated systems, but also been physically implemented in the form of quantum simulations utilizing
quantum dots in semiconductors”®. The quantum dot systems are a playground for verification of the results
of the Hubbard model experimentally. One of the results is Nagaoka ferromagnetism predicted for the ground
state of single-band systems nearly half filled by strongly interacting electrons”'°. Complete spin polarization
of the system is favorable to reduce kinetic energy due to interference of the hole hopping paths in the array''.
The Nagaoka ferromagnetism was experimentally demonstrated using a square quantum dots system in GaAs'!
validating the theoretical results'>! for a 2D array. Small systems such as quantum dot plaquettes as in Ref.!?
are feasible systems to test and investigate the Nagaoka theorem in depth. The experimental realization of such
systems still requires that the energy gap be at least a few eV and its tolerance to disorder and imperfections.

Recently, black phosphorene'* a monolayer form of black phosphorus has been on the rise and is extensively
studied for its strongly correlated phenomena'>~'%, The anisotropic characteristics and tunability of its optical
properties by the number of layers make black phosphorene an attractive candidate for applications such as
optoelectronics!®~?2. The material is particularly interesting in the context of electron hopping within the array
due to the highly anisotropic carrier effective masses**~>. Additionally, the effective mass of the electrons in
phosphorene is much higher than that of GaAs. The large effective electron mass reduces the contribution of
kinetic energy, and then the physics is largely affected by electron—electron interactions, which makes quantum
dots in phosphorene an appealing choice for studies of the interaction-driven Nagaoka ferromagnetism.

The Hubbard model for GaAs in Ref."' —an isotropic effective mass material—employs isotropic hopping
between the sites (i.e. the quantum dots) that is not suitable for phosphorene. The anisotropy in the effective
masses in x and y directions will lead to the anisotropy of the hopping integrals. Although, investigation of a
rectangular geometry with anisotropic hopping has also been reported”. Nevertheless, accurate results based on
the anisotropic effective mass model are missing. The purpose of this paper is to fill this gap. For phosphorene, the
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anisotropy of the effective mass calls for an anisotropic geometry of the array, which in turn induces anisotropy
of the interdot interaction energy. We show that the Nagaoka gap in the quantum dot plaquette in phosphorene
is greater than just a few u eV and therefore verification should be within the experimental reach. We illustrate
the robustness of this state against different conditions, revealing the underlying physics, using the configuration
interaction method with the effective mass Hamiltonian®* for phosphorene.

The paper is organized as follows: First, we establish the theory and describe the computational approach in
detail. In Section “Nagaoka spin polarization” we optimize the parameters and the geometry to get the largest
Nagaoka gap. We discuss the ground-state phase diagram with respect to the array parameters. Next, in “Shift
from the rectangular geometry” section we discuss the physics of the transition of the rectangular structure of
dots to a pseudo-chain structure. In the last subsection of the results, we detune one of the potential wells to
simulate the effect of system imperfection and test the Nagaoka phase against it. Lastly, the conclusions and
summary of the work are given in Section “Summary and conclusion”

Theory

In this section “Single electron” we describe the applied continuum Hamiltonian for phosphorene. The system
parameters and the potential applied for the quantum dots are discussed in Section “Model potential” and finally,
the calculation methods and techniques are elaborated in Section “Three-electron Hamiltonian and electron
density”.

Single electron

An electron in the phosphorene monolayer can be described with the single-band continuum Hamiltonian**?/,

9 2 iy 2
Hy =<—zha + eAx) /2my + (—1)‘1@ + eAy) /2m,

+gupBo; /2 + V(x,y),

(1)

with effective masses m, = 0.17037my along the armchair direction (see Fig. 1) and m, = 0.85327my along the
zigzag direction, derived using a tight-binding Hamiltonian in Ref.?* and V(x, y) is the confinement potential.
The effective masses were obtained by fitting the energy spectra of the single-band continuum Hamiltonian to the
tight-binding model for the harmonic oscillator®* and the ring-like confinement potential®’. The magnetic field is
applied perpendicular to the plane of 2D phosphorene crystal for non-zero Zeeman term and is introduced with
symmetric gauge A = (Ax, A, A;) = (—yB/2,xB/2,0). In Eq. (1), we use the Landé g-factor, g = go = 2. The
value is taken from Ref.?® where k - p theory was used to extract the Landé g-factors. The purpose of including
the Zeeman term in the Hamiltonian is to remove the degeneracy of spin eigenstates. A range of g values were
reported®~*2. The specific value of g changes the magnitude of the magnetic field required to lift the degeneracy.

y - zig-zag direction

% - armchair direction

(b)

L

Figure 1. (a) Crystal structure of monolayer phosphorene indicating the zigzag direction (y-axis) and the
armchair direction (x-axis). (b) Top view of the phosphorene crystal.
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We introduce the external magnetic field for a residual lifting of the spin degeneracy which is useful for the char-
acterization of the spectrum. In the discussion of Nagaoka ferromagnetism, for convenience, we set a residual
magnetic field B = 1mT to lift the degeneracies with respect to the z component of the spin o,. The Nagaoka gap
measured experimentally for the GaAs system was of the order of a few ueVs!!. We expect our system to have
a much larger gap for the strongest ferromagnetic state. The magnetic field produces splitting between states of
the z component of the total spin o, = —3/2and o, = —1/2 of about 0.22 e V. As we will see in further results,
this energy will be small compared to the largest Nagaoka gap, and will affect the ground state only when the
Nagaoka gap is of the same order (near the phase transition) and not the results near the point of largest gap.
The energy gap is calculated as AE = E3/; — E1/, where E3/, is the energy of the spin quantum number § = 3/2
state and Ey 2, the energy of the spin § = 1/2 state.

The Hamiltonian in Eq. (1) is solved using the finite difference method with gauge-invariant discretization®.
We use a square mesh with spacing Ax in both directions so that the action of Hamiltonian on the wave-function
Wy g = W(xe,xg) = W(aAx, BAx)is given by

2
Hoq/a,ﬂ EW (2‘I"a,ﬂ - Cy“l’a,ﬂ—l - C;¢a,ﬂ+1>
+ L(ijaﬂ - Cx\ya—lﬂ - C*WOH-I/?) (2)
2m, Ax? ’ ’ * ’

gupB
+ Va,ﬂ "I"a,ﬂ + T“z\ya,ﬂ;

with Peierls phases® Cy = exp(—i# AxAy) and C, = exp(—i# AxA,) to account for orbital effects of the mag-
netic field. The Hamiltonian in Eq. (2) is diagonalized in a finite computational box of size 50 nm x 50 nm and
the spacing Ax of 0.4 nm. The numerical diagonalization is carried out using the Lanczos algorithm as in Ref.**.

Model potential

Inside the computational square box of side length 50 nm, the model quantum dots are arranged in a rectangle
with distance between the centers of dots 2, in the armchair direction (x) and 21, in the zigzag crystal direction
(y). The spacings influence both the interdot tunneling rates (hopping energy) and the interdot electron-electron
interaction. The applied model confinement potential is

2 2 _ —1)ip,)?
V(xy) =—Vy Z Zexp (w)

i=1 j=1

_ —_1y 2
exp( (y+(21)uy>>

S

such that the centers of the dots are located at (£/4, E4,). Each dot is determined by a Gaussian potential with
the size given by the parameter s and the depth of the potential by V;. Throughout the work, the size of the dots is
taken to be s = 7 nm. The chosen soft Gaussian potential is a good approximation for the electrostatic quantum
dots®* and the construction of four such electrostatic quantum dots setup should be within the experimental
reach with the help of a pair of flat gate electrodes with circular intrusion near the center of the dots*-*’.

Three-electron Hamiltonian and electron density
The energy spectrum for three interacting electrons in our system is calculated in a continuum approach using
the following Hamiltonian

3 3 2
e
H;, = Ho() + _—,
3 ; 0@ ;47160”17 (4)

where Hy is a single electron Hamiltonian in Eq. (1) and the dielectric constant has the value € = 9 for all calcula-
tions in the work. The present study calls for an exact treatment of the electron-electron correlation due to the
strong electron-electron interaction in phosphorene?. We employ the configuration interaction approach®®*.
In this method, the Hamiltonian H3, is diagonalized in the basis of three-electron Slater determinants con-
structed with the lowest 52 eigenfunctions of the single-electron Hamiltonian Hy. The Slater determinants are
built by filling the three electrons in the single-electron states in all available combinations. The three-electron
ground state and excited states are then written as the linear combination of these configurations of electrons.
The number of single-electron eigenfunctions spanning the basis of the Slater determinants was chosen on the
basis of convergence of the three-electron energy eigenvalues. For 52 single-electron eigenfunctions, the basis of
three-electron Slater determinants contains (53 = 22100 elements. The Hamiltonian matrix is then numerically
diagonalized to obtain three-electron eigenfunctions and corresponding energies.

We investigate the electron distribution in the dots by extracting the electron density from the three electron
wave-functions W,
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3
p(r) = (W] Y 8 —r) V) (5)

i=1

where W is the three-electron ground-state wave function.

Results

We discuss our results in the following order: First, we discuss the parameters of the system for the energy spec-
trum and the electron density, including the spin ground-state configuration. Next, we calculate a complete phase
diagram for the nonferromagnetic and Nagaoka ferromagnetic phases. This gives us insight on the configuration
for which the Nagaoka ferromagnetism is the most robust. We then discuss a similar phase diagram but with
a shallower potential. We investigate the case where we gradually change the configuration of dots to form a
pseudo-1D chain of dots to understand the competition between the ferromagnetic and nonferromagnetic states
and the effect of anisotropy on this competition. Lastly, we observe the effect on the Nagaoka phase of a changed
potential of one of the quantum dots.

Nagaoka spin polarization

The anisotropy of the effective mass causes the x and y axes of the system to be inequivalent. Therefore, we vary
both parameters, i, and i, to search for the high-spin configuration in the ground state. The potential and square
root of the density of the ground state for different combinations of the parameters are plotted in Fig. 2. The
potential depth considered for the following calculations is V;; = 125 meV. The densities are calculated using Eq.
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Figure 2. The potential (left column) and the square root of electron density (right column) with parameters,
My = 9nm, u, = 7nm (a,b); uy = 8 nm, ity = 6nm (¢, d); uy = 9nm, ity = 5nm (e, £); ity = 6.8 nm,

iy = 5.2nm (g, h). For all the cases, the magnetic field is I mT and the potential depth V,; = 125 meV. The
color scale for each plot is to the right of each plot. Subfigures (g, h) indicate the potential and square root of the
density for the configuration of dots with the largest Nagaoka gap.
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(5) for the ground state. For spacings iy = 9nm, i, = 7 nm (Fig. 2a) the electrons are located near the center of
four dots, the charge densities of the array are distinctly separated with little or no density overlap (Fig. 2b). Note
that even though the dots are far away, the square root density in the center of dots is not circular, but is more
spread in the x direction (Fig. 2a), which is a consequence of the mass anisotropy. For the rest of the plots with
My < 6 nm the potential [see Fig. 2c,e,g] resembles two dumbbell-like shapes due to the electron tunneling in
the zigzag direction, for which the assumed distance between the dots is smaller than in the armchair direction.
The trace of electron tunneling between the dots can be observed in Fig. 2d for uy = 8 nm, y, = 6 nm. As we
move the dots closer together in the y direction, we can observe in Fig. 2f that the square root densities of the
top-bottom pair of dots now overlap considerably. Finally, for dots arranged in a rectangle with p1y = 6.8 nm,
My = 5.2 nm, the square root electron density is highest along the edges of the rectangle.

The energy spectra for the same parameters are plotted in Fig. 3. For i, = 9 nm and uy, = 7 nm, the ground
state at B = 0 is a four-fold degenerate state with spin eigenvalue S = 3/2 but the spin doublet 1/2 is above
with the energy difference of 40 ueV (Nagaoka gap AE = —40 ueV) . The low-energy spectra are illustrated
in Fig. 3a. Although the tunneling coupling between the dots is weak, it is already large enough to promote
the spin-polarized quadruplet with the total spin eigenvalue of S = 3/2 and the z component eigenvalues
0, = —3/2,—1/2,1/2,3/2in the ground state. An asymptotic case of large interdot distances corresponds to tun-
neling and interaction being negligible so that the quadruplet becomes degenerate with the spin § = 1/2 doublet.

Reducing the spacing between the dots to ity = 8 nm and u, = 6 nm, the energy gap between the lowest spin
S =1/2and spin § = 3/2 states becomes 100 j1eV with the high-spin ground state [see Fig. 3b].

The energy spectrum for j, = 9 nm and u, = 5nm is plotted in Fig. 3c. In this case, the electrons interact
weakly in the x-direction and strongly in the y-direction. We have effectively two extended quantum dots with an
electron in one of the other two dots. Since the ground state of the two electrons for negligible magnetic field is
a singlet state*, the top-bottom pair of dots will contain two electrons of opposite spins, resulting in the ground
state being a spin S = 1/2 state due to the spin of the solitary electron. The ground state becomes spin-polarized
by the Zeeman interaction only at a high magnetic field of about 1.9 T.

The spin singlet state is removed from the ground state when the tunneling in the x direction is enhanced for
a reduced distance in x direction to jt, = 6.8 nm with 4, = 5.2 nm we obtain the ground state, which is again
spin polarized with a large energy gap of AE = —230 eV in Fig. 3d. This is the maximal gap that we obtain for
the applied single-dot potential depth.

The energy gap AE for various geometry of the quantum dot array is given in a phase diagram that displays
the nonferromagnetic and Nagaoka ferromagnetic phases in Fig. 4. The diagram is calculated for a small magnetic
field of 1 mT. For the case with i), > 7 nm, the four dots are located far away from each other, rendering tun-
neling negligible, and hence the lowest spin S = 1/2 and spin § = 3/2 states are nearly degenerate, as seen on the
right side of the figure. In the case where the dots are located much closer to each other in y direction (left side
of the diagram), the ground state tends to be the spin-1/2 state as in Fig. 3c. This is a quantitative result for the
strong tunnel coupling forming two double-dot subsystems. The region in between corresponds to the extended
ferromagnetic system with a spin-polarized ground state. In this region, the tunneling between neighbouring
dots is enough for the ’hole’ to move around the four dots. The largest gap is AE = —230 ueV and is located at
Ux = 6.8nm, 1), = 5.2nm.

To understand in detail the effects of the interactions depending on the location of the dots, we study the
cross sections of the phase diagram to see the energy gap as a function of the parameter w1, for various (1x — 1)
in Fig. 5a. The top-most (bluest) line shows the change in the energy gap AE with ,, for sty — u, = 1 nm. It
barely goes below the zero line, indicating a very weak Nagaoka ferromagnetic phase near y1, = 6 nm. As the
difference px — p, increases, the next four lines from the top slowly start to go much lower than the zero line,
indicating that the system is in a stronger ferromagnetic phase and that it would take more energy to invert one
of the spins and break the phase. The lowest line is the one that goes the lowest under the zero line, which is for
the difference px — py = 1.6 nm. The second line from the bottom (greenest) is for the difference of 1.9 nm and
is now higher than the difference of 1.6 nm. At this point, the electron density begins to take the shape of two
dumbbells with decreasing x-direction overlap.

Fig. 5b shows the energy gap as a function of i, for different y spacings. The plot has few interesting features
that give insight on the system. First, every plot has a peak at low values of 1, slightly below the fixed 11, distance.
The initial growth of the energy gap at the left side of the plot is due to an extension of the region accessible for
electrons that has a larger influence on the spin-unpolarized state than on the spin-polarized state for which
the electrons cannot occupy the same location anyway. When the system is separated to single-electron islands
maxima the lines dip to a certain value before tending to a constant value as ji, increases. This constant itself
tends to zero for the lines as the parameter 1, becomes large, indicating a vanishing tunnel coupling. In order
from topmost (red) line in Fig. 5b, for u, = 4.5 nm the energy gap is always positive and for this y spacing, the
system never attains the ferromagnetic ordering. For other parameters, a ferromagnetic ground state is found
for a range of 1uy.

The maximal Nagaoka gap is expected to shift on the py, i, plane for a varied potential depth that affects
the strength of the tunnel coupling. The phase diagram for the potential depth of V; = 60 meVis plotted in
Fig. 6. The results are qualitatively similar to the case of V; = 125 meV presented above. The largest Nagaoka
gap AE = —211 ueV occurs for the parameters p, = 7.52 nm and j1;, = 5.35 nm. Because of the shallower
potential, the electrons are less localized within the separate dots. This results in a larger tunnel coupling and
the Nagaoka phase is achieved for larger inter-dot distances compared to the case of V,; = 125 meV. Note that
the parameter u, changed from 6.8 nm to 7.5 nm, while the parameter 1, changed only about 0.15 nm. This
can be attributed to the heavier electron effective mass in y direction and the tunneling energy changing more
strongly with the interdot distance.
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Figure 3. The energy spectrum as a function of magnetic field B for parameter sets of j1, = 9nm (a), u, =7
nm, (b) ptx = 8nm, u, = 6 nm, (¢) ux = 9nm, u, = 5nm, (d) ux = 6.8 nm, 11, = 5.2 nm. Potential depth
is set V4 = 125 meV for all the chosen sets in (a—d). The colour of each line denotes the spin eigenvalue of the
energy state, and the scale is shown to right of each plot. The spectra show the shifting of ground states and
the changing Nagaoka gap as the configurations of the dots change. Subfigure (d) shows the spectrum for the
configuration with the largest Nagaoka gap.
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meV. The energy gap is calculated for every point at the center of the hexagons. The green and grey regions

in the diagram indicate the configurations for which the ground state is a low-spin state. The red and yellow
regions show the configurations with a spin polarized ground state. The largest energy gap AE = —230 peV
occurs at jty = 5.2nm and j1x — py = 1.6 nm and is indicated with the most saturated red color.
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Figure 5. (a) The Nagaoka gap as a function of the parameters 11, for different values of (11 — ;). (b) asa
function of parameter ji, for various w,’s. The lines shift towards the negative sides as the system parameters
approach the largest Nagaoka gap point, after which the lines in both subfigures approach zero.

Shift from the rectangular geometry

In order to investigate the robustness of the spin-polarized ground state we deform the rectangular arrangement
of dots so that electrons are trapped in a finite pseudo-1D chain. Starting from the initial state with the largest
energy gap, i.e. ity = 6.8 nm, 1, = 5.2 nm, we shift the location of the top-right dot in both x and y directions
separately. The energy gap as a function of the shift A is plotted in Fig. 7. The anisotropy in the effective mass
makes the nature of Nagaoka transition different in armchair (x) and zigzag (y) direction. For a shift in arm-
chair direction, the spin-1/2 states have much lower energy than the high-spin state and the electrons from a
1D pseudo chain structure as seen in inset (f) of Fig. 7. The electron occupancy of the lower right dot is low
for the shift of Ajy, = 3.5 nm in the zigzag direction. One of the electrons get fixed in the shifted dot, which is
far away from the rest, which minimizes the Coulomb interaction energy. The two remaining electrons occupy
the deeper left dumbbell instead of the shallower lower right dot [see inset (a) and (b) of Fig. 7]. No tunneling
is possible between the rightmost dots and only a trace tunneling in the topmost dots. A similar effect is seen
in the x-direction shift, but the geometry of the dots is such that the electrons form a chain with no tunneling
between the two upper dots. Ref.* showed that when the dot arrays are deformed to form a quantum dot chain,
the spin polarization in the ground state is excluded by the Lieb-Mattis theorem*, which restricts the ground
state solutions of such a 1D chain to low spin values. However, the anisotropy of the masses leads to an asym-
metry in the tunneling of electrons between the dots. In the case of a shift in the zigzag direction, the system can
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Figure 6. The energy gap, AE as a function of the parameters i1, and (i, — ) with potential depth, V;; = 60
meV. The energy gap is calculated for every point at the center of the hexagons. The largest energy gap

AE = —211 pueV occurs at i1, = 5.35nm and jix — 4y = 2.21 nm. The diagram is similar as Fig. 4, but the
lower potential depth has resulted in a major shift of the largest Nagaoka gap up on the 1, — j1y scale and a
minor shift on 1, scale.
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Figure 7. The Nagaoka gap as a function of shift Ay for both in armchair direction (shown in blue) and zigzag
direction (shown in green) from the starting point of iy = 6.8 nm, i, = 5.2 nm. The insets (a,c,e) show the
external potential and insets (b,d,f) show the square root of ground state electron density. The insets (a,b) are
for shift Ay = 3.5nm and (e,f) are for shift Au, = 3.5 nm. The starting potential and square root density

are shown in insets (c,d). The colors scale for insets is same as in Fig. (2). The difference in the curves can be
explained using different mechanisms as discussed in Section “Shift from the rectangular geometry”.

be divided into two parts: the left double-dot subsystem and two single dots. As in the case of Fig. 3¢, the double
dot holds the singlet state of two electrons, and the third electron lowers the Coulomb repulsion by occupying
the shifted dot. Tunnel coupling in the y direction decreases rapidly due to the higher effective mass, resulting
in a transition occurring at a shift of about ~ 1.5 nm. In contrast, lifting the Nagaoka ground-state polarization
requires a shift of approximately 1.85 nm in the x-direction.

Potential detuning

In addition to moving the dots, it is possible to assess the tolerance of the ferromagnetic state to disorder by
changing the potential depth of one of the dots. We vary the potential depth V,; of just the top right dot by an
amount dV. Fig. 8 shows the Nagaoka gap as a function of the change dV in the range —20 meV to 20 meV. The
changes in the electron density as the potential changes are also shown in the insets of Fig. 8.

The most evident feature of the plot in Fig. 8 is the asymmetry in the energy gap variation for negative and
positive potential changes. More precisely, for the positive change dV the Nagaoka ferromagnetic transitions to
the low-spin state at AV = 7.0 meV, while the same transition occurs at a bit smaller change of dV &~ —5.4 meV
for the negative change. The transition to the low-spin ground state for positive detuning is due to the localization
of an electron in the detuned dot and the transition for negative detuning is due to the delocalization of an elec-
tron from the detuned dot which is excluded from the array by the energy mismatch leaving the three dots with
an exact half-filling. When the top right dot is made deeper [insets (c) and (d)] the electron occupancy of this dot
becomes larger than 1. When the dot is made shallower [insets (a) and (b)] the dot is emptied. In both cases the
conditions for observation of the itinerant ferromagnetism are lifted, and the ground state acquires the low spin.
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dV (meV)

Figure 8. The Nagaoka gap as a function of an alteration in the potential of one of the dots, dV (meV). The
insets (a, b) show the potential and square root electron density for value dV = —18 meV and insets (c, d)
show the potential and the square root electron density for change in potential of V' = 18 meV. The color scale
for the potential and square root of density is shown. Unlike the case in Section “Shift from the rectangular
geometry’, the anisotropy of the curve is inherent and is not unique to phosphorene.

Summary and conclusions

We have investigated the Nagaoka ferromagnetic state in the phosphorene quantum-dot plaquette using an effec-
tive mass Hamiltonian nearly half-filled system. We determined the geometry of the plaquette for the maximal
stability of the spin-polarized ground state. For the chosen parameters of the isotropic single-dot Gaussian
confinement the largest Nagaoka gap of AE = —230 ueV occurs for the parameters pty, = 6.8 nm and ) = 5.2
nm. Shifting one of the dots in x or y direction breaks the ferromagnetic ordering of spins stopping the carrier
hopping between now nonequivalent locations and forming a quasi-1D chain with low spin ground state on the
ground of the Lieb-Mattis theorem. Our results indicate that the Nagaoka state in the phosphorene quantum
dots exhibits strong resistance to disorder, which we tested in the form of detuning one of the dots. We showed
that the mechanisms breaking the Nagaoka ordering are different for positive and negative detuning, and hence
the transition occurs for uneven values of detuning.

Data availability
The data that support the findings of this study are available from the first author (T.T.) upon reasonable request.
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Electrical manipulation of the spins
in phosphorene double quantum
dots

Tanmay Thakur'2, Francois M. Peeters?3* & Barttomiej Szafran*"*

We investigate electric dipole spin resonance (EDSR) induced by an oscillating electric field within

a system of double quantum dots formed electrostatically in monolayer phosphorene. Apart from

the observed anisotropy of effective masses, phosphorene has been predicted to exhibit anisotropic
spin-orbit coupling. Here, we examine a system consisting of two electrons confined in double
quantum dots. A single-band effective Hamiltonian together with the configuration interaction theory
is implemented to simulate the time evolution of the ground state. We examine spin flips resulting
from singlet-triplet transitions driven by external AC electric fields, both near and away from the

Pauli blockade regime, revealing fast sub-nanosecond transition times. Furthermore, we analyze the
impact of anisotropy by comparing dots arranged along a different crystal axis. The sub-harmonic
multi-photon transitions and Landau-Zener-Stiickelberg-Majorana transitions are discussed. We show
modulation of spin-like and charge-like characteristics of the qubit through potential detuning.

In the fast-evolving landscape of quantum technology, precise control and manipulation of spin emerges as a
topic of prime importance. Coupling of spin with the magnetic field facilitates the control of electron spins in
the system. If this magnetic field has an alternating component, it induces rotation of spin on the Bloch sphere
by electron spin resonance (ESR)'~ and thus one of the simplest spin manipulation can be achieved. Such spin
rotations are crucial in spintronics*® and quantum computing applications®®. However, because of the small
moments of the spin, a very strong alternating magnetic field is required to realise fast rotations, making ESR
a demanding experimental task. Spin-orbit coupling (SOC) in the materials, either inherent or engineered®'?,
offers a practical alternative for this task by coupling the spin moment to the electric field through electric dipole
spin resonance (EDSR)'»'2. It is an optimal choice for spin manipulations, since a fine-tuned electric field of
desired features can be produced using advanced engineering methods. Although EDSR is observed in a variety
of systems like bulk crystals'"** and quantum wells'*'®, its ideal use is in quantum dots where discrete states can
be used as a qubit'®%,

The EDSR is investigated in double quantum dots with two electrons, with spin manipulations lifting the
Pauli spin blockade of the current flow!>?°. SOC hybridization between the spin singlet and triplet states results
in an avoided crossing, which can be used to determine the SOC energy?!. Effects of tunneling with the SOC in
strongly electrically driven double quantum dot system were examined theoretically**?* and showed a nonlinear
character of the spin resonance. Spins in III-V semiconductor quantum dots are subject to dephasing due to
electron-nucleus effects**~?® which, when comparable with the spin-flip times, will hinder precise spin control. For
this reason, fast manipulation and control of the spins are pursued by researchers'®* and remains a considerable
challenge to develop quantum dots as qubits. The states of the bottom of the conduction band in phosphorene
are constructed of p-type orbitals?” which eliminates the dephasing effects of the hyperfine interaction.

The anisotropic spin-orbit magnetic field, produced by combined Rashba and Dresselhaus SOC, results in ani-
sotropic avoided crossings and relaxation times?*-*. Such anisotropy affects also the rate of spin-flip tunneling in
double quantum dots. A similar but inherent anisotropy in Rashba SOC alone was predicted in phosphorene®*2.
The phoshophorene has an inversion symmetry and the Dresselhaus coupling occurs only when the symmetry
is intentionally broken™®.

Phosphorene®*, a monolayer form of black phosphorous, is a material with rapidly evolving interest and is
extensively studied for its strongly correlated properties®*~*” and anisotropic characteristics***. The band’s ani-
sotropy reflects itself in the effective masses of the electron in phosphorene and results in different Rashba SOC
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parameters for zig-zag and armchair direction. Phosphorene quantum dots in the form of nano flakes have been
studied for various applications*>*!. In this work, we study electrostatically confined double quantum dots in
phosphorene with electric field driving. This system is promising to study the majority of the physics concerned
with quantum spin control. We investigate the interplay between the anisotropy of the effective masses, tun-
neling and SOC and spin flip-rates. We also examine the effects of asymmetry of the dot potentials, which can
be exploited as a control knob in experiments to fine-tune the nature of qubit and spin manipulations. Addition-
ally, we take a look at low frequency electric driving, i.e. Landau-Zener*>*’ sweep near the avoided crossing of
the lowest energy spin-singlet and spin-triplet states of double quantum dot. We will also see the occurrence of
spin-flip transitions, which are forbidden by parity selection rules through higher order processes and explain
the mechanism behind it.

The paper is organised as follows: In Sect. "Theory", we discuss the theory and setup that were considered
to study the system. Then we move on to the discussion of our results in Sect. "Results & discussions", where
we first discuss the effects of asymmetry on the system in Sect. "Effects of asymmetry at t=0" and study the
main focus of the work of spin manipulations and spin-flip transitions in Sect. Spin-flip transitions. Later in
Sect. Dots arranged in the zig-zag direction we discuss the effects of anisotropy of phosphorene by changing
the arrangement of the dots in a different lattice direction. Finally, we conclude and summarize our results in
Sect. Summary and conclusions.

Theory

The system under consideration is lateral double quantum dots with spin orbit coupling, external constant per-
pendicular magnetic field and external time dependent electric field as illustrated in Fig. 1. The single electron
the Hamiltonian is,

H(t) = Hp + Hso + V'(b), 1)

where Hy is the effective mass continuum model for phosphorene derived from the tight-binding Hamiltonian*,
Hso is the spin-orbit coupling and V' (¢) is the external time dependent electric field for the control of spins in
the dots. The single electron effective mass Hamiltonian is given by

L9 2 iy ?
Hy = <—zha + eAx) /2my + (—171@ + eAy> /2my

+g MBBGZ /2 + V(x)y)x

)

with effective masses m, = 0.17037myg (m, = 0.85327my) along armchair (zig-zag) direction of the phosphorene
crystal. The Landé g-factor for the material is taken to be g = 2. The corrections to the bare g-factor for phos-
phorene vary and are reported in previous theoretical*>*® and experimental works**%. The precise value of the
g-factor is of less significance for our work as variations primarily impact the position of avoided crossings rather
than qualitative conclusions regarding the spin control and spin-flip transitions.

The confinement potential V{(x, y) is modelled by two inverted Gaussians centered at +d and —d (c.f.Fig. 1)
in the x (armchair) direction with parametersd = 8 nm, s = 7 nm and is given by

Oscillating _ E(t)

electric field

“Double QD

in phosphorene

Confinement
potential shape

e e 1
2d
EE T @ 2 O
4] -0 -20 -30 40 -50 60 -70 -80
VimeV)

Figure 1. Schematic of the system under consideration showing double quantum dot formed in phosphorene
due to electrostatic confinement potential and the applied oscillating electric field for driving the transitions.
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For the case of phosphorene electrons with strong correlation effects**=!, as well as transitions induced by
external driving fields, it is anticipated that higher energy states will have contributions to the physics of the
system. While the parabolic potential serves as a convenient approximation for examining quantum dots near
the ground states, we expect that the Gaussian potential will be a more realistic model for EDSR experiments
involving quantum dots in phosphorene®.

The spin-orbit coupling is a relativistic effect where the electric field induces a momentum dependent
magnetic field which then couples with the spin. These effects especially in 2D materials were reviewed in Ref.*>.
This coupling is essential for driving the spins electrically and the contribution of this interaction is given by

0 ) 0
Hgo = )»x (-lha)ﬂ'y + /Ly (—Iha)o'x, (4)

where oy and o), are Pauli matrices and the anisotropic Rashba parameters are .y = —17.9 meV" Aand 2, = 10 3
meV- A. The values are taken to be ten times of that found by Farzaneh et. al for electrlc field of about 1 V/nm?'
Another work® reported much larger anisotropy and values with external field of about 2.6 V/A. In comparlson
Shubnikov-de Haas oscillations and spin precession studies for InAs quantum well gives a Rashba parameter of
67.1 meV A%, Experiments on other InAs heterostructures reported similar values®>>’. Many other materials
have been reported to have a larger SOC parameter than phosphorene® and phosphorene can be considered to
have weak spin orbit coupling but which is order of magnitude larger than for graphene.

In order to induce transitions, driving electric field E(t) can be applied experimentally with microwave
radiation or simply by adding an AC voltage component to the confinement gate electrodes®>**-*’. In both
cases the wavelength of the electric field is much larger than that of the dimensions of the system. Therefore
the in-plane electric field V'(x, y, t) is taken to be spatially constant between the gates or throughout the size
of the system. For field along x (armchair) direction,i.e. in the same orientation as the dots are arranged, the
term V'(#) in Eq. (1) equates to V' () = —eFx®(¢) sin(wt) and the field is switched on att = 0, where O (¢) is
Heaviside function.

We focus on double quantum dots populated with two interacting electrons. Hence, the Hamiltonian of the
complete system is given by,

e2

Hae(t) = Z Hi(t) + Z pre—— (5)

i=1 j>i

where the dielectric constant is € = 9. For the diagonalization of the final Hamiltonian in Eq. (5) att = 0, we
use the configuration interaction approach. The single electron eigenstates of the Hamiltonian Hy + Hgo are
used to form Slater determinants for the possible configurations of two electrons in these eigenstates. The single
electron eigenstates are themselves obtained using the discretization as performed in previous work®. The final
Hamiltonian is then diagonalized in the basis of these Slater determinants to get the stationary states |i) and
corresponding energies of Ha, (¢ = 0). The states i) is the total wavefunction containing spatial, spin and orbital
state. The probability density of two electrons in state i) is obtained using

2
pie) = (il D 8(x —rx)|i). (6)

Time dependent part of the Hamiltonian is solved subsequently using the Schrodinger equation. We assume that
the final state of the system after the application of the time dependent field will be a linear combination of the
original two electron energy eigenfunctions att = 0. Moreover, we assume the time evolution of the individual
states itself is given by the time dependent Schrédinger equation without the field V/(¢) and the extra potential
evolves the coefficients of the linear combinations only. The final state 1s thus, | W (¢)) = > _; ci(t) exp[—iE;th] |i)
and the probability of system to be in state ) at time ¢ is then |c,(t)|2. Substituting this state into the time-
dependent Schrodinger equation one obtains the coupled differential equations for the time evolution of the
coefficients,

zh( d ) cn(t) = — eF Z cm(t) expli(Ep — En)t/h)
(7)

. sm(a)t) (mlx1 + x3|n).

The coupled differential equations are then solved using the Crank-Nicolson method to obtain the probabilities
lc,()]? at any given time. The system is evolved for a finite time with a fixed initial condition ¢;(t = 0) = ;.
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Figure 2. (a) Lowest energy eigenstates without the external electric field with the singlet-triplet avoided
crossing at B = 0.56 T for AV = 0. The color scale shows the average eigenvalue of S, operator. (b) The
magnetic field corresponding to the center of singlet-triplet avoided crossing as a function of asymmetry of
the double dot system. (c) The maximal value of matrix element (black curve, left axis) at center if the avoided
crossing and the singlet-triplet energy difference (red curve, right axis) as function of asymmetry.

Results & discussions

Effects of asymmetry at t=o

Figure 2a illustrates the two electron lowest eigenstates of the system at time ¢ = 0. With a symmetric potential,
where Vi and Vg are equivalent [as defined in Eq. (3)], the singlet state emerges as the ground state, accompa-
nied by the triplet state as the first excited state with (S;) = —h. External magnetic field along z-axis promotes
the triplet as ground state, eventually. As a result, a crossing between the singlet and triplet states occurs which
turns into an anti-crossing by the SO coupling. As we remove the symmetry by increasing AV = Vi — Vg, the
position of this avoided crossing shifts, as shown in Fig. 2b. The magnetic field at the center of this singlet-triplet
(S/T) avoided crossing B, varies slowly for initial values of AV and increases rapidly after 40 meV and starts to
saturate near 60 meV, suggesting that the system is sensitive to even small changes in potential between AV = 40
meV and AV = 50 meV. The single-triplet energy difference AE at magnetic field B = 0 shown in Fig. 2c with
red curve. We discover a similar sensitive nature of AE due to the detuning, but the value flattens considerably
after AV = 50 meV suggesting further detuning has very little impact on the system.

A better understanding can be gained by examining the square root of electron densities calculated using
Eq. (6) as plotted in Fig. 3 to give insight on the wavefunction. The square root densities of the singlet and the
triplet state are plotted at zero magnetic field for detuning values AV = 0 meV, AV = 46 meV and AV = 60
meV. It is crucial to note the fact that for a symmetric phosphorene dot system where the depth of dots is 60
meV a detuning of about even 10 meV renders very little change in the S/T energy difference. This robustness
against detuning can be attributed to the large effective mass of the electrons, which leads to strong localization
and electron-electron interaction®®. For a symmetric system [Fig. 3a,b], the singlet and triplet states look very
similar, with two electrons occupying both dots. The difference between square root density in between the two
dots near x = 0 nm exhibit the bonding nature of the singlet state and the anti-bonding nature of the triplet state
for AV = 0. For AV = 46 meV we see a different character of the singlet [3¢] state. While the triplet state [3d]
maintains similarity to the AV = 0 case but with unequal occupation in the dots, the singlet state shows that
almost both electrons occupy a single dot. The triplet state consists of two electrons with the same individual
spin orientations. Due to the Pauli exclusion principle they cannot occupy a single dot with the same single
electron energy states, responsible for blocking of transport through the dots, i.e. Pauli spin blockade'* which
was first reported in Ref.%. Whereas the singlet electrons can occupy a single dot where both electrons are in the
lowest single electron energy levels with just the Coulomb repulsion and tunnel barrier to overcome. Hence, the
steeper slope of the curves in Fig. 2b,c are due to significant density changes in the ground state and first excited
state with respect to AV. Once the detuning becomes sufficiently large at AV = 60 meV, both electrons occupy
mostly the left dot and a further increase of detuning only increases the strength of confinement of the electrons.

Given the focus of this study is on spin-flip transitions, it is important to investigate the matrix element
(1]x1 + x2|2) since for a given field amplitude F and frequency v, the transition probability is upper bounded
by the value of this matrix element. Fig. 2c shows the transition matrix element (black curve) as a function of
the detuning AV. For the symmetric system the Hamiltonian commutes with a generalized parity operator
IT = IT; (1) ® I1;(2), where I, is the single-electron operator
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Figure 3. The square root of the charge density for the singlet (a,c,e) and the triplet (b,d,f) at B = 0fora
symmetric double dot system (a,b), AV = 46 meV (c,d) and AV = 60 meV (e,f).

and P is the scalar parity operator Pf (x, y) = Pf(—x, —y). For a symmetric potential the spin-up and spin-down
components of the single-electron Hamiltonian wave functions have opposite parities. For two electrons, both the
lowest-energy singlet and the lowest-energy triplet state with spin component S, = —h correspond to negative
eigenvalue of the IT operator. Due to the parity symmetry the transition dipole matrix elements (n|x; + x3|m)
vanish for states n, m corresponding to the same IT eigenvalue %1. This selection rule eliminates the possibility
of a direct transition from singlet to the lowest triplet in the symmetric system as seen in Fig. 2cat AV = 0, the
value of matrix element is zero. The matrix element achieves its maximum value of 5.23 nm at AV = 46 meV
where the singlet has a charge state (2, 0) and the triplet with extended densities and charge state nearly (1, 1).
This higher value of the transition matrix element is where we expect the largest chance in spin-flip transitions.
Further beyond this point, the transition matrix reduces to lower values as the charge states for both states
become the same, i.e. (2, 0).

The energy spectrum for the detuning AV = 1 meV and AV = 46 meV are presented in Fig. 4a and b
respectively. In addition, the transition matrix element and the average (S;) values are depicted in Fig. 4c and d.
We observe that the avoided crossing is shifted to higher magnetic fields for the stronger detuning case just above
17 T, whereas for AV = 1meV, the S/T avoided crossing occurs at 0.545 T. At these points the transition matrix
element is the largest. Although non-zero, the transition matrix element for weak asymmetry is three orders of
magnitude smaller than for the other case. We also see the exchange of the (S, ) values at the avoided crossings as
seen in the second row of the figure by the red and blue curves. The most desirable region in the spectrum for fast
electrical control of the spin is near these S/T avoided crossings. There have been EDSR experiments®-*® where
the frequency of microwave radiation or the AC frequency of voltages on the gates is of order of few to 10 GHz,
which corresponds to energies of order 0.0414 meV. We shall now examine the spin-flip transitions near these
S/T avoided crossings, where the energy differences exhibit comparable magnitudes, making the results more
relevant to experimental observations. In the following two sections we present the analysis with the external
time-dependent electric field for the two cases of a small and large potential asymmetry shown in Fig. 4.

Spin-flip transitions

We first consider the case with the largest transition matrix element, i.e. for AV = 46 meV. For such large asym-
metry, as seen in the previous section, the spin singlet and triplet states are coupled with different charge states
(1,1) and (0, 2). The applied time-dependent electric field drives the system through spin orbit coupling. Using
Eq. (7), the states were evolved typically for 20 ns for the plots presenting maximal occupation of spin flipped
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Figure 4. Two-electron energy spectrum for the double quantum dot system aligned with the x axis for
asymmetry of the potential depth of (a) AV = 1 meV and (b) AV = 46 meV. The average (S) of the two
lowest-energy levels referred to the left axis of (¢) AV = 1 meV and (d) AV = 46 meV. Blue (Red) curves
shows (S;) value for ground (first excited) state. In (c) and (d) the black curve shows the dipole matrix element
(1]x1 + x2]2) between the ground state and the first excited state referred to the right axis.

states as functions of hv. Even larger simulation times are used for evaluation of the spin-flip time when it exceeds
20ns. The calculations are performed for magnetic field 16 T near the S/T avoided crossing. Fig. 5a shows maxi-
mal occupation in the first excited state max |c;|? = pr (the targeted final state) found during 20ns simulation
time as a function of frequency of the applied field. We plot the resonance spectrum for three field amplitudes F
and for each field strength. Notice the two peaks corresponding to first and second order transitions from singlet
to triplet. The direct transition occurs near the S/T energy difference AE of about 0.14 meV, while the second
order transition occurs at half this value. Similar harmonic resonances were observed in experiments in GaAs
double QD® and in GaAs heterostructures’ in InAs nanowire double QD”°. As the field strength increases, the
peaks become broader with the second order transition always being sharper than the direct transition. Despite
the increasing amplitudes, the positions of the peaks remain unchanged for both orders. This second order
transition can be considered as two-photon transitions mediated by a virtual state. First the system undergoes
an energy non-conserving transition to state |#) with the maximum probability determined by the transition
matrix element x1,, and then from state |m) to state |2) with transition matrix element x,,. The energy is con-
served overall over the two transitions. Along with the matrix element, the contribution from each state of the
system is inversely proportional to [(w1,» — @)(w12 — 2w)]. A much rigorous understanding can be obtained
from the equations derived for the perturbative expansion of coeflicients in Appendix A, which describes every
feature of the peaks. This driving amplitude can be considered as weak since at B = 16T the matrix element of
(x12) = 1.59 nm leads to eF(xl122> < 1. Due to a low amplitude of the driving field, no significant Bloch-Siegert
shift” is observed in the resonance frequencies as seen from the figure. Note that the peaks in Fig. 5a are not
visibly shifted when the amplitude of the driving field is altered.

At the resonance, time taken for spin-flip transition is plotted in Fig. 5b. Remarkably, even for amplitudes
as small as 1 ©V/nm, the spin-flip times remain close to 1 ns for the direct transitions. Whereas for the second
order, a nano-second spm -fli 3}; occurs at amplltudes larger than 3.8 V/nm. The second order transition times
decrease as a function of === 00 ns (nm/mV)?2, while the direct transition goes as % 0%105 ns nm/mV. It is even
possible to achieve a sub nano second spin-flip time as we approach the field strength of 10 1V/nm. For even
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Figure 5. For AV = 46 meV at magnetic field B = 16 T, (a) The maximal occupation of the triplet state for the
time-dependent evolution of the system subject to the AC electric field with the amplitude of 0.78V/nm (blue
curve), 1.56uV/nm (black curve), and 3.12uV/nm (red curve) found in a simulation lasting 20 ns. (b) Blue solid
and dashed lines show the singlet-triplet transition times as a function of the AC electric field amplitude for the
first-order and second-order transitions, respectively. The two green thin lines show the linear and quadratic fits
to the transition times vs the amplitude. The red line shows the contribution of the second and higher energy
levels as a function of the AC field with slope of 2.

larger amplitudes, the lines lose their predicted dependence and deviate from the linear nature in the plot above
8 uV/nm . This occurs due to the leakage of the system into higher energy states. Maximal leakage of probability
into higher states as depicted with the red line in Fig. 5b. This leakage can be calculated with the formula
d=1—(lc1(t)]> + |c2(t)]?). When the leakage tends to zero, the system approaches an ideal two-level system,
desirable for qubit applications and with dynamics accurately described by the Rabi model. We notice that even
in the sub nano-second regime of the transitions, leakage is as low as 0.002% and grows quadratically with field
amplitude F. A low leakage of the qubit is favoured to obtain norm conserving rotations on the Bloch sphere,
which in turn is beneficial for higher gate fidelity and lower noise.

Such sub nanosecond transition between the two states of a qubit is reported often in charge qubits where
the driving field is pulsed instead of sinusoidal, but it is still periodic’?>7*. This system can thus be used for fast
sub-nanosecond spin manipulation operations without the practical intricacy of pulse generation and while
retaining long coherence times due to weak spin-orbit coupling of phosphorene. These type of qubits are advan-
tageous because of their quick operations, but they are also very vulnerable to material defects and charge noise
from the quantum dot environment. The configuration described earlier with detuning of AV = 46 meV can be
regarded as a qubit where the spin and charge are strongly linked. It is possible to modify and tune this coupling
via changing the original detuning, as shown in Fig. 2c. Weak coupling of the spin moment to the environment
gives the advantage over a charge qubit in terms of large coherence times. A more spin-qubit like character can
be obtained from the same setup by going to the other extreme end of detuning, i.e. a nearly symmetric system.

A similar analysis was therefore performed for AV = 1meV and maximum of occupation |c;|? with respect
to the AC frequency of the electric field v was obtained. Results for various electric field amplitudes are shown
in Fig. 6. The magnetic field near the avoided crossing of 0.4 T and 0.9 T are chosen, the energy difference
and its first few fractions are listed in Table 1. The simulation starts from the ground state, i.e. the singlet state
for magnetic field 0.4 T and the triplet state for magnetic field 0.9 T. Inmediately, we observe that despite the
significantly smaller S/T energy difference in this scenario compared to the previous one, a much higher field
is needed to induce the transition within the simulation time. This is because of the transition matrix elements
being three orders of magnitude lower now [see Fig. 4c and d]. An amplitude F = 0.2 mV/nm of the electric field
produces a resonance spectrum as shown in the bottom part of Fig. 6a (for B = 0.4 T) and of Fig. 6b (for B = 0.9
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B (T) AE;; (meV) % (meV) % (meV) (x12) (pm)
0.4 0.017232 0.0086160 0.0057440 0.593
0.9 0.042037 0.0210185 0.0140123 0.531

Table 1. Energy difference and transition matrix element between singlet and triplet states near the avoided
crossing for detuning AV = 1 meV.
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Figure 6. Maximal occupation of the first excited state calculated similar to Fig. 5 for AV = 1meV in the
external magnetic field of (a) 0.4 T and (b) 0.9 T. The plots for an increasing amplitude of the AC field are shifted
by 1 in panels (a) and (b). The red curve in panel (b) shows the results for an ideally symmetric double dot and
the amplitude of F = 0.7 mV/nm with presence of only even order transitions. The simulation time in both the
plots is set to 20 ns.

T). We detect resonances occurring near frequencies where the corresponding energies match the energy differ-
ences and their fractions. First resonance peak from the right corresponds to a direct spin-flip transition where
hv ~ AE;. At the peak, we find that the direct spin-flip time is above 12 ns. The second peak from the right is
the second order transition where hv ~ AE;,/2. Higher order transitions can be explained using expansion of
the coefficients ¢;(¢) and recursively solving for higher orders of the coefficients (cf. Appendix A). The nth order
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transition (or n-photon transition) coefficient is proportional to (eF/2h)". Thus, as the amplitudes get larger,
the peak heights of higher order resonances grow one order of F faster. The transition rates for the higher order
resonances can further be increased by tuning the interdot tunnel barrier”.

The resonance spectra for higher amplitudes of the electric fields are shifted by one along the y-axis in the
plot. We see that resonance peaks blue-shift as a result of higher amplitudes before the S/T avoided crossing
where the initial state is singlet [Fig. 6a]. On the contrary even with similar size of the transition matrix elements
(Table 1), the resonance peaks red-shift to lower energies with increasing amplitude of the electric field after the
crossing (B = 0.9 T) when the initial state is the triplet [See Fig. 6b]. Here as well, the higher order peaks occur
with increasing amplitude, which agrees well with the energy differences for lower amplitudes of field. But at
amplitudes higher than 0.7 mV/nm, at lower frequencies, the occupancy is no longer zero and for amplitudes
more than 0.9 mV/nm, the occupancy is almost one. This corresponds to the adiabatic triplet to singlet transitions
governed by the Landau-Zener-Stiickelberg-Majorana (LZSM) formula*>**. Such adiabatic transition only
occurs for the case when the triplet is the ground state due to singlet state being pushed down as a result of the
asymmetry created by the electric field. Fig. 7a shows the lowest four energy levels as a function of constant
electric field with the singlet as the ground state. We observe that the field pushes the singlet state down for large
values of 1 mV/nm or —1 mV/nm. Similar behaviour is seen in Fig. 7b for B = 0.9 T except we see an avoided
crossing at about 0.76 mV/nm. Thus for small frequency of electric field, the state sweeps adiabatically from
triplet to singlet causing the spin flip transition. LZSM mechanism was also reported to induce the multiple
harmonic generation in multilevel systems’®. For a perfectly symmetric system, the resonance spectrum is shown
in Fig. 6b by the red curve. Clearly showing the absence of the direct transition, as well as the absence of the
higher peaks of odd n-order due to the parity selection rule.

The higher amplitude required to drive the transitions indicates that such a system where the charge states are
not strongly linked with spin states will be more robust against the external charge noise and material defects. As
we notice from Fig. 2¢, a detuning of even 10 meV will keep the system more or less the same, with the transi-
tion matrix element as well as the avoided crossing vary by smaller amount as compared to the previous case. A
trade-off of this extreme being weak coupling to the external electric field which influences the transition times.

Spin-flip times of the nearly symmetric system before and after the S/T avoided crossing are shown in Fig. 8.
The solid (dotted) lines indicate the first (second) order transition times. For even amplitudes 10 to 100 times
larger than the previous case, spin-flip times are about 80 ns. Spin-flip time at B = 0.9 T for direct transitions
is similar to that of B = 0.4 T case for lower amplitudes. However, once the amplitude exceeds 0.2 mV/nm and
the peaks red-shift, the triplet transitions to singlet state are more rapid compared to the reverse transition. The
second order transitions, even though slower than direct transitions for lower amplitudes, become much faster
than the direct transitions and follow the trend of 1/F2. Whereas the direct transitions evolve proportional to
1/F. This proportionality breaks down as the amplitude approaches 1 mV/nm and contribution from higher
states reaches up to 4%. These amplitudes can then drive the spin-flip transitions at sub nano-second scale, but
the fidelity of such operations would be very low because of leakage.
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Figure 7. For AV = 1 meV at magnetic field (a) B = 0.4 T and (b) B = 0.9 T. Energy levels as function of
constant electric field perturbation showing the avoided crossing in (b) for B = 0.9 T which is shown more
clearly in the inset figure.
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Figure 8. Same as Fig. 5b but for AV = ImeV. The black and blue lines correspond to B = 0.4 T (Fig. 4(a)) and
B = 0.9T [cf. Fig. 6b], respectively.

Dots arranged in the zig-zag direction

Weaker inter-dot coupling can be achieved by arranging the dots in the y-direction within the same material
and geometric parameters. By modifying Eq. (3) so that the center of Gaussians are at y = +=d and changing the
electric field to be V' () = —eFy© (¢) sin(wt) , we can investigate the effects of asymmetry and spin-flip transitions
analogous to previous sections and compare the results for a different inter-dot coupling.

Figure 9a and b show the energy spectrum for the dots arranged vertically at the detuning AV = 42 meV and
AV = 46 meV, respectively. We see similar features as seen for dots arranged in x-direction. The ground state is a
singlet and is replaced by the triplet after the avoided crossing. It occurs for a very small value as compared to the
previous cases, with the center of avoided crossing for AV = 42 meV at about 50 mT. Which is in contrast to the
dots in x-direction, where the detuning of about AV = 42 meV moved the center of avoided crossing above 5 T.
At AV = 45meV, the position of avoided crossing has reached about 5.5 T. Due to the lower tunneling coupling
between the dots, the slope of the position of avoided crossing [see Fig. 9c] is much steeper. It occurs at very low
values for up to AV = 42 meV and then shoots up to values more than 10 T before AV even reaches 50 meV. This
sensitivity to the detuning is also reflected in the transition matrix and S/T energy gaps in Fig. 9d. The transition
matrix element between singlet-triplet achieves its maximum at 45 meV with values of about 7 nm. Because of
the strong electron-electron interaction in y-direction, detuning of about 35 meV has basically no effect on the
S/T energy difference and the transition matrix, meaning the densities are largely unaffected. The square root
densities of the lowest singlet and triplet of this system for symmetric, AV = 45meV and AV = 50 meV are
plotted in Fig. 10. Note the smaller values of square root densities between the dots [see Figs. 10a,b], indicating
a much weaker inter-dot coupling compared to Fig. 4a,b for symmetric dots arrange in x-direction. The effect
of this is also seen for the case where transition matrix element is the largest. The square root density of singlet
[Fig. 10c] shows both electrons completely occupied in the bottom dot with almost no leakage to the other dot
because of weak tunneling, contrary to singlet in Fig. 4c. With the large enough detuning [Fig. 9e,f], both the
triplet states electrons eventually occupy the lower dot. Once the electrons have both occupied the lower dot, the
position of avoided crossing and the S/T energy difference saturates similar to the situation in the earlier sections.

We now focus the case with the largest transition matrix element, i.e. for AV = 45 meV. An analysis similar
to that of horizontal dots was performed to obtain the spin-flip times illustrated in Fig. 11. The magnetic field
was chosen to be 4.5 T near the avoided crossing in Fig. 9b where the electric field drives the system from the
ground state singlet to the spin polarized triplet. At the field amplitude of 2 £V/nm, we see that the spin flip time
is 2.875 ns, whereas due to stronger coupling and tunneling, spin flip time for dots in horizontal orientation at
this amplitude was already 0.525 ns [cf. Fig. 5b]. A sub-nanosecond spin-flip occurs for amplitudes great than
5.75 wV/nm. The first and second order transitions follow a similar trend, the first order transition time reduces
as 290575 ng nm/mV and the second order as 0'0082662 ns (nm/mV)? resulting in a second-order nanosecond spin-
flip at an amplitude of 8.6 V/nm. Although the sub-nanosecond spin manipulation is possible in this case, cost
of it is paid in the leakage due to higher amplitudes. A half nano-second spin-flip occurs with leakage of about
0.005% for dots with stronger inter-dot coupling (dots in x-direction) while for dots with weaker coupling the
same spin-flip time is not observed as a consequence of leakage to higher states. The contribution of higher
energy states is shown in red referred to the right axis in Fig. 11. Higher amplitudes increase the contribution
of higher states, with the trend being quadratic for lower amplitudes. The leakage grows rapidly to about 2% as
the amplitude approaches 30 £V/nm. When the contribution of the higher state reaches about 0.05%, transition
time lines deviate away from linear and quadratic fits.
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Figure 9. The energy spectrum for (a) AV = 42 meV and (b) AV = 45 meV. (c) The magnetic field position of
the singlet-triplet avoided crossing vs A V. The field is basically zero unless both the electrons in the singlet drop
in the deeper dot. (d) The maximal value of the transition matrix element (black curve) for the S/T transition
referred to left axis and the exchange energy (red curve) at B = 0 referred to the right axis.

Summary and conclusions

We presented an analysis of the singlet-triplet energy splitting and singlet-triplet transitions driven by oscillating
electric field in double quantum dots with the effective mass and spin-orbit coupling anisotropy in phosphorene
using an exact numerical treatment involving configuration interaction method and the two-electron eigenstates
used as a basis for integrating the time evolution of the driven system. The potential asymmetry and orientation
of the confinement potential was discussed. The first order singlet-triplet transition turns out to be forbidden
by the parity symmetry selection rules in symmetric system of quantum dots. The dipole matrix element for
the transition depends strongly on the asymmetry of the confinement potential in a non-monotonic way, with a
maximum corresponding to an asymmetry which localizes the singlet in one of the quantum dots and the triplet
state still extended over both the dots.

We studied the times of the resonant spin flips including the first and higher-order transitions and the fidelity
of the flip versus the amplitude of the driving electric field. Fast sub-nanosecond singlet-triplet transitions
involving only the initial and final states are easily achieved for anisotropic quantum dots arranged in the
armchair direction. This is possible due to the strong electron-electron interaction in the phosphorene. Detuning
can be used to control the sensitivity to charge noise and increase fidelity of operation while simply using the
oscillating driving without even employing optimization methods. For the quantum dots arranged in the zig-zag
direction fast spin transition times are obtained only at the cost of the leakage of the two-electron wave function
to higher excited energy levels. The advantage of using phosphorene for spin manipulation in gated double
quantum dots is that the interdot coupling, the spin-transition times and the leakage of the states beyond the
two lowest-energy states can be additionally controlled by orientation of the axis of the double dot system with
respect to the crystalographic axes of the 2D crystal.
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Figure 10. A square root of the electron density for a symmetric double dot system (a,b), AV = 45 meV (c,d)
and AV = 50meV (e,f). The left panel (a,c,e) shows the lowest singlet state and the right panel (b,d,f) the lowest
triplet state. The results were calculated for B = 0.
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Figure 11. Same as Fig. 5b but for dots arranged in zig-zag direction with AV = 45meV at B = 4.5T. The
black solid (dashed) line indicates spin-flip time for first (second) order transitions. Green lines show the linear
and quadratic fits.

For lower asymmetry of the confinement potential with both the singlet and the triplet states extended the
dipole matrix element is by order magnitudes smaller than its optimal value and the singlet-triplet transition
times of the order of several ns are obtained only at high amplitude of the driving field which is accompanied by
a series of subharmonic resonances and Landau-Zener transitions at low frequencies driving the system across
the singlet-triplet avoided crossings.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on
reasonable request.

Expansion of coefficients
The coeflicients for any n-level system in Eq. (7) can be solved using perturbative expansion,

@) = O + Vi) + Py +..., (A1)

where zeroth order simply being the initial condition. Subsequent orders of expansion can be obtained by
substituting previous order in the right hand side of Eq. (7). Without using the rotating-wave approximation
(RWA) we obtain the expressions for the coefficients by integrating up to time  as

Fx
1) £ = erXin .
a=
{ 1 —expli(vin + v)t] n 1 —expli(viy — v)t] }
Vin + Vv Vin —V

eF \?
65,2) t) =~ <ﬁ) . men X1im
m

1 — expli(Vmn + v)t] B 1 — expli(Vmn + vim + 2v)t]
(Vmn +v)(W1m +v) Wim + V) Wmn + vim + 2v)
1- eXP[i(an + v)t] _ 1-— eXP[i(an + Vim)t]

Wmn +v)(Wim — V) Wim = V) Wmn + Vim)

L= expli(umn — W)t | 1 — expli(Vmn + vim)t]
Vimn — v)(W1m +v) Wim — V) Wimn + Vim)

_ 1 —expli(Vmn — v)t] 1 — expli(Vmn + vim — 2v)t] }
Vimn — v)(W1m — V) Wim — V) Wmn + vim — 2v)

where X, is the matrix element (m|x|n) and v,,, = (E;; — E,;) /h. We can obtain a much convenient form of
these expressions under RWA by removing fast moving components as,

gy F . explit(vy, = v) 2 sinGie(vy, = v)/2
" 2i " Vim —v)

2ih

eF \?
D) = (fn) lem X
m

{ explit (Vi — v)/2] sin(it (Vin — v)/2)
Wimn — V) (i — V)
+exp[it(vm,, + Vim — 2v) /2] sin(it (Vi + Vim — 2V)/2) }
im — vV)(W1m + viun — 2v)

(A3)

The coefficients reach their maximum when the arguments of sine function tend to zero. The absolute values
of nth order coefficient is proportional to nth power of F, thus nth order transition times will be proportional
tol/F"
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Chapter 10

Summary & Conclusions

In this thesis, we explored unique properties of confined states in electrostatic quantum dots based on phos-
phorene, motivated by phosphorene’s strong anisotropy and its potential for realization into novel applica-
tions. The primary goal was to study theoretically how anisotropy influences electronic and spin states in
phosphorene quantum dots and rings. We employed tight-binding model, effective mass approximation and
computational techniques, including the configuration interaction method, and time-dependent simulations,
to capture many-body effects accurately. Thus, not only filling the gap in theoretical literature, but also
informing on potential future experiments.

We demonstrated that in phosphorene quantum rings, effect of mass anisotropy on the confined single
electron states can be exactly compensated for a single-confined electron by confinement potentials, alter-
ing the Aharonov-Bohm interference pattern. Thus, opening the avenue of investigations based on quan-
tum interference for anisotropic materials. With large and anisotropic effective masses in phosphorene, the
electron-electron interactions lead to the formation of Wigner molecules in laboratory frame. The formation
is affected by the symmetry of confinement potential, parity and magnetic field. We indicated the spec-
tral features that can indicate formation of single-electron islands in the laboratory frame besides a direct
density observation. We investigated the vortex structures forming in the fractional quantum Hall condi-
tions. The evolution of these vortex structures with magnetic field is associated with antivortex creation
and annihilation, which can only be described by basis beyond lowest Landau level, indicating a complex
multi-body behavior. Under certain conditions, electron-electron interactions can lead to strong itinerant fer-
romagnetism predicted by Nagaoka’s theorem in quantum dot array, fairly robust against detuning and small
imperfections because of phosphorene’s heavier effective mass in zigzag direction. Spin states in the double
quantum dot system can be coherently controlled with sub-nanosecond spin flip times and low leakages.
Such properties demonstrate feasibility for spin-based quantum computing or spintronics in anisotropic 2D
materials like phosphorene.

We established the effects of anisotropy on electronic correlations, magnetic phenomena, and spin ma-
nipulation in phosphorene quantum dots and rings. By tailoring confinement geometries and external fields,
it is possible to tune electronic and spin properties of the confined states in a controllable manner. This

highlights phosphorene’s potential as a platform for next-generation quantum devices.
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