
FIELDOF SCIENCE: Natural sciences

SCIENTIFIC DISCIPLINE: Physical sciences

DOCTORALTHESIS

Application of machine learningmethods for the analysis of the
calibration of the LHCbVELOdetector, studies of irradiated
silicon pixel sensors and reconstruction of the neutrino

interaction in LARTPCdetector

Author: Maciej WitoldMajewski

First supervisor: prof. dr hab. inż. Tomasz Szumlak

Assisting supervisor: dr inż. Bartłomiej Rachwał

Completed in: AGHUniversity of Science and Technology, Department of Particle
Interactions and Detection Techniques, Kraków, 2022

Declaration of the author of this dissertation:

Aware of legal responsibility for making untrue statements I hereby declare that I have written this
dissertation myself and all the contents of the dissertation have been obtained by legal means.

Declaration of the thesis Supervisor:

This dissertation is ready to be reviewed.

Application of machine learning methods for the analysis of the calibration
of the LHCb VELO detector, studies of irradiated silicon pixel sensors and

reconstruction of the neutrino interaction in LARTPC detector

Abstract (Polish Version)

Praca ta łączy wiele tematów dotyczących detektorów cząstek i nowatorskich zastosowań inteligencji

obliczeniowej w celu usprawnienia analizy danych przez nie wytwarzanych. Jako ekspert i entuzjasta

AI, moim głównym przedmiotem badań jest zastosowanie metod uczenia maszynowego do

rozwiązywania problemów w dziedzinie detektorów cząstek wysokich energii. Istota tego dokumentu

dotyczy spektrometru LHCb i jego wysokoprecyzyjnego krzemowego detektora Vertex Locator

zarówno w wersji paskowej, jak i zmodernizowanego - w wersji pikselowej. LHCb jest jednym z

detektorów przy Wielkim Zderzaczu Hadronów, a jego odkrycia przyczyniły się do pogłebionego

rozumienia fizyki cząstek elementarnych. W dwóch okresach zbierania danych, Run 1 (2011-2012) i

Run 2 (2015-2018), zgromadzono próbki danych o zintegrowanej świetlności około 9fb−1.

Eksploatacja detektorów krzemowych w tak intensywnym polu promieniowania wiąże się z kosztem w

postaci uszkodzeń radiacyjnych. Fakt ten był głównym powodem unowocześnienia wstępnego

projektu dla nadchodzących Run 3 i 4.

Unikalne wymagania i warunki, w jakich musi pracować detektor Velo, wymagają szeroko

zakrojonej fazy badawczej związanej nie tylko z badaniami sprzętowymi, ale także z nowymi metodami

monitorowania i analizy stanu detektora. Te ostatnie zostały przedstawione w niniejszej rozprawie.

Rozdziały początkowe, do Rozdziału 3 włącznie, zawierają niezbędne teoretyczne i techniczne

wprowadzenie do szczegółowych celów badawczych, konstrukcji detektora i metod analizy. Rozdziały

poruszające unikalną analizę kalibracji detektora Velo w Runs 1 i 2 zawarte są w Rozdziale 4, a badania

zmodernizowanego detektora w Rozdziale 5.

W pierwszej części prezentowanych badań badane są dwa parametry kalibracyjne pochodzące od

sygnału szumu odbieranego przez sensory krzemowe detektora, pedestal (średnia szumu) i threshold

(odchylenie standardowe szumu). Parametry te badane są pod różnymi kątami i w różnych wymiarach.

Analiza trendu piedestałów nie wykazała żadnych utrzymujących się efektów, co potwierdza, że

adaptacja napięcia podawanego do detektora mieściła się w akceptowalnych zakresach. Analiza

parametrów progowych wykazała wpływ szkodliwego promieniowania na sensory. Zainspirowała ona

v

stworzenie nowatorskiego algorytmu opartego na uczeniu maszynowym do oceny kalibracji.

Stworzyłem i zaimplementowałem algorytm o nazwie “outlierness” i z powodzeniem wprowadziłem

go do monitorowania detektora Velo w 2018 roku.

Duża wymiarowość problemu (duża liczba indywidualnych kanałów odczytu sensorów)

przyczyniła się do testów algorytmów redukcji wymiarowości (PCA i autoencoder). Testy wykazały iż

oba algorytmy mogą ujawnić anomalie w funkcjonowaniu detektora. Subtelne przesunięcia w relacji

kalibracji do szumu występującego w detektorze podczas pobierania danych skłoniły nas do

wykorzystania tego efektu i użycia rekurencyjnej sieci neuronowej do przewidywania czasu niezbędnej

kalibracji detektora.

Nowy detektor Velo w nadchodzącym Run 3 wykorzystuje pikselową matryce jako sensor i

zwiększa liczbę poszczególnych kanałów o ponad dwa rzędy wielkości. Brałem udział w tworzeniu

nowatorskiej metody wyszukiwania i śledzenia skupisk zamaskowanych (wadliwych) pikseli,

wykorzystującej strumień danych kalibracyjnych. Ta metoda pozwoli na bardziej świadome

podejmowanie decyzji o konieczności wykonania kalibracji detektora.

O ile większość metod analizy kalibracji detektora bazujących na uczeniu maszyniweym może być

wykorzystana dopiero gdy detektor jest już w pełni uruchomiony i funkcjonuje, o tyle dane testowe

detektorów mogą być wykorzystane do badania skutków promieniowania. Nowy sensor VeloPix

rejestruje sygnał przekroczenia progu czasowego, który za pomocą funkcji zastępczej (”surrogate

function”) można powiązać z energią zdeponowaną w sensorze wyrażoną w eV.

Okazuje się że zmiana parametrów funkcji rekonstruującej ładunek jest powiązana z ilością

całkowitego promieniowania dostarczonego do sensora. Badałem ten efekt, co doprowadziło do

opracowania podstaw przełomowej inteligentnej metody oceny fluencji sensora.

Doświadczenia z pracy z Velo doprowadziły do opracowania niezbędnych i nowatorskich rozwiązań

problemów praktycznych przedstawionych w rozdziale 6. Kontakt z danymi kalibracyjnymi i

świadomość potrzeby narzędzi do ich przetwarzania, przyczyniły się do stworzenia webowego serwisu

bazodanowego o nazwie Storck, który jest w trakcie wprowadzania do systemów LHCb podczas

rozruchu detektora. Wraz z systemem bazodanowym prezentowany jest open source’owy framework

do efektywnego tworzenia narzędzi monitorujących - Titania. Storck i Titania są generycznymi

narzędziami open-source, które mogą być używane niezależnie w dowolnym eksperymencie.

Kierowałem rozwojem obu tych projektów wraz z kilkoma programistami.

vi

Projekty związane z LHCb spowodowały moją częstą obecność w CERN. Uczestniczyłem w wielu

spotkaniach, dotyczących projektowania procedur związanych z kalibracją. Brałem także udział w

dyżurach w centrum kontroli detektora LHCb.

Zastosowania metod uczenia maszynowego w detektorach fizyki wysokich energii wykazują zwykle

dużą specyfikę i dostosowanie do szczegółowego celu badawczego z zakresu fizyki i konstrukcji

detektora. O ile zwykle konieczne jest opracowanie rozwiązań dla konkretnych problemów, o tyle o

problemie śledzenia i identyfikacji cząstek można myśleć jako o bardziej uniwersalnym. Prace nad

uogólnieniem algorytmów uczenia maszynowego na potrzeby eksperymentów fizyki cząstek są w

durzej mierze dziewiczym terenem badań. Duży i otwarty zbiór danych stworzony przez kolaborację

DeepLearnPhysics jest okazją do wczesnego poszukiwania bardziej ogólnej AI zdolnej do zrozumienia

zasad rządzących naszym wszechświatem. Szansa ta została wykorzystana przez ambitną próbę

zbadania zastosowania metody uczenia wzmacniającego do śledzenia i identyfikacji cząstek w zbiorze

danych LARTPC. Badania te zostały przedstawione w rozdziale 8, a wprowadzenie teoretyczne w

rozdziale 7.

Dodatkowo do pracy badawczej, do moich obowiązków należało prowadzenie zajęć

laboratoryjnych będących częścią kursu obieralnego The Python in the Enterprise. Przez te lata

nauczałem około 250 studentów, jak pisać czysty, dobry, niezawodny kod w pythonie i udzielałem

wskazówek dotyczących ich projektów związanych z kursem. Studenci nauczyli się również jak używać

systemu kontroli wersji GIT oraz jak współpracować z innymi studentami przy projektach

wykorzystujących narzędzia takie jak Agile software development, Scrum, Continuous Integration and

Deployment, a także jak stosować uczenie maszynowe do rzeczywistych problemów inżynierskich.

Poniżej znajduje się lista wygłoszonych referatów, a także udział w konferencjach i szkołach.

vii

Abstract (English Version)

This work brings together multiple topics revolving around particle detectors and novel applications of

computational intelligence to enhance analysis of data produced by them. As an expert and enthusiast

of AI, my main focus of the study is the application of machine learning methods for solving problems

in the field of high energy particle detectors. The core of this document relates to the LHCb

spectrometer and its high precision silicon Vertex Locator detector both in original strip version and

upgraded pixel version. The LHCb is a part of the Large Hadron Collider system of detectors’, and its

discoveries contributed to the global understanding of fundamental physics. The two data-taking

periods, Run 1 (2011-2012) and Run 2 (2015-2018), collected data samples with integrated

luminosity of around 9fb−1. Operating the silicon detectors in such intense radiation field leads to the

radiation damage issues. Radiation damage and increased luminosity of LHC are two reasons behind

necessity of upgrading the initial design for upcoming LHC Run 3 and 4.

The unique requirements and conditions in which the Velo detector must operate requires an

extensive research phase releated not only to hardware studies but also for the new methods of

monitoring and analysis of the state of the detector. The latter is presented in this thesis.

The starting chapters, up to Chapter 3, contain the fundamental theoretical and technical

introduction to the details of the physics goals, detector composition and analysis methods. The

unique analysis of the calibration of the Velo detector in Runs 1 and 2 is described in Chapter 4, and

the study of the upgraded detector is contained in Chapter 5.

The first portion of the presented studies investigates two calibration parameters derived from the

noise signal picked up by the detector’s silicon sensors, pedestal (mean of noise) and threshold

(standard deviation of the noise). Those parameters are investigated in views of different

dimensionalities. The analysis of the trend of the pedestals has shown no persisting effects, which

confirms that the adaptation of the voltage fed to the detector was in acceptable ranges. The analysis of

the threshold parameters revealed the effects of the harmful radiation on the sensors. It inspired the

creation of a novel machine learning-based algorithm for the assessment of the calibration itself. I

created and implemented an algortihm called “outlierness” and successfully introduced it to the

monitoring of the Velo detector in 2018.

The high dimentionality of the problem (large number of individual sensor readout channels) led to

tests of dimentionality reduction algorithms (PCA and autoencoder) and showed that both algorithms

viii

could reveal anomalies in the functioning of the detector. The subtle shifts in the relation of the

calibration to the noise found in the detector during data taking led us to leverage that effect and use a

recurrent neural network to find a method for predicting the need for the calibration of the detector.

The new Velo detector in the upcoming Run 3 exploits pixel matrices for the data taking and

increases the number of individual channels more that two order of magnitude. I participated in the

creation of a novel method for finding and tracking clusters of masked (faulty) pixels, using calibration

data stream, which will allow for a more informed decision about detector maintenance.

While most of the helpful methods for analysing the calibration of the detector can only be used

while the detector is already fully commissioned and functioning, the test data of the sensors can be

used for studying the effects of the radiation. The new VeloPix sensor registers a time-over-threshold

signal, which can be linked with the energy deposited in the sensor expressed in eV via surrogate

function. The change of the function parameters is linked with the amount of total radiation delivered

to the sensor. I studied this effect, which led to the development of the basis for breakthrough

intelligent method for assessing the fluence of the sensor.

The experience of working with Velo has led to developing the necessary and novel solutions to

practical problems presented in Chapter 6. The contact with the calibration data has led to the creation

web-based database service called Storck, which is undergoing the introduction to the LHCb systems

during the commissioning of the detector. Along with the database system, an open source framework

for efficient creation of the monitoring tools - Titania is presented. Storck and Titania are generic

open-source tools that can be used independently in any experiment. I led the development of both

projects, along with several developers.

The projects related to the LHCb resulted in my frequent presence at CERN. I participated in many

meetings, discussing the design of the calibration-related procedures. I also participated in detector

shifts, in the LHCb control room.

The applications of the machine learning methods for the High Energy Physics detectors usually

show high specificity and customisation to the undergoing physics search and design of the detector.

While it is usually necessary to develop solutions to particular problems, the problem of tracking and

particle identification can be thought of as more universal. The studies in generalisation of machine

learning algorithms for particle physics experiments have been largely untouched. The large and

robust open dataset created by DeepLearnPhysics has created an opportunity for early search for a

ix

more general AI capable of understanding the rules of our universe. The opportunity was leveraged by

an ambitious attempt to research the reinforcement learning method’s application for particle tracking

and identification in the LARTPC dataset. This research is presented in Chapter 8, with a theoretical

introduction in Chapter 7.

Additionally to the research work, my duties included leading the lab classes that are a part of the

elective course The Python in the Enterprise. Throughout the years, I taught a total sum of around 250

students how to write clean, good, reliable pythonic code and provided guidance for their

course-related projects. The students also learned how to use the GIT version control system and how

to collaborate with other students on projects using Agile software development, Scrum, Continuous

Integration and Deployment tools, as well as how to apply machine learning to real-world engineering

problems.

Below is the list of the contributed papers, as well as conference and schools participation.

Publications

• Analysis, andmachine learning anomaly detection of the VELO-LHCb calibration,

Journal of Physics: Conference Series, 2nd Trans-Siberian School on High Energy Physics, 1-5

April 2019 (proceedings)

• Automatised data quality monitoring of the LHCbVertex Locator,

Journal of Physics: Conference Series (2017) 2017 J. Phys.: Conf. Ser. 898 092046

• Development of the LHCbVELOmonitoring software platform,

Acta Phys. Pol. B 48, 1061 (2017)

• Mapping thematerial in the LHCb vertex locator using secondary hadronic interactions,

2018 JINST 13 P06008

• Phase I Upgrade of the Readout System of the Vertex Detector at the LHCb Experiment,

IEEE Trans. Nucl. Sci. 67 (2020) 732-739

• Theupgrade I of LHCbVELO—towards an intelligentmonitoring platform,

2020 JINST 15 C06009

x

https://doi.org/10.1088/1742-6596/1337/1/012006

• Software Platform for theMonitoring andCalibration of the LHCbUpgrade I Silicon

Detectors,

Acta Phys. Pol. B 50, 1087 (2019)

• Simulation andOptimization Studies of the LHCbBeetle Readout ASIC andMachine

Learning Approach for Pulse Shape Reconstruction,

Sensors 2021, 21(18), 6075;

• Readout Firmware of the Vertex Locator for LHCbRun 3 and Beyond,

IEEE Trans. Nucl. Sci. 68 (2021)

• RadiationDamage Effects andOperation of the LHCbVertex Locator,

IEEE Trans. Nucl. Sci. 65 (2018)

• Phase I Upgrade of the Readout System of the Vertex Detector at the Experiment,

IEEE Trans. Nucl. Sci. 67 (2020)

Conferences

• Development of the LHCbVELOmonitoring software platform,

23rd Cracow Epiphany Conference, Kraków, 9 - 12 Jan 2017 (proceedings);

• ATCADbasedmodel of doublemetal layer effects and a review of the radiation damage

andmonitoring of LHCbVelo,

13th ”Trento” workshop on Advanced silicon radiation detectors, 19-21 February 2018,

Munich;

• Machine Learning inHigh Energy Physics,

Data Science Summit, Warsaw, 14 June 2019

• Machine Learning in LHCb,

ML in PL, Warsaw, 22–24 November 2019 (poster)

• Machine Learning in Velo LHCbmonitoring and calibration in Run I and II.,

Symposium Artificial Intelligence for Science, Industry and Society, Mexico, 20-25 October

2019

xi

http://dx.doi.org/10.5506/APhysPolB.48.1061
http://docs.mlinpl.org/conference/2019/posters/MaciejMajewski.pdf

• LHCbVelo upgrade software platform,

10th LHC students poster session, Geneva, CERN, 19 Febuary 2020

• Unsupervised learning for pixel mask clustering and cluster tracking in LHCb’s Velopix

sensor calibration - awarded best talk in young researchers session

4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Kraków, 10-15 July

2022 (proceedings)

Schools

• Machine Learning inHigh Energy Physics Summer School,

Oxford, 5–12 August 2018

• 2nd Trans-Siberian School onHigh Energy Physics,

Tomsk, 1-5 April 2019

• 42ndCERN School of Computing,

Cluj-Napoca, Romania, 15-28 September, 2019

• 5th InternationalWinter School on Big Data,

Cambridge, 7-11 January 2019

Grants

• Intelligentmonitoring software and tests of silicon pixel sensors for themodernized peak

detector in the LHCb experiment. - principal investigator,

Preludium 14, National Science Center (NCN), 2018-2020

xii

Acknowledgments

I acknowledge support from National Science Centre (Poland), UMO-2017/27/N/ST2/01880.
This research was supported in part by ACK CYFRONET AGH (PLGrid Infrastructure).

One of the key insights from one of my favourite books is that, no matter how small your
stride is, as long as you take enough steps, you’ll be able to travel further than you ever imagined.
Saying this, I would like to express my gratitude to everyone who has helped, accompanied or made
any of the steps towards finishing this work more enjoyable.

First, I would like to thank my supervisor Tomasz, without whom this journey wouldn’t be possible.
Thank you for the countless times you have helped me, offered me guidance, believed in my abilities,
and gave me space for growth.

I would also like to thank my friend from room 121. Thank you, Bartek, for helping, especially with
the VeloPix section of this work, and for often being someone I confide in my problems with.

This journey would undoubtedly be significantly less enjoyable and more difficult if it weren’t for
Wojtek, Paweł and other members of the LHCb-AGH and KOIDC. Thank you for being so helpful
with answering many of my questions and with formal issues, and also for being excellent travel
companions. I wish you good luck in your future careers.

Themajority of the scope of this work touches on the LHCb experiment at CERN, so the thanks are
in place for the entirety of the LHCb collaboration, especially to Victor and Kazu. Being part of this
collaboration has been the highlight of my scientific career. It always will be an experience that I
cherish and am proud of.

Additionally, I would like to thank all of the students that partially contributed to this work (in no
particular order): Jakub, Dominik, Mateusz, Julian, Patryk.

Now I wish to thank all the people that influenced the years of my PhD studies on a more personal
level.

I want to thank my friends from CSC: Andrzej, Kimmo, Oliver, and Willem. Thank you for making
my experience with the CERN community so much unique. Big thanks to Artur and all of the
members of the Pykonik and Pydata Kraków community for being inspiriation for constant
improvement of my CS skills. Thanks to Jery for support in both good and challenging times.

xiii

The vast amounts of screen time spent on this work would be unbearable without the anchoring in
reality, so I would like to thank all of the friends from Hawiarska Koliba for being that anchor.
Especially thanks to those with which I could share my thoughts about the PhD experience (Kasia and
Dr Czox).

Being a PhD student is a choice of way of life, and so I would like to thank my extended family for
being supportive of this choice, and always rooting for me.

There is one person without whom I would have never even thought about picking up a PhD in
physics. My highshcool teacher Mr. Andrzej. Thank you for showing me that the passion, enthusiasm
and sheer joy of the work are far more critical than having top grades.

I would also like to thank my first teachers: mom and dad. Thank you, dad, for sparking my interest
in science and technology, and thank you, mom, for equiping me with ambition and willpower to
make great use of it.

Thank you, sister, for often giving me a quiet place to study, and thank you for always having my
back, even when on the other side of the continent.

And last but by far not least, thank you, Ola, for your constant, unyielding, unrelenting, rock-solid
support throughout the entire course of my PhD, and especially during the last months.

xiv

Contents

0 Introduction 5

1 High Energy Physics 7
1.1 Standard Model . 7
1.2 CP symmetry violation . 9
1.3 Tree-level determination of the unitarity triangle angle γ - CKM matrix 10
1.4 Test for the lepton universality. 11

2 The Large Hadron Collider beauty experiment 13
2.1 Large Hadron Collider . 13
2.2 LHCb spectrometer . 14
2.3 LHCb subsystems . 15

2.3.1 Rich . 15
2.3.2 Trackers . 16
2.3.3 Magnet . 17
2.3.4 Calorimeters . 17
2.3.5 Muon station . 18

2.4 Velo . 18
2.4.1 Strip Velo in Run 1 and 2 . 19
2.4.2 Velopix . 25

3 Machine Learning 29
3.1 Areas of machine learning . 30
3.2 Neural Networks . 30

3.2.1 Multi-Layer Perceptron . 31
3.2.2 Stochastic gradient descent and Backpropagation 32
3.2.3 Convolutional neural networks . 34

3.3 Dimensionality reduction - Autoencoders . 37
3.4 Recurrent networks . 39

3.4.1 Standard recurrent network . 39
3.4.2 LSTM . 41

1

3.4.3 WTTE-RNN . 41
3.5 Deep Reinforcement learning . 42

3.5.1 Q-Learning . 43
3.5.2 Deep Q-Learning . 45
3.5.3 Experience replay buffer . 45
3.5.4 Double Deep Q-Learning . 46

3.6 Probabilistic programming . 46
3.6.1 Metropolis-Hastings algorithm example 46
3.6.2 Probabilistic programming and Bayesian modelling 49

3.7 Clustering . 49
3.7.1 K-means . 49
3.7.2 DBSCAN . 49
3.7.3 OPTICS . 51

4 Machine Learning methods and analysis for strip Velo 54
4.1 Run 1 and 2 calibration analysis . 55

4.1.1 The Data . 55
4.1.2 Pedestals . 57
4.1.3 Clusterisation Thresholds . 59
4.1.4 Analysis of the outliers . 61

4.2 Intelligent analysis of the threshold data with probabilistic programming 64
4.2.1 Dataset creation . 64
4.2.2 Model . 65
4.2.3 Training . 66
4.2.4 Results . 67

4.3 Dimensionality reduction . 69
4.3.1 Pedestals dimensionality reduction . 69
4.3.2 Threshold dimensionality reduction . 75
4.3.3 Results . 77

4.4 Time to the next calibration forecasting . 80
4.4.1 Dataset . 80
4.4.2 WTTE-RNN model for Velo . 81
4.4.3 Training and results . 83

4.5 Chapter Discussion . 84

5 Machine Learning methods and analysis for VeloPix 85
5.1 Intelligent pixel mask cluster tracking . 86

5.1.1 Simulation of the VeloPix masks . 86
5.1.2 Mask clustering . 88
5.1.3 Mask cluster features . 89
5.1.4 Mask cluster tracking . 89

2

5.1.5 Results . 92
5.2 Studies of the surrogate activation functions in VeloPix sensors 93

5.2.1 Surrogate function model . 94
5.2.2 Experimental data . 95
5.2.3 Cross sensor study . 95
5.2.4 The fluence . 96
5.2.5 Modelling the surrogate curves evolution in the fluence domain 102
5.2.6 Results: Particle fluence estimation based on the surrogate curve properties . 108

5.3 Disussion . 110

6 Software for Velo daily operation 111
6.1 Storck . 111

6.1.1 Motivation . 111
6.1.2 Software stack . 112
6.1.3 Service Design Overview . 113
6.1.4 Implementation . 113
6.1.5 REST API . 115
6.1.6 Deployment . 115
6.1.7 Gitlab CI . 116
6.1.8 Storck web interface . 118
6.1.9 Storck python client . 118

6.2 Titania . 119
6.2.1 Motivation . 119
6.2.2 Software Stack . 119
6.2.3 Framework Design . 119
6.2.4 Using Titania . 120

6.3 Conclusions . 128

7 Neutrino induced processes 129
7.1 Neutrino experiments . 129
7.2 LARTPC detector . 129
7.3 Neutrino production and observation . 131

7.3.1 Beta-decay . 131
7.3.2 Medium and higher energy interactions . 132

7.4 Ultra high energy neutrinos . 134
7.5 Summary . 134

8 Reinforcement learning for LARTPC detector 136
8.1 Simulations and Data . 137
8.2 Dataset . 138
8.3 Environment . 140

3

8.3.1 Formalisation . 141
8.3.2 MDP and POMDP . 142

8.4 Gym-lartpc package . 143
8.4.1 Classes . 143
8.4.2 Example game . 144
8.4.3 Visualisation . 145

8.5 Deep Q-learning solution . 146
8.5.1 Learning . 147

8.6 Results . 148

9 Conclusions 152

References 160

4

In the beginning there was nothing, which exploded.

Terry Pratchett

0
Introduction

In a brief moment, a universe happened. After the Big Bang, the matter (leptons and quarks that form
protons and neutrons) came to life following a brief period known as inflation. The currently known
physics says that an equal amount of antimatter (to compliment the matter) should be produced as
well. Yet, we do not observe the universe to be symmetrical, cosmic yin-yang; equal parts matter and
antimatter. This is one of the greatest riddles of current physics. One of the goals of the LHCb
experiment at CERN is to find and study the processes that can contribute to this asymmetry.

The grand promise of the modern physics is the theory of everything; a universe boiled down to a
single theory, perhaps even to a single equation. This dream is partially realised by the Standard Model,
the theory that describes three fundamental forces (interactions) in physics. Weak nuclear, strong
nuclear, and electromagnetic force, come together into a single equation. To some, it may be surprising
that all of the mechanics in the known universe can be rooted just in a single theory based on the
principle of local gauge invariance. But the emergence of complex mechanisms from simple rules is
prevalent in science. Game of Life - a cellular automata simulation, although containing a small set of
rules can make increasingly complex structures. Most of the known chemistry that guides the
biological processes, can be explained almost exclusively ”just” using the electrical potential and
probability.

As particle physicists, we see this emergence of complexity even at a very basic level. By colliding
two protons, we see a multitude of emergent possibilities, many different particles, and a vast sea of
probable combinations of fundamental building blocks. Studying those combinations of possibilities
is the bread and butter of modern particle physics. One of the misconceptions about High Energy
Physics is that it is like a grandiose hunt through a murky and empty Forrest for one big prey.

In reality, it is more like being an explorer of new land. Every day we check new jungle parts,

5

expecting to find the trees and maybe some new species of the forest flora, and we see precisely that.
On some days, we revisit some parts to see if we notice anything extraordinary. But still, we hope that
we will find an ancient city of unknown civilisation with unimaginable treasure that will change
everything that we know. And we can’t deny it does not exist until we search through all of the
continent. For particle physicists, this treasure is physics beyond the Standard Model.

This steady, monotone and patient work of checking all of the branches of physics is facilitated by
the international community of scientists, of which CERN scientists constitute by far the largest group,
with the biggest particle accelerator - LHC (Large Hadron Collider). The LHC is a circular accelerator
located in the underground tunnel under the Swiss-French border. A large portion of the physicist
working at CERN are parts of four main experiments Alice, Atlas, CMS and LHCb. During my PhD
studies, I was privileged to be one of the collaborators in the LHCb experiment. The LHCb
experiment discovered so far 54 new particles while analysing the collected data samples. Such
extraordinary science done with the LHCb spectrometer couldn’t be possible without years of
preparation and without overcoming technical challenges posed by the physics and the hardware.
Cooling systems, electronics, mechanic design, software, tracking, particle identification, all of the
subsystems, and parts of the detector spawn new problems to be solved by the collaboration and the
greater scientific community. I am glad to introduce the reader to my thesis, describing some solutions
to those problems.

6

There is no unique picture of reality.

Stephen Hawking

1
High Energy Physics

The idea of atoms - building blocks of nature stretches back as far as ancient Greece, to Leucippus and
Democritus⁸⁴, and prevailed through the ages until the beginning of the 20th century, when it was
solidified. In 1897 J.J.Thompson discovered an electron using a cathode ray and noticed its negative
charge⁸⁵. Later in 1911, Rutherford discovered the nucleus using the gold foil scattering experiment⁴¹.
Shortly after that, in 1932, the model of the nucleus containing neutron and proton was developed⁵²,⁴⁷.
These events, along with the development of quantum mechanics, laid a foundation for the
development of modern physics. The deeper we wanted to look inside the matter, and the deeper it
was probed by the physics, the more different particles were found. This “particle zoo” was later
explained with Quantum Field Theory and a small number of fundamental particles. Those
fundamental particles and the rules that guide their interactions are combined into Standard Model -
the best theory developed by our civilisation so far. This chapter serves as an introduction to the
theoretical concepts fundamental to understanding the purpose of the LHCb detector and the
research presented in this thesis. The Sections 1.3 and 1.4 contain two examplary directions of
research done by the LHCb collaboration (not contributed by the author).

1.1 Standard Model

Standard model (schematically depicted in Fig. 1.1.1) consists of two types of particles: bosons and
fermions. Bosons are responsible for the interactions, and fermions constitute matter (Neutrons,
Protons, Atoms). Furtherly, the fermions consist of three generations of leptons and quarks. There are
six quarks: up, down, charm, strange, top, and beauty. Two up quarks and one down quark combine
into a proton, and one up quark and two down quarks combine into a neutron. The combinations of
quarks create the particle zoo. In fact, the quarks have never been observed as free particles, which is

7

Figure 1.1.1: Standard model of Elementary Particles *

explained by the colour confinement. The most popular combinations of quarks consist of two
(mesons - quark and antiquark pair) and three quarks, with other combinations like pentaquarks much
less probable but still possible. Half of the fermions are leptons and have been observed as free
particles, unlike quarks. The three charged leptons are electron, muon, and tau; all have an electric
charge of -1. The other three are three flavours of neutrinos: electron neutrino, muon neutrino, tau
neutrino. The neutrinos are charge-less and have a negligibly small mass. Due to that, they are very
elusive and hard to study. The Bosons are the particles that carry the interactions. There are twelve
gauge vector bosons and one scalar boson. The gauge bosons consist of a photon, eight gluons, two
charged W bosons and one neutral Z boson. The photon is a carrier of electromagnetic force and is
massless and chargeless. The strong nuclear force is propagated by gluons, which, similarly to the
photon, are mass and charge-less, but unlike a photon, they can’t exist as a free particle and carry the
colour charge. The W and Z bosons are responsible for the weak nuclear force. Their exchange can
change the flavour of the interacting quark or lepton. The one scalar boson - the Higgs boson, is
famously the newest addition to Standard Model. The Higgs boson is responsible for attributing mass
to W and Z bosons and fermions.

Additionally to the particles described above, each fermion has a corresponding anti-matter partner.
In case of bosons we assume, according to Standard Model, that they are their own antiparicles (apart
from W bosons).

The Large Hadron Collider and its accompanying detectors were created to study various

*Source https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

8

https://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg

implications of Standard Model. A few of the LHCb experiment’s primary goals are presented below.

1.2 CP symmetry violation

One of the cosmology’s greatest mysteries is the severe inequality between matter and anti-matter in
the observable universe. The simple assumption would be that there should be equal amounts of
matter and anti-matter if the rules of physics are the same for matter and anti-matter. The most
probable cause for such a state is that soon after the Big Bang, the C-, P- and CP-symmetries (C for the
charge parity operation, P for the space parity operation) were broken what led to creation of
significantly more matter than antimatter. The CP violation study is conducted to explain this
phenomenon.

The parity inversion operator, P, can be defined as a mirror inversion:

Pψ(r) = ψ(−r)

There used to be a belief that physics is invariant under this operation, which was verified in strong
and electromagnetic interactions but was not verified in weak interactions⁵⁸. This led to experiments
showing that some of the reactions in beta decay do not occur as frequently as their mirror image. The
next idea was that although parity itself may not be conserved, the conjugation of the charge parity
operator combined with the spatial parity one constitute an exact symmetry. The charge parity
operator can be defined as an operator which changes a particle into its anti-particle by changing the
sign of its additive quantum numbers (e.g., the charge):

C |ψ⟩ = |ψ̄⟩.

The combined CP symmetry is also broken¹⁵ in weak interactions. The LHCb reported a CP
violation in B meson²⁵ and charm decays²⁸. The beauty decays can have the CP-asymmetry at the
level of 80%.

In the search for the invariant law of symmetry, an additional combination of CPT symmetry (T is
the time-reversal operator) was proposed, which seems to be conserved in all known processes in
Standard Model.

Although the studies have shown that there exist symmetry breaking processes in weak interactions
of the quark sector, they do not explain the imbalance in matter and anti-matter in the universe. An
additional search for symmetry breaking in the lepton sector is also undergoing.

9

Figure 1.3.1: A unitary triangle (source:13)

1.3 Tree-level determination of the unitarity triangle angle γ - CKM matrix

The CKM (Cabibo-Kobayashi-Maskawa) matrix elements describe the strength of the flavour change
in weak interactions. I.e. Vud is the probability of the down quark transforming into an up quark.d

′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


ds
b


The most recent approximation of the CKM matrix values⁴⁵, is as follows:

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97370± 0.00014 0.2245± 0.0008 0.00382± 0.00024
0.221± 0.004 0.987± 0.011 0.0410± 0.0014
0.0080± 0.0003 0.0388± 0.0011 1.013± 0.030

 .

The CKM matrix can be understood as a rotation matrix in 3D (SU(3)) and, therefore, can be
parametrised by independent angles. It is helpful to use it with Wolfenstein parametrisation⁹², which
allows parametrising the matrix in four independent values λ, A, ρ , and ν.

Such parametrisation allows for representation of the unitarity condition of the CKM
VudV ∗ub +VcdV ∗cb + ∗ VtdV∗tb = 0 as a triangle:

Studies of various processes, mainly tree-level and loop processes, allow for calculating the
constraints on the value of the γ angle in the unitary triangle.

10

(a)

(b) Target (Y)

Figure 1.3.2: Constraints on the Unitarity Triangle from (a) tree and (b) loop processes, from
2009.

As can be seen in the 1.3.2, the constraints on the tree-level before the LHC data taking periods²²
Run 1 and Run 2 studies were much broader than for the loop processes, which established the need
for research in this direction. The angle calculated by the LHCb for the tree-level decays as of 2020 is
γ = (67± 4)◦ ²⁹. The further studies in this area (difference between the tree-level and loop
dominated processes) may hint new physics beyond standard model⁵⁵.

1.4 Test for the lepton universality.

The coupling of the leptons to the weak gauge bosons is expected to be identical. This is one of the
consequences of the Standard Model. This means that there should be similar decay ratios except for
the different masses of the leptons.

The Lhcb collaboration tested this assumption using a B+ → K+ℓℓ decay.
As can be seen in the 1.4.1 process includes a change of the meson B+ into kaon by weak force and

11

(a) A decay of B+ into kaon and two leptons. (b) Experimental results of the Rk ration calcula-
tion.

Figure 1.4.1

change of b̄ int s̄. The assumption coming from the Standard Model is that the ratios of electrons and
muons produced in this process (leptons) should be close to 1. This ratio is called RK and is calculated
as RK = BR(B+ → K+μ+μ−)/BR(B+ → e+e−)

The result of the studies at LHCb is 0.846+0.044
−0.041 ³⁰ which is 3.1 standard deviations away from the

Standard Model prediction, which hints at the breaking of the lepton universality. If this result were
confirmed with greater confidence, it would suggest new physics beyond the standard model.

12

[..] to unite people from all over the world to push the frontiers
of science and technology for the benefit of all.

Cern Mission Statement

2
TheLargeHadronCollider beauty experiment

One of the most famous equations of the modern science: E = mc2 states that the energy equals mass
(multiplied by the speed of light squared). The true meaning behind that small equation is immense.
All matter can be changed into energy, and energy can be transformed into matter. In studies of the
elementary particles, this rule is, well, elementary. If we want all of the different particles of the
universe, we can make them, “just” by using immense energy. This energy can take a form of a simple
particle (like a single proton), being sped up to great velocities. If we speed up the same particle but in
the opposite direction and subjugate them to collide with each other, the total accessible energy is
even greater. Those collisions produce a vast number of possible particles. Of course, the more energy
there is in a system, the higher the probabilities of creating different states of matter. This is the reason
for the existence of the experimental High Energy Physics as a branch of science. The Large Hadron
Collider was created as a result of a race of reaching ever higher energies. Furthermore, the Large
Hadron Collider beauty³² (LHCb) experiment is one of the main experiments that benefit from
LHC’s particle beam.

2.1 Large Hadron Collider

The LHC (Large Hadron Collider) is probably the biggest machine ever built by humans. It lies in a
circular tunnel beneath the border of France and Switzerland (Geneva). It is a circular particle
accelerator, 27 km in circumference. The tunnel depth ranges from 60 to 100 meters.

The LHC was created in the same tunnel, which housed a Large Electron-Positron Collider. The
accelerator has two counter rotating beams of particles, the particles used for the beams are usually
protons, but heavy ions (i.e. lead ions) are used for some periods of time. Its actual work was divided
into years of runs or data taking periods. Runs 1 and 2 were undergoing in 2009-2013 and 2015-2018.

13

Figure 2.1.1: The entirety of the CERN accelerator complex. (source:89)

The planned run three is supposed to start in 2022. There are four main detectors positioned along
LHC: Alice, Atlas, CMS, and LHCb. The entire accelerator complex is depicted in the Fig. 2.1.1. The
maximal energy of the particles is dependent on the capability of the dipole magnets that are used to
guide the particles on the circular path. As of Run 1 and 2 of the LHC, the dipole magnets could
generate 8.33 T³⁹ for the 7 TeV upper limit energy level of particles. The maximum energy reached in
LHC for a single proton was 6.5TeV. The other set of quadruple magnets is used to create a lensing
effect on the particles, which allows to focus the beam correctly. The beam itself is comprised of
bunches of particles. In order to create collisions, these bunches cross at an approximately 200μrad
angle at LHCb⁴⁹, depending on the energy and conditions. As seen in the 2.1.1, the LHC is part of the
CERN accelerator complex. Before the particles make it to the final LHC ring, they are accelerated in
stages in pre-accelerators. For the protons, the first system is a linear particle accelerator LINAC 4,
then the Proton Synchrotron Booster (BOOSTER), next the Proton Synchrotron (PS), and finally the
last pre-accelerator which is the Super Proton Synchrotron (SPS), which then directly feed the LHC
ring.

2.2 LHCb spectrometer

The LHCb³² experiment is the main focus of this thesis. It is a single-arm forward spectrometer.
Unlike Atlas or CMS, it is not a general-purpose detector although it is sometimes called a
general-purpose forward experiment. The initial design focused only on the beauty physics sector,
which means studies of the hadrons containing the b-quark. Hence, the “beauty” part of the name
stands for b quark. In time, its excellent tracking system and flexible high-level trigger allowed to
expand significantly the initial physics programme. First, the studies of charmed particles were
included, next a number of spectrometry and exotic states searches were added (54 new particles,

14

Figure 2.2.1: A cross-section of the LHCb spectrometer in runs 1 and 2, the Velo detector, is
visible in the far left of the image.

including penta- and tetra-quarks states, were discovered by LHCb), finally ion and fixed target
measurements were performed. The unprecedented precision of obtained results made the LHCb also
one of the best place to search for New Physics phenomena. The LHCb detector is located
underground, in the LHC tunnel, near the french-swiss border on the French side.

The LHCb detector has been undergoing a deep upgrade²³,²⁴, and its composition for the future
runs (3 and above) will be different than for runs 1 and 2. As the scope of this work touches both
versions of the detector, the text will mark which detector it refers to, either by date, run or using the
word “upgrade” to denote the new version of the detector. Overall, the detector’s pseudo-rapidity
range is 2 < η < 5, and it’s momentum resolution: Δp/p = 0.5%at low momentum to 1.0% at
200GeV/c⁶ which is the best at LHC.

2.3 LHCb subsystems

This section will briefly discuss LHCb subsystems, apart from the Velo detector, which is discussed in
detail in the next section. The order of the presentation of the subsystems follows their position along
the beam axis (see Fig. 2.2.1), that is also the z-axis of the LHCb global coordinate system.

2.3.1 Rich

Ring Imaging Cherenkov detectors (RICH-1 and RICH-2) uses the Cherenkov effect to identify
charged hadrons. RICH-1 is closer to the interaction point and detects lower momentum particles
(1− 60GeV/c). RICH-2 is downstream after the magnet and is optimised to detect hadrons with
momenta in the range (15− 100GeV/c) Both detectors are using different radiation mediums for

15

Figure 2.3.1: Different media used in RICH with different Cherenkov angles versus their momen-
tum, with different particles.

Cherenkov effect. RICH-1 is using aerogel and C4F10, RICH-2 is using CF4. The different media and
different Cherenkov angles produced by the particles, with a combination of the momentum
information of particle, allow to distinguish protons, kaons and pions with high precision.

2.3.2 Trackers

Apart from the Velo, the tracking subsystem can be divided into three parts: Trigger Tracker (TT),
Inner Tracker (IT) and Outer Tracker (OT)²⁰,²⁷. The IT and TT make up a Silicon Tracker (ST),
which utilises the silicon microstrip technology, similar to Velo. The TT is located upstream and is a
150 cm wide and 130 cm high planar detector between the magnet and the RICH-1 (see Fig. 2.3.2b),
and the IT station covers a 120 cm wide and 40 high cross-shaped region in the centre of the OT. The
ST was designed with a single hit resolution of 50 μm Each of the trackers has four layers which utilise
“xuvx” topology (two inner layers are rotated by a stereo angle of+/− 5o, as presented in Fig. 2.3.2a).
The OT is a detector comprising of gas-tight straw-tube modules, with the 4.9 mm inner diameter of
the straws. The inner gas is a mixture of Argon (70%) and CO2 (30%). The gas composition was
chosen to guarantee fast drift time (less than 50 ns) and good drift-coordinate resolution (200 μm). It
comprises three stations, marked as T1, T2, and T3 in Fig. 2.2.1. Each of the stations consists of 4
layers employing a similar topology x− u− v− x of the straws, with+/− 5o stereo angle. All of the
stations consist of two retractable halves, but unlike the Velo, they are only retracted when servicing.
These halves consist of short modules (S-type) and long modules (F-type). The F-type modules
contain a staggered layout of 256 straws, and the S-type modules containing 128 single straws. The
S-type modules are located closest to the beam and are half of the length of the F-type to compensate
for the space for the beam. In total, there are 168 F-type and 96 S-type modules,

16

(a) TT stations positioning53 (b) Silicon tracker and outer tracker21

2.3.3 Magnet

Next to the TT stations, depicted in blue at Fig. 2.2.1, there is a massive warm, dipole magnet of 1600
tonnes of weight between the tracking stations. Its purpose is to bend the charged particles’ trajectory
to determine their charge and momentum. High performance LHCb tracking system requires that the
field generated by the magnet has to be carefully mapped with the precision better than 0.1‰.

2.3.4 Calorimeters

The calorimeter system at LHCb consists of three components: PS/SPD (preshower
detector/scintillator pad detector), ECAL (electromagnetic calorimeter) and HCAL (hadronic
calorimeter). There are two common types of showers in the calorimetry world: electromagnetic
showers and hadronic showers. When the electron or positron enters scintillating active material, it
emits a photon. A photon, in turn, dissociates to an electron-positron pair, which creates a positive
feedback loop that creates more and more particles. This is known as an electromagnetic particle
shower and is depicted in Fig 2.3.3.

Figure 2.3.3: Exemplary graph with electromagnetic particle shower*.

The hadronic particle shower is more complicated and involves interaction via the strong force. The
electromagnetic calorimeter was created for the purpose of capturing electromagnetic showers. The

*Image source: https://commons.wikimedia.org/wiki/File:Schematic_of_a_particle_shower.
svg

17

https://commons.wikimedia.org/wiki/File:Schematic_of_a_particle_shower.svg
https://commons.wikimedia.org/wiki/File:Schematic_of_a_particle_shower.svg

Figure 2.3.4: Left: front view of a quater part of the muon station, each part reperesents a single
region (R1, R2, R3, R4). Right: Division of the each of four region chambers into logical pads.

rejection of the high-energy charged pion showers in the ECAL requires a PS detector placed in front
of the ECAL. Furthermore, neutral pion showers also must be rejected. For this reason, the SPD
detector was positioned in front of the PS detector, separated by a lead converter.

The electromagnetic shower is inducedmore easily and is shorter than the hadronic one. TheHCAL
is much denser and bigger to allow for complete deposition of the energy of the hadronic shower.

2.3.5 Muon station

The muons are about 200 times heavier particles than the electrons and exhibit much less energy
deposition in matter. In a typical case muon detectors are positioned at the outermost part of the setup
(this is the case for LHCb spectrometer). Muons, thanks to their properties constitute a very
convenient objects to trigger on.

In LHCb, the muons system consists of five stations (M1-M5). It is a gas detector consisting of a
total of 1380 chambers. The stations M2-M5 are positioned downstream, and between each station,
there is an iron absorber 80 cm thick. All of the stations utilise MWPC (multi-wire proportional
chambers) technology, except for the inner region of the M1 station, which uses triple-GEM (gas
electron multiplier) detector chambers. All stations are divided into four regions, R1, R2, R3, and R4,
corresponding with the 1:2:4:8 ratio of length from the beam (as seen at 2.3.4). The inner space of
MWPC is filled with a mixture of Ar/CO2/CF4 (40 : 55 : 5), and contains a wire plane of 2 mm
spacing, symmetrically placed in a 5mm gap. This allows for 5ns time resolution. Each chamber
consists of four gaps with wires.

2.4 Velo

The Velo detector (Vertex Locator) is the heart of the LHCb spectrometer. Its main goal is to record
the charged particles’ trajectory and reconstruct the collision point with extreme precision. As

18

mentioned in the previous section, the composition of the LHCb spectrometer is changed in
upcoming Run 3. The Velo detector is (as of the time of writing) being upgraded from a silicon
micro-strip detector to a silicon pixel matrix detector. Because of the possible confusion I assumed the
following naming convention throughout my Thesis. I will refer to the upgraded detector as “VeloPix”,
and to the detector used in Run 1 and Run 2 as “Velo Strip” or simply “Velo”. The readout chip is called
VeloPix ASIC or VeloPix chip.

2.4.1 Strip Velo in Run 1 and 2

The Velo in the Run 1 and 2 consists of 42 modules. Each of the modules is comprised of 2 sensors: R
and φ-type. Each sensor side is a silicone microstrip sensor. The individual sides correspond to
different polar coordinates, as depicted at Fig. 2.4.2. Each sensor had 2048 silicon strips (physical
channels). In total, it gives more than 170 000 strips in the entire Velo detector.

19

(a) Strip Velo during assembly*.

(b) Overview diagram showing the spacing of modules along Z and
positions open and closed.

Velo modules are mounted on two retractable halves, which enclose the beam. The movable
construction is necessary to protect the LHC beam during the injection stage, before the stable beam
condition is achieved. One of the halves is visible in the Fig. 2.4.1a. The alignment of the modules on
the halves is staggered as depicted in Fig. 2.4.1b. Additionally to 42 two-sided modules, four VETO
stations are positioned on the other side of the interaction point, consisting of only R-type sensors.
The VETO stations proved very useful to provide information to the trigger system and measure the
rapidity gap.

The Velo detector (both Velo Strip and VeloPix) is enclosed in its own secondary vacuum tank,
which is separated from the primary beam vacuum. The geometry of the inner gap of sensors is 8mm
in radius, and the outer radius of the sensor is about 42 mm. When the stable proton beam is decalred,

*Image source: https://lbtwiki.cern.ch/bin/view/VELO/VELOConferencePlots

20

 https://lbtwiki.cern.ch/bin/view/VELO/VELOConferencePlots

Figure 2.4.2: A depiction of Velo sensors and their routing lines. This is just the schematic repre-
sentation as it does not reflect the actual number of strips and routing lines. The Φ-type sensors’
outermost strips are directly connected to the readout chips without a need for long routing lines,
but the innermost part has routing lanes lying parallel to the outermost strips. The R-type sensor
routing is divided into sections of routes with different lengths. In reality, both sensors are divided
into 512 long sections of repeated routing lines lengths.

the halves of the detector are being retracted (so called closing procedure), which requires the precise
position of the collision point to be calculated. After that, the halves of the Velo detector are moved
closer gradually towards the beams using stepper motors. Sensors get as close as 7 mm to the
interacting beams.⁴⁴. The sensors themselves are created using oxygenated n+-on-n technology,
consisting of n+-type implant on a n-type bulk with a back-plane of p+-type implant. With an
exception for two most upstream modules that where produced using the n+-on-p silicon type.

The sensors are 300 μm thick, and their spatial separation (pitch) varied as a function of radius⁴³ as
depicted on the 2.4.3. The way that physical sensor strips were arranged, with their routing lines,
influences the ordering of the data and the calibration procedure.

As seen in the Fig. 2.4.2, the ordering of the R-type sensor routing lines is divided into four sectors
and varies in the distance of the strip from the centre (proton beam). What is not visible in the Fig.
2.4.2 (because of the simplification of the plot) is that theΦ-type sensor is also divided into two parts
(as seen in the 2.4.3).

The silicon strips are connected to the Beetle front-end ASICs that are mounted on the Velo module
board. Each Beetle chip has 128 indivudually instrumented readout channels. In the case of Velo the
signals read from the detector are only conditioned by the analogue part of the chip and send via 60 m
long copper cables for digital processing to the electronics Tell1 boards. The strips are sampled with 40
MHz frequency and internally queued⁶⁰ in an analogue pipeline. The analogue data are brought

21

Figure 2.4.3: A detailed view of the Velo sensors with their according pitch. The R sensor’s pitch
starts at 38μm and ends on 102μm. The Φ-type sensors’ pitch modulation is divided in two. The
most inner 683 strips have from 38 μm to 78 μm pitch, and the outer rest has a pitch ranging from
39 μm to 97 μm.

off-chip at 1.1 MHz, with 32 channels multiplexed over four lines.
As mentioned above, the data readout from the Beetle chips was passed to Tell1 boards. The Tell1

boards have been standardised for the entirety of the LHCb detector. They accept either optical or
analogue receiving cards. The information was then processed on the on-board FPGAs with custom
processing algorithms. From the Tell1 electronics, the data was transferred to higher-level systems like
ECS (Experimental Control System) and triggers.

2.4.1.1 Calibration procedure for Velo

In the absence of proton-proton collisions, the signal observed on each Velo readout channel is
approximately normally distributed. In the first place, the calibration procedure aims to shift the
central value of each of these distributions to zero (so called base-line correction). As shown in the top
plot in Fig. 2.4.4 this offset (also called the pedestal) is, in general, different for each individual channel
and needs to be evaluated by a dedicated algorithm using RAW Non-Zero Suppressed Velo data taken
without colliding beams. The equalised Non-Zero Suppressed data are shown at the bottom of Fig.
2.4.4. After the offset correction is applied (called the pedestal P subtraction,⁴⁴) the noise can be
estimated in each channel as the width of the signal distribution.

The noise evaluated during the calibration procedure is vital for the hit detection and cluster
reconstruction algorithm since it is used to suppress the channels without high ADC counts (Zero

*Where ADC is Analogue to Digital Count that represents the amplitude of the signal after the digitisation.

22

0 250 500 750 1000 1250 1500 1750 2000
Channel number

480

500

520

540

560

AD
C

0 250 500 750 1000 1250 1500 1750 2000
Channel number

40

20

0

20

40
AD

C

Figure 2.4.4: Typical RAW Non-Zero Suppressed Velo data before (top) and after the digital pro-
cessing (bottom). The response of each channel was equalised, and a common flat baseline cen-
tred on 0 ADC*achieved. The spread of the data points about the baseline is attributed to the
total noise present in the system.

Suppression procedure). Here, there is an assumption of the correlation between charged particles
passing through sensors and depositing the energy in their active volume and the signal amplitude
measured on each readout strip. The performance of the cluster reconstruction algorithm is of critical
importance for the Velo data quality. The algorithm is comprised of two stages hit detection and
cluster building. The former step relied on so-called high thresholds evaluated for each channel using
the measured noise. For each channel, the high threshold,Ht, was set to be five times higher than the
noise measured on this channel. Taking into account the approximate Gaussian nature of the signal
distribution without particle hits, it corresponds to the probability of accepting a noise signal as a real
hit at the level of 10−7. The cluster building step used the selected channels that passed the hit
detection algorithm as seeds. Clusters were formed by searching for the secondary signal channels
using so-called, low hit thresholds. Up to four channels were used to form a single cluster.

In general, the clustering algorithm works as follows⁷²:

1. If the measured signal exceeded the high thresholdHt on strip Sn, then the channel was tagged
as the cluster seed.

2. In the next step, the signal measured on the adjacent strips, with respect to a seeding strip, were
compared to the low thresholds. All strips that passed the low threshold cuts were tagged, along
with the seeding strip, as a cluster candidate

3. In the last step, a cluster (hit) was built. A global cut on the cluster size was set to four strips. In
case when a cluster candidate is comprised of more strips, the algorithm creates multiple
adjacent clusters. Finally, the local position of each created cluster was evaluated using a centre
of gravity formula.

23

Figure 2.4.5: Visualisation of the clustering algorithm. Two examples of Velo clusters are shown
schematically. Blue rectangles depict the charges collected on the strips. Black lines represent high
threshold Ht and low threshold Lt cuts, the reconstructed cluster centre (CC) is indicated by arrows
and the particle trajectory is given by the red sloping lines.

A visualisation of the algorithm can be found in the Fig. 2.4.5.

2.4.1.2 Header Cross-Talk

The Beetle chips in Velo are connected to 128 physical strips and send data on four analogue links,
with 32 channels of analogue data. There is a pseudo-binary information header preceding the
analogue data. This information consists of four bits and encodes the status of the front-end chips and
the pipeline column number. Unfortunately, this caused a problem in the data transfer, and the four
preceding bits induced an additional noise in the first upcoming data channel. In total, this
contributed to the increased noise in 64 channels in Velo sensor. This effect is known as header
cross-talk⁸³. The initial commissioning studies, performed before Run 1, showed that this can produce
a significant stream of fake clusters increasing the volume of the Velo data transmitted to the high-level
trigger. A dedicated correction algorithm has been developed in order to alliviate the problem.

2.4.1.3 Voltage and luminosity

Each of the strips in Velo is, in essence, a semiconductor diode. It is an n+-type implant in an n-type
bulk with a back p-type implant⁹⁰. The physical process of exciting the matter electromagnetically
inside the sensor bulk creates a cloud of electrons and holes. For the charge to be able to cross the
depletion region, there needs to be additional bias voltage applied. This is also a way of mitigating the
radiation damage, as the multiple negative factors disrupt the flow of the generated charge. The Fig.
2.4.6, shows that the bias voltage necessary for the optimal operation of the Velo detector has been
steadily growing along with the delivered integrated luminosity.

24

(a) Integrated luminosity for the years 2010-201856.

(b) Projected Velo bias voltage.

Figure 2.4.6: Radiation damage effects on the LHCb Velo.

2.4.2 Velopix

The Large Hadron Collider and its detectors were planned to be incrementally improved over time. In
LHC Run 3, there will be a significant increase in the instantaneous luminosity, and the Velo must
adapt to that change. For this purpose the Velo group proposed to change the sensor technology from
planar strip sensors to pixel ones read-out by the VeloPix ASIC that was adapted from the TimePix
chip, which belongs to MediPix family of sensors.

Some of the requirements for the upgraded detector include:

• Increased rate of data output to 40 MHz with hits/event 5.2cm−2 × R1.9 (R is radius in cm).
This means that the VeloPix ASICs must be able to output up to 15.1 GB/s. The peak total data
rate of upgraded Velo can reach up to 2.85 Tbit/s.

• Irradiation the upgraded detector is predicted to experience an accumulated the flux of fast
hadrons 8× 1015neq/cm2, and when this is reached, it is expected that the bias voltage and the
current necessary for operating the sensors at the pixel closest to the beam will be 1000V and

25

Figure 2.4.7: The projected data rate for each ASIC in Velo module (in Gbit/s).

Figure 2.4.8

200μA/cm2 at -20C. Such a high dose of radiation and high currents will make a significant
obstacle in protecting the sensor from thermal runaway.

The new upgraded Velo detector that will collect data during Run 3 and Run 4 has a modular design,
similar to the previous strip device. Each module contains 4 sensors, each sensor is readout by 3
VeloPix ASICs. VeloPix chips are rectangular in shape and can readout matrices of 255x255 pixels.
New Velo sensors feature square 55x55μm2 pixels that provides excellent spatial resolution. There are
52 modules arranged along the z-axis (i.e., along the LHC beam). It is worth noticing that significant
portion of the Velo strip detector’s infrastructure remained, for instance the secondary vacuum tank. A
simplified visualisation of the Velo modules z-positions and the pixel sensors geometry is shown in Fig.
2.4.8.

In order to process the data more effectively and save the transmission bandwidth individual pixels
are grouped on the logical level in, so called, super-pixels. Super-pixels consist of eight pixels arranged
as 2 by 4 matrices. Sending data using the super-pixels instead of pixels allows for a reduction of the
total required bandwidth by about 30%²⁶. When there is a hit in the super-pixel, a 9-bit timestamp is

26

Figure 2.4.9: Exemplary threshold spread of the pixel matrix.

created and stored. Each super-pixel can store up to two timestamps. Readout from the super-pixels is
done via a 23-bit bus running at 13.3 MHz. This means that there is a data transfer only when there is a
hit information. In other words, the new VeloPix detector is a trigger-less system.

2.4.2.1 Velopix masking

A critical functionality of both vertex systems is a possibility to deactivate a problematic readout
channels, also called ”bad” channels. Typical reasons for deactivation can be related with sensor issues
(for instance physical damage), problems with bonds (broken bond or partially connected bond) or
readout lines. The best strategy to identify bad channels is to measure and trend noise. The procedure
of collecting the noise data (without proton-proton collisions), identifying problematic channels and
then disabling them is called masking.

During the Run 1 and Run 2 operation a significant experience was gained related to this important
issue. There was a fraction of bad channels that were considered ”fixed” and they do not changed over
time, however, a majority of them did not show permanent problems and evolved in time. Quick
tagging of bad channels was essential for keeping the high data quality. For instance, a large number of
noisy channels will create a stress in trigger readout system by producing spurious fake hits. This may
degrade the tracking and increase processing time due to larger number of hits.

In case of the pixel detector, that operates in trigger-less mode, large number of unmasked noisy
channels can completely saturate the readout lines, since the fake hits will be sent constantly (in case of
the strip detector it would be just one fake cluster per one trigger). Evaluation of the set of pixels to be
masked will be performed during the, so called, equalisation that is the core of the VeloPix calibration
procedure. The number and distribution of the masked channels must be carefully study and monitor
during the data taking period. A short description of the equalisation is given below.

27

2.4.2.2 Velopix Calibration

Similarly to strip Velo, VeloPix will collect the noise calibration data⁵⁴. In the case of the VeloPix, each
pixel has its own individual voltage threshold. If this threshold is exceeded by signal induced by a
passing charged particle, a hit is registered. There are two types of values that can be set in a readout
chip to define individual thresholds: Global Threshold (GT) and Trim. The former is evaluated for
each sensor matrix (255 x 255 pixels), whilst, the latter are defined per individual pixel, they are 4-bit
numbers (16 different values). Trim is a readout DAC voltage that is individually added to the signal in
the discriminator such that it allows to achieve equal response for each pixel across the whole detector
matrix.

For the convenience of the Reader, the automatic procedure that is used to evaluate the GT and
Trims is described briefly below. This a counterpart to the Velo Strip calibration and threshold
calculation, and might be the key point to transferring many of the solutions described in this thesis to
the Run 3. The visualisation of the procedure is shown in Fig. 2.4.9.

The calibration procedure uses two types of thresholds: a Trim, and global thresholdGT. The
actual threshold (sensitivity) of the pixel is given by the sum of those two.

The first step is to find a distribution of the counts of hits in the lowest trim setting Trim0 and
highest trim setting Trim15. This is done by openning the shutter of the sensor for constant of time and
counting hits first in lowest trim setting then in the highest. In each of the trim settings theGT is
modulated, which leads to creation of two histograms, as visible in Fig. 2.4.9. GTmodulation takes
place in predefined range nad step of DAC. Then, for a low and high bound of all pixels in a sensor, the
mean of the distribution Trim0 and Trim15 are used, to set the PixelTrim0 and PixelTrim15. Those
values are the same for every pixel.

This creates a range for all 16 possibles trims, with the step of the trim being
TrimStep = PixelTrim15−PixelTrim0

15 .
Now to determine which of the trim value should be set for the pixel, we take advantage of the

distribution measured in each of the two scans (Trim0 and Trim15). Both of those yield noise events
distributed normally. A perfect target of the global thresholdGTtarget =

TRIM0+TRIM15
2 is set, in the

center between two means of the distributions. Then each of the pixels gain the trim value of
PixelTrim(x, y) set as close toGTtarget, where PixelTrim(x, y) is any trim (integer) from the range
[0..15], where 0means PixelTrim0 and 15means PixelTrim15. To exclude the noise from the signal
coming from the pixels, the effective global thresholdGTeffective is set toGTtarget + 1000[electrons]. So
the actual threshold for the individual pixel Thx,y = PixelTrim(x, y) + GTtarget + 1000[electrons]

28

What emerged from the darkness of the caves, from the depths
ofmillennia, wewish to pass on tomachines, in one brief circuit
closure, to spark reason into existence.

Stanisław Lem

3
Machine Learning

Although machine learning experienced rapid growth in the second decade of the new Millenium, it
has come a long and difficult path to become almost omnipresent in everyone’s life and in many
scientific disciplines. The high energy physics is not an exception, and in fact, the majority of this
thesis describes various approaches to application of computational intelligence in field of particle
physics. This chapter contains necessary introduction to the machine learning methods used in further
chapters.

Lets begin with quick history of the machine learning. One of the events that can be thought of as
the birth of machine learning is the invention of the perceptron. The perceptron was the protoplast of
the artificial neural networks we know today. It was created by Frank Rosenblatt⁷⁷ in 1958. In essence,
the perceptron is what we today can call a single layer neural network. Famously, the over-promising of
the capabilities of the perceptron was one of the leading causes for the so-called “first AI winter”⁹¹. It
was quickly discovered that the perceptron cannot be efficiently scaled to solve more generic problems
and is, in particular, unable to solve the XOR task. Although the concept of multi-layer perceptron was
already proposed, it lacked a viable way of training the parameters. This was later mitigated by the use
of back-propagation as a method for training the parameters of the artificial neural networks.
Back-propagation was popularised in the 1980s. This also coincides with a time of significant growth
in interest in artificial intelligence. The popular trend was the usage of so-called “expert systems”,
which in reality were a set of predefined if-then statements built around expert knowledge. Again, the
hype for the AI and under-delivered solutions led to a cut in funding in research in this area and the
“second AI winter”, which lasted to about the second half of the first decade of the new Millenium. The
significant development in computing power and the increased ability to create vast training data-sets
allowed for the dynamic growth of this field of computer science that we observe to this day.

29

Figure 3.2.1: Components of the neuron*.

3.1 Areas of machine learning

Machine learning can be divided into three general categories:

• Supervised learning expects pairs of desired input and output (X, Y). Supervised learning
models assume that there exists a function fwhere y = f(x), and through its workings, tries to
approximate the f function. This is by far most used type of machine learning algorithms, as
given correct set of data, it is relatively easy to control the algorithms. Problems that can provide
input-output pairs of data also often allow assessing a model’s performance with a single,
easy-to-understand metric.

• Unsupervised learning doesn’t expect an exact output paired with given output. It does not
expect output at all. Generally, the tasks that are solved by unsupervised learning focus on
discovering structures inside the data, like clusters and groups. There is a rising area of usage for
the generation of the data points using the unknown inner distribution of the data.

• Reinforcement learning usually focuses on the action taken in a given environment. Instead of
the exact output matching the input, there is a defined reward that the reinforcement learning
system is trying to maximise.

3.2 Neural Networks

Although the (artificial) neural networks are hardly the only machine learning technique available,
they are the current go-to solutions for many machine learning problems. This section will introduce
the reader to the basics of modern neural network techniques, as they play a crucial role in the research
discussed in the further chapters.

*Source: https://en.wikipedia.org/wiki/File:Components_of_neuron.jpg

30

https://en.wikipedia.org/wiki/File:Components_of_neuron.jpg

Figure 3.2.2: A visual, graph-based representation of a single artificial neural network neuron*.

3.2.1 Multi-Layer Perceptron

The artificial neural networks are based on a simplified model of the actual biological neural (nervous)
tissue. A single neuron contains many dendrites and an axon, as visible in Fig. 3.2.1. The
electrochemical potential supplied to the dendrites is accumulated, and then if a certain threshold is
exceeded, the axon fires an electrochemical signal. While it is true that this model of a neuron is a large
oversimplification, the idea can be boiled down to the following mathematical formula:

f(x) =

1, if
∑

i xi ≥ T

0, otherwise

The function above responds with 1 when the sum of the input signals xi is greater than threshold T.
This was extended by Rosenblat by addition of weights to the input and activation function. The
threshold can be represented as additional non-weighed input b.

f(x) =

1, if activation(
∑

i wixi + b) ≥ 0

0, otherwise

For binary classification, it may be useful to get the answer represented in the range between zero
and one, which actually may be applied by using the activation function only in 0..1 domain, but other
uses of neural networks may call for linear output (regression tasks).

f(x) = activation(
∑
i

wixi + b)

This can be represented graphically as a simple graph with inputs and outputs (Fig. 3.2.2).
Individual artificial neuronsmay be grouped in layers of neurons, sourcing the same inputs, as depicted

*Source https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

31

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

Figure 3.2.3: A graphical representation of multi-layer neural network*.

on 3.2.3. And this is where Multi-Layered Perceptron (MLP) got its name. The forward pass in the
neural network is the input undergoing multiplication with each layer of the network sequentially, and
in effect, it produces the output. The typical agreement in the ML community is that MLP is any
simple neural network with arbitrary activation and with more than two layers. To much of the
disappointment of many computer science students, the difference between “deep learning” and MLP
is commonly accepted to be with just a number of layers, with deep learning starting after two layers.

3.2.2 Stochastic gradient descent and Backpropagation

The “learning” part of machine learning comes from the fact that the “machine” is given examples, pairs
of input and desired output (x, y). The goal of the machine is to find such function f(x) that y = f(x).
Realistically speaking, not all of the tasks might be representable by the machine, so an approximation
y ≈ f(x) is expected. The error of this approximation can be expressed as ε = y− f(x). Because a
simple difference of two vectors may not be most suitable, a network’s loss metric is defined which is a
function that given network output f(x) and the target value ywill yield an error value ε = loss(f(x), y).
Several possible loss metrics exist, which can be used in a number of cases. For classification, the
popular loss metric is log-loss also known as cross-entropy, visible in Eq. 3.1 where p is a predicted
probability. For regression tasks, an example of a loss metric is the mean squared error (MSE).

Llog(y, p) = −(y log(p) + (1− y) log(1− p)) (3.1)

The metrics can assess the quality of the output of the neural network. This gives the opportunity to
measure the error of the network, and in turn, to optimise its response with respect to its weights. The
popular way of doing this is using a stochastic gradient descent which is a variation of a gradient
descent algorithm. The gradient descent algorithm is a minimisation algorithm that finds the optimal
solution by following the gradient of a function. In this particular case of machine learning the
properties of the loss function are studied. In each step the algorithm adjust the weights by taking into

*Source
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and

-backpropagation-machine-learning-made-easy-e5285bc2be3a

32

https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a
https://towardsdatascience.com/everything-you-need-to-know-about-neural-networks-and-backpropagation-machine-learning-made-easy-e5285bc2be3a

account the gradient of the loss function calculated with respect to the model’s weights. Let us denote
θ = wi and change the domain to time so that θt is the vector representing weights of the neural
network at the time-step t. Then the express gradient descent can be expressed as follows:

J = loss(f(x), y) (3.2)

θt+1 = θt − α∇θtJ (3.3)

Also assuming MSE as the loss function, and using the chain rule the derivative of loss in respect to
network parameters∇θtJ can be written in the following way:

δJ
δθt

=
δJ
δf

δf
δθt

(3.4)

δJ
δf

=
δ 1
2 ∗ (f(x)− y)2

δf
= (f− y) (3.5)

δf
δθ

=
δθtx
δthetat

= x (3.6)

δJ
δθt

= (f(x)− y) ∗ x (3.7)

The same can be done for the network with an arbitrary number of layers. Given a two layered
network, with arbitrary activation function σ*:

a[1] = w[1]x+ b[1] (3.8)

z = σ(a[1]) (3.9)

a[2] = w[2]z+ b[2] (3.10)

J =
1
2
(a[2] − y)2 (3.11)

The gradient descent for two layers of the network can be calculated as:

θ[1]t+1 = θ[1]t − α∇θ[1]t
J (3.12)

θ[2]t+1 = θ[2]t − α∇θ[2]t
J (3.13)

The gradients can be written as as: ∇θ2t J =
∂J

∂w[2] and∇θ1t J =
∂J

∂w[1] . In fact the chain rule is at it’s core
the backpropagation method. The chain rule is then followed to calculate the gradient for the first layer
θ1t .

*For convenience the term
∑

i wixi + b can be “hidden” the b variable by assuming additional element in input vector
xn+1 = 1 and then b = wn+1xn+1.

33

∇θ1t J =
∂J

∂w[1] (3.14)

∂J
∂w[1] =

∂J
∂a[1]

∂a[1]

∂w[1] (3.15)

∂J
∂a[1]

=
∂J
∂z

∂z
∂a[1]

(3.16)

∂J
∂z

=
∂J
∂a[2]

∂a[2]

∂z
(3.17)

Then using the equations above, the gradient of θ1t can be rewritten.

∇θ1t J =
∂J

∂w[1] =
∂J
∂a[1]

∂a[1]

∂w[1] =
∂J
∂a[2]

∂a[2]

∂z
∂z
∂a[1]

∂a[1]

∂w[1] (3.18)

(3.19)

Each solution to the partial derivatives can be easily found:

∂a[1]

∂w[1] = x,
∂z
∂a[1]

= σ′, ∂a[2]

∂z
= w[2],

∂J
∂a[2]

= y− x,

Which gives as the desired term∇θ1t J. This is the mathematical explanation of the back-propagation
algorithm, as given more layers, the same rule can be applied. It is worth noting here that the partials
used for calculating the first layer update∇θ2t J (

∂J
∂a[2] and

∂a[2]
∂z) are also used in the update for the next

layer.

3.2.3 Convolutional neural networks

Although much of the math related to the neural networks is expressed as operations on vectors, the
extension to higher dimensions is possible. A higher dimension of the input data can be image data,
like a colour image represented as a tensor with HxWx3 * dimensions. Although the direct application
of simple neural network architectures like MPL is possible, the memory requirements for fully
connected layers of neural networks quickly grow. Before the inception of the convolutional neural
networks, one way to mitigate this was to extract features from the image and then feed them to a
neural network. Those features could be high-level (like the width of the eyes or the face to nose ratio
in face recognition problems) or lower level (using visual filters and edge detection).

3.2.3.1 Classical convolutional methods

Many lower-level feature extraction algorithms could be boiled down to applying a convolutional filter
(or kernel). The application of the convolutional filter can be expressed as operation on source image
f(x, y) that creates image g(x, y) as:

*H,W stand forHeight andWidth of an image, and 3 is the usual number of dimencions of color (RGB)

34

g(x, y) = ω ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

ω(dx, dy)f(x− dx, y− dy),

The convolution kernel of sizeKxK, is a real matrixKxK. Convolution operation must be applied on
a window (a subset of image) of size KxK. The convolution operation is a sum of element-wise
multiplication, between kernel and a window. This operation produces a scalar value. At each step of
the application of the convolution filter, the window is moved by the arbitrary distance expressed in
pixels. It is worth mentioning that depending on the size of the window, the output image will be
smaller than the input. If necessary, this can be mitigated by adding empty (zero) pixels to the image’s
borders before applying the convolution (this technique is also called the image padding).

Some feature extraction methods can be expressed as convolutional filtering of the entire image. In
this case, the configuration of the convolution kernel matters. In the Tab. 3.2.1 you can find examples
of the application of a few kernels on an image.

Filter name Kernel Image

Identity

Gaussian Blur

Ridge detection

Sharpen

Table 3.2.1: Examplary convolutional kernels applied on an image*.

35

Figure 3.2.4: Step of application of a convolutional filter in a neural network *

3.2.3.2 Convolutional layer

A convolutional layer in a neural network is simply a layer that applies a convolutional filter. The
properties of the filter, i.e. values of its elements, are learnable parameters. Usually, in the case of
colour images, there are three layers of such filters (RGB), which outputs are summed as shown in Fig.
3.2.4. The values of the filters are trained by the backpropagation algorithm.

The application of the convolutional filters inside the neural network creates a map of more complex
filters, which can extract the spacial features and build on other convolutional layers to learn the most
valuable and significant features in a given task.

3.2.3.3 Pooling layers

The pooling layers in convolutional neural networks are used to decrease the number of features and
filter the most significant spatial features (equivalent of denoising). The pooling layers use windowing
on an incoming input to extract values given specific criteria. One of the popular pooling methods is
max pooling. This method outputs the biggest value in a given window (see Fig. 3.2.5). The pooling
layers do not have trainable parameters.

3.2.3.4 Convolutional networks: example architecture

The convolutional neural networks are nowadays a standard go-to solution for solving computer vision
problems. There are many different architectures for convolutional neural networks. This section
presents an exemplary implementation of the convolutional neural network. This architecture is
known as VGG-16⁸⁰.

*Source https://en.wikipedia.org/wiki/Kernel_(image_processing)
*Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural

-networks-the-eli5-way-3bd2b1164a53

36

https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Figure 3.2.5: Example of max pooling and average pooling*.

A detailed description of the network is presented in Fig 3.2.6.
The network is considered to be a classical convolutional design. It assumes an input of the constant

size and is divided into repeated blocks of 2 or 3 convolution layers, each followed by a ReLU
activation function, with the last layer in a block being a Max Pooling operation. ReLU (Rectifier
Linear Unit) function is defined as f(x) = max(0, x). This means that its value is always zero for a
negative number, and in other cases, it’s x. Such blocks were repeated five times, with decreasing sizes
in the first two dimensions and increasing in the last dimension. The last dimension represents a
convolution feature output. After those convolutional blocks, there are three fully connected layers.
The output is a vector of size 1000, as the network was initially created for the task of categorisation on
the ILSVRC data-set containing 1000 categories.

The intuition behind this architecture is that the blocks of convolutions are responsible for
extracting features. These convolutions build on top of each other and allow for more and more
complex features to be learned. The fully connected layers allow for a linear combination of these
features. Finally, the softmax function is used because it limits the output to range from 0 to 1 - which
can be interpreted as a probability of given input belonging to a particular class.

3.3 Dimensionality reduction - Autoencoders

High dimensionality of data sets pose a major problem for many analysis tasks. It is often difficult to
gain meaningful insights using only exploratory analysis of the data set or from simple metrics.
Additionally, sparse, high dimensional data might pose a computational problem. Dimensionality
reduction is a technique that reduces the number of dimensions of the data while retaining meaningful
properties. There are many techniques, but here I will present the most basic one that stems from
neural networks. This technique is known as autoencoder. Autoencoder is a deep neural network
whose layers can be separated into two parts, Encoder and Decoder (Fig 3.3.1). The dimensionality
reduction with autoencoders can be understood in the following way:

X̃ = g(f(X))where X′ = f(X), g = f−1

37

Figure 3.2.6: Graphical representation of the VGG16 architecture.

Figure 3.3.1: Graphical representation of the autoencoder structure*.

The f is an encoder, that reduces the input vector X ∈ Rn to X′ ∈ Rm. The g is a decoder that maps
the vector X′ to X̃ ∈ Rn, thus recreating the dimensionality of the initial input. The goal of successfully
trained autoencoder (encoder + decoder) is then to minimise a reconstruction error
f, g = argminf,g E(X− g(f(X))). The above can be implemented using neural network layers and
arbitrarily small Rm, which will be the intermediate output from the encoder.

The encoder part of the autoencoder network is composed of fully connected layers with
diminishing size, up to the desired size of the dimension required by the reduction. The last layer of the
encoder is connected to the decoder part of the network, comprising fully connected layers growing in
size up to the original input size.

The encoder tries to compress the information to a smaller dimension (also called the latent space),

*Source https://en.wikipedia.org/wiki/File:Autoencoder_structure.png

38

https://en.wikipedia.org/wiki/File:Autoencoder_structure.png

Figure 3.4.1: A representation of a simple neural network. The left representation is the rolled
representation, and the right is a representation unrolled in the time dimension.

while the encoder tries to uncompress this information and recreate objects from the original data
space of dimensionality n.

3.4 Recurrent networks

Modelling of the ordered data sets is a very popular task and employs a special type of deep artificial
neural networks. For instance, the temporal information can be preserved for the modelled series of
data points, where the next element may be influenced by the previous ones. Such a goal can be
achieved by using recurrent connections in neural networks. The recurrent connection can be
understood as a loop in a neural network graph.

3.4.1 Standard recurrent network

Generally, one can describe the output from a simple recurrent neural network as follows:

ht = σh(Whxt + Uhht−1 + bh) (3.20)

yt = σy(Wyht + by) (3.21)

Where elementsWh,Uh,Wy, bh, by are weights shared in the temporal dimension, and assuming
that σh, σy are activation functions.

The ht term is a recurrent output, which will be used in the next forward pass of the network. It is
composed of a current input xt and the previous looped connection output ht−1. That recurrent
output is also used to create the output of the neural network yt. Neural networks can be represented
as unrolled in time dimension (Fig 3.4.1). Recurrent neural networks can be divided into categories
based on the input, output and recurrent connection configuration (Fig 3.4.2).

The pitfall of the regular RNNs is their poor performance in tasks that require long term memory
(tasks that require the model to hold certain information for an extended amount of time). Also, in the
backward pass in RNN’s there is a problematic partial differentiation ht

ht−1
. If this term is consistently

less or greater than 1, it may, in the end, cause this gradient to diminish to values close to 0 or reach
very large values. This is also called the vanishing/exploding gradient problem.

39

Figure 3.4.2: Different recurrent neural networks, unrolled in time. The first example at the top
is just a regular neural network. The second row represents a neural network which uses a single
output and continuously produces output as many times as desired. The third row represents an
inverted example when the network accumulates several different time step inputs and has a single
output. This method can be helpful in sentiment analysis when a singular output marking senti-
ment is desired after a sequence of words. The fourth example depicts a RNN, which continuously
produces output for each timestep. The last row shows that the number of inputs and outputs can
be changed according to particular requirements*.

40

3.4.2 LSTM

The problems of the classical RNNs are partially solved by LSTM (Long short-term memory)
architecture. It can retain information for more extended periods and partially solves the problem of
vanishing/exploding gradient.

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̃t = σc(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ σh(ct)

Figure 3.4.3: Architecture of LSTM. LSTM in equation form on the left and in graphical form on
the right*.

Fig. 3.4.3 presents LSTM, there σg is sigmoid function, and the σc and σh are hyperbolic tangents.
The LSTM’s inner workings can be explained intuitively. The ct vector can be assumed to represent the
memory of the layer, as it is passed in a time dimension. ft values range from 0 to 1, and thus can either
let the values of ct continue to propagate (multiplied by 1) or forget them (multiply by 0). The it values
range from -1 to 1, and can add the new values to ct.

3.4.3 WTTE-RNN

Another enhancement to the RNN models can be achieved by coupling them with the Weibull
distribution. In that way a model that can be able to predict a specific event (for instance time of the
next aircraft engine checkup) can be created . The Weibull distribution (Fig. 3.4.4) is defined by the
following equation:

f(x; λ, k) =

 k
λ

(x
λ

)k−1 e−(x/λ)k x ≥ 0,

0 x < 0,
(3.22)

The Weibull distribution is often used for modelling the “time-to-failure” in the survival analysis.
For assessing the probability of an event (churn/survival), a version of Weibull log-likelihood is used
(proposed in WTTE-RNN⁶⁶):

λ(t) = (t/α)β−1β/αΛ(t) = (t/α)β (3.23)

Where λ(t) and Λ(t) are hazard function and cumulative hazard function derived from Weibull’s
distribution. The term α and β are scale and shape parameters. In this case the value of beta is set to be

*Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

41

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Figure 3.4.4: Weibull distribution with examplary paremeters*.

constant β = 1. For incorporation of this distribution with the recurrent network, a log-like likelihood
is used in the following form:

Loss = u ∗ log(eΛ(t+1)−Λ(t) − 1− Λ(y+ 1))

And the custom activation function:

activation(xi) = ex0 + Softplus(x1) (3.24)

3.5 Deep Reinforcement learning

Many of the tasks in the real world do not have easy to define metrics and cannot follow input - output
model of learning. In some areas, a reward response is more straightforward to define than the exact
desired output. An example of this may be a game of chess - it is hard to define what set of moves will
win with a given opponent, and in the end, there is only a win-lose response. Such problems are solved
with Reinforcement Learning (RL)⁵⁷.

This section introduces reader to the crutial concepts behind the RL, which are proposed as a a
possible solution for problem posed in Chapter 8.

3.5.0.1 RL formalism’s

As mentioned previously, reinforcement learning focuses on the action being taken in a specific
environment. This is represented on the flowchart in Fig. 3.5.1. More formally, in RL there are two

*Source: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-n
etworks

42

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Figure 3.5.1: A diagram of the flow of information in a reinforcement learning setting*.

important entities: Agent and Environment. The agent is an entity operating in the environment via
action. The environment provides agent with observation and reward. While the observation
expresses the state of the environment, the reward expresses how well the agent performed.

The environment in RL is usually expressed as an MDP (Markov decision process). For that, the
system (environment) is expressed as observable and distinguishable states s. All of the observable
states create state space S. In MDP, the system states have Markov property, meaning that the
following state is only dependent on the current state, not the previous states. This assumption is not
valid for many of the environments and problems that actually have been solved with reinforcement
learning. Also all of the possible actions a create action space A. The relation of action and states is
expressed as function Pa = Pr(st|st−1, at), which assigns a probability of a state given a previous state
and action. And finally, the reward is expressed as Ra = R(st, st−1, at), where an immediate reward is
given for transition from st−1 to st given action at. Those factors are usually expressed as MDP tuple
(S,A, Pa,Ra). The last important element in the MDP formalism is policy π. π(a|s) is a probabilistic
mapping from S to A. The goal of MDP is to find a mapping π which maximises the reward.

3.5.1 Q-Learning

As stated before, reinforcement learning is seeking to maximise the cumulative reward. This
cumulative reward can be defined as returnGt, as a sum of the rewards in the ongoing time-steps⁸²:

Gt = Rt+1 + γRt+2 + γ2Rt+2 + . . . =
∞∑
t=0

rtγt (3.25)

The γ (0 ≤ γ ≤ 1) term in the equation above is called discount. It is used to parameterise and asses
the greediness of the algorithm by discounting future rewards.

Q-learning is an algorithm for solving reinforcement learning problems. It is also known to belong
to a subset of algorithms known as Value-based algorithms. This means the algorithm uses a
state-value function V(s), as defined in 3.26

*Source: https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg

43

https://commons.wikimedia.org/wiki/File:Reinforcement_learning_diagram.svg

V(s) = E
[
Gt

∣∣∣∣st] (3.26)

In plain words: value is the sum of all possible future discounted (γ) rewards (r). The value can also
be applied to an action, as after applying an action, the new state and its reward are given. Assuming a
policy π, state s is defined under the policy:

Vπ(s) = Eπ

[
Gt

∣∣∣∣st] = Eπ

[
∞∑
t=0

rtγt|st

]
(3.27)

A q-functionQπ can be dfined, which given a state and action identifies the value.

Qπ(s, a) = Eπ

[
Gt

∣∣∣∣st, at] (3.28)

Eq. 3.27 can be extended to the recurrent form, as the value function is dependant on future value
functions.

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r+ γvπ(s′)] (3.29)

Eq. 3.29 is called Bellman equation and represents the connection between the current value and
future value.

For both state-value and action-value functions optimal functions can be defined:

v∗(s) = max
π

vπ(s)q∗(s, a) = max
π

aπ(s, a) (3.30)

Those are the optimal functions in sense of using the policy that maximises the value.
The belman optimiality equations for q∗(s, a) is:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a) [r+ γmaxa′qs(s′, a′)] (3.31)

The optimal q action-value function may be aproximated by using a action-value tableQ(St,At).
This table can be iteratively filled by choosing the actions using the policy derived by Q.

Q(s, a)← r+ γmax
a′

Q(s′, a′) (3.32)

Q(s, a)← (1− α)(Q(s, a)) + α(r+ γmax
a′

Q(s′, a′)) (3.33)

The last equation above is the key equation to the q-learning algorithm. This table can approximate

44

the optimal solution to the given reinforcement learning problem. You can notice that theQ should
contain all of the different state-action pairs, which for many problems is not practical. This is where
the Q-learning turns to the neural network’s algorithms, as instead of using theQ table,Q can be
approximated using a neural network.

3.5.2 Deep Q-Learning

Given that there exists an optimal bellman action-value functionQ∗(s′, a′)⁷⁰ and it’s value in the next
time-step is known, given all possibe actions a′ in state s′, then the optimal strategy is to choose an
action which maximises the expected value of future reward:

Q∗(s, a) = Es′∼ε

[
r+ γmax

a′
Q∗(s′, a′)

∣∣∣∣s, a] (3.34)

In terms of a target for the neural network, this can be specified as:

YQt = Rr+1 + γmax
a

Q(St+1, a; θt) (3.35)

The basic idea of Q-learning is to update the Q function/table iteratively with the above equation.
As stated previously, this may not be practical and lacks generalisation. Instead, a parameterised
function an approximate one may be usedQ(s, a; θ) ≈ Q∗(s, a). ThisQ function approximator can be
a neural network parameterised by weights θ. Next, a loss function Li(θi) can be built

Li(θi) = Es,a p()̇ [(yi − Q(s, a; θ))] (3.36)

where yi = Es′ ε [r+ γmaxa′ Q(s′, a′; θi−1)]

Assuming MSE as our loss metric, the loss function can be written as follows:

L = (Q(s, a, θ)− (r+ γmax
a′

Q(s′, a′; θi−1d)))
2 (3.37)

This, in practice, creates a particular problem, as there is a need to process the states and the actions
in the neural network Q twice, once to get the output that will be compared with the prediction and
once to calculate future prediction. This creates a loop that can lead to the network’s instability, as it
will be chasing a target that is constantly changing. This is why usually, in practice, there are two
separate networks. One for calculation of the (main network)Q(s, a) and other forQ(s′, a′) (usually
called target network). Then, the target network is not trained but updated periodically with the
weights from the main network.

3.5.3 Experience replay buffer

In the simple approach to reinforcement learning using DQN, the model would be trained on the
rewards, states and actions that have been just exchanged with the environment. This means that there

45

would have to be a step in the environment for each training sample. Additionally, this would make the
model training less stable, as the recently visited states would directly impact the model the most.
Because of this, for the model training, an experience replay buffer is used. The replay buffer (or
memory buffer), is used to store the MDP tuples received from the environment instead of using them
immediately and discarding them. The training and the exploration are logically separated. After a
period of exploration (interaction with the environment), the training process begins on the gathered
samples. There are multiple ways to implement a replay buffer, but one of the most common one is to
create a limited length list (first in - last out), where the old samples are discarded. Then such a list is
randomly sampled for the training cases.

3.5.4 Double Deep Q-Learning

One of the problems of the DQN algorithms is over-optimistic value estimates. This is because when
selecting the maximal value in themaxa Q(St+1, a; θt) term one network pass is used to both choose
(selecting the action of the max value), and calculate it’s value (by returning only the maximum). The
double DQN algorithm⁸⁷ aspires to solve this problem by using an additional step of the network (eq.
3.38). This step wraps themaxa Q(St+1, a; θt) into additional Q function.

YDoubleQt = Rr+1 + γQ(St+1,max
a

Q(St+1, a; θt); θ′t) (3.38)

This calculation of the target Y is done using two sets of networks. Network θt is the network that is
currently online learning and is used to pick the action, but the network θ′t is used to estimate the value
of this action. The values of θ′t can be updated periodically with the weights of θt. This can also be done
using blending of the parameters θ′t+1 = βθ′t + (1− β)θt wehere 0 < β < 1.

This should not be confused with the practice of using target and main network in Sec. 3.5.2.

3.6 Probabilistic programming

Probabilistic programming³⁴ was born out of the Monte Carlo simulations and Bayesian reasoning. In
brief: it uses a probabilistic approach to modelling and machine learning. It is considered to be a
white-box approach. Probabilistic programming usesMarkov ChainMonte Carlo (MCMC) to sample
probability distribution function.

The probabilistic programming is later proposed for anomaly analysis in Section 4.2, and this
section aims to gently introduce the reader to this topic.

3.6.1 Metropolis-Hastings algorithm example

Metropolis-Hastings algorithm⁷⁶ is an MCMC based algorithm used for sampling a probability
distribution. This process can also be used to approximate the distribution. Let’s assume function f(di)
that is a probability density function:

46

f(di) =
1

σ
√
2π

e−
1
2(

di−μ
σ)

2

(3.39)

This function is parametrised by two parameters. Let’s assume that the μ = 0 is already known, and
let’s describe the unknown parameter θ = σ. The task at hand is to approximate the f(di). Now, at it’s
core, all Bayesian methods use simple, yet powerful Bayes theorem:

P(θ|D) = P(D|θ)P(θ)
P(D)

(3.40)

P(θ|D) is called posterior, P(D|θ) is the likelihood, P(θ) is the prior, and P(D) is the evidence. In
the case of machine learning tasks, there is data to test our beliefs, and so in this case, in order to find
the approximation of f(di), the probability distribution of θmust be found, under the condition of
existing dataD.

For this purpose it can be stated that the following approximation is true:

f(di|θ) ≈ P(D|θ) (3.41)

The Metropolis-Hastings method uses a transition modelQ(θ′|θ) to generate candidates for the
searched parameter θ. In this algorithm,Q is used for creating random steps θ in the distribution space.
For exampleQ can be defined asQ(θ′|θ) = N(θ, μ) and μ = 1. Such definition is in essence a random
walk algorithm. With each step, it is assessed if the new position θ′ is more likely to fit the distribution.
If it is not, the newly generated position is discarded and a new sample is created. Each step is directly
influenced only by the previous step, which means it satisfies the Markov chain rule. The test of the
likelihood of the step more likely belonging to distribution can be described as a ratio:

R =
P(θ′|D)
P(θ|D)

(3.42)

Which can be expanded with the Bayes theorem, and then expressed in terms of a PDF

R =
P(D|θ′)P(θ′)
P(D|θ)P(θ)

=

∏n
i f(di|θ

′)P(θ′)∏n
i f(di|θ)P(θ)

(3.43)

Then the acceptance probability can be explained as:

A(R) =

R, if R < 1

1, otherwise
(3.44)

47

The eq. 3.44 means that the new θ′ will beaccepted if the ratio R is greater than 1, but otherwise, it
will be accepted with probability R.

The steps of the Metropolis-Hastings algorithm can be described as the pseudo-code in Listing 1.
The first step is to generate random θ. Then, θ′ is generated, the probability of belonging to the
distribution for θ and θ′ is calculated. Then the acceptance rule is used to either accept or reject θ′ as
new θ. Those steps are repeated k times.

The process described in the listing 1 creates a “trace” of candidate θ parameters, as visualised in
Figure 3.6.1.

Data: θ ← random
for k ∈ {1, . . . ,K} do

θ′ ← Q(θ)
prob_theta← f(θ)
prob_theta′ ← f(θ′)
R← prob_theta′

prob_theta

if uniform_random(0,1)> R then
θ ← θ′

end
Algorithm 1: Steps of Metropolis-Hastings algorithm

0 100 200 300 400 500
iteration

1

0

1

2

3

4

5

Figure 3.6.1: Exemplary steps of Metropolis-Hastings steps. In this example, the target distribu-
tion is N (μ = 0, σ = 3). The accepted values are in blue, and the red crosses are rejects.

3.6.1.1 Tuning in Metropolis

The simple version of the Metropolis-Hastings algorithm assumes that the proposed θ′ comes from a
random walkQ(θ′|θ) = N(θ, μ)with μ = 1 but this creates a problem. Depending on the type of the
task, the variance μ of the sampled distribution can result in either too small or too big steps. An
additional effort can be made to find a step size μ better suited for our particular case. It has been
proven that one of the good indicators of a well-picked step μ is the acceptance rate of 23.4%⁴². A
tuning parameter is set, as several additional steps of the algorithm that will be used to find a proper μ
for the rest of the run¹⁴.

48

3.6.2 Probabilistic programming and Bayesian modelling

Probabilistic programming is a combination of programming paradigm and probabilistic modelling. It
is usually conducted using programming frameworks, such as PYMC3⁷⁹, and allows for automatic
inference of the models.

Depending on the use case, it bears the marks of machine learning, as it is possible to obtain models
via training (approximation of the parameters). The critical difference with ML methods such as
neural networks is that in the probabilistic modelling, the models have to be defined at least
approximately. This means that some knowledge of the statistical nature of the underlying modelled
processes is necessary.

It also means that the trained model is not a black box, and its analysis can provide helpful insight
and understanding of the model. Another advantage of Bayesian modelling is its generative
capabilities. The MCMC process can be used to obtain the needed parameters (usually by taking the
expectation value of the generated distribution). Then, these parameters can be used in the assumed
underlying properties and distributions to generate synthetic samples of the data.

3.7 Clustering

In the general case, clustering is a process of grouping unlabeled data points into clusters that segregate
cases with similar traits. There are many different clustering algorithms, each with its own preferred
use case. In this section, I will present the most basic algorithm known as the K-means and two
algorithms used in the later chapters. All of the presented algorithms are available as a part of the
scikit-learn⁷³ package.

3.7.1 K-means

K-means (Fig. 3.7.1) clustering is a very basic algorithm. It divides the dataset absolutely (all of the
points belong to a cluster) and expects the number of clusters k as the input.

The algorithm can be initialised by picking k data points randomly, and treating them as initial
clusters’ centroidsmk. Then, for the remaining data points the distance to each of the centroids is
calculated |xi − mk|. Data points are assigned to the nearest centroids, and the set of the points
assigned to each centroid creates a cluster. The last step of the algorithm is to recalculate the centroids
m(t+1)

k = 1∣∣∣S(t)k

∣∣∣
∑

xj∈S(t)i
xj In practice, this means that the space of the dataset is divided by lines

equidistant from the centroids.

3.7.2 DBSCAN

In contrast to the K-means clustering, the DBSCAN³⁸ (Fig. 3.7.2) algorithm does not divide the
dataset absolutely, as it doesn’t assign all data points to clusters (there are points that do not belong to
any cluster - outliers). Additionally, it does not require a number of clusters as the input. It does
require a minimum number of pointsMinPts and a minimum distance ε.

49

Figure 3.7.1: Performance of the k-means algorithm on synthetic datasets. The upper left plot
shows the effect of the algorithm using k=2, but the data clearly has 3 clusters. The right upper
plot shows how the k-means fails to work with anisotropically distributed data, and the lower-left
plot shows how it performs with the data of unequal variance. The last lower right plot shows
an ideal case of a k-means algorithm with a proper number of clusters, with equal variance and
isotropically distributed data.

50

Figure 3.7.2: A representation of the DBSCAN clustering. The blue N dot is a noise point, as it
does not contain any point within the given ε. The red points have at least two other neighbours
and thus are core points. The yellow B and C points are border points as they are only connected
by one other point.*

The most important for understanding how the DBSCAN algorithm works is the idea of “core
points”. A point p is considered to be the core point if in the range lower than ε there is at leastMinPts.

The steps of the algorithm can be described as follows:

1. The algorithm starts by choosing an arbitrary point p in the dataset.

2. First, the neighbouring points q that satisfy distance(p, q) < ε are pushed onto the stack for
further processing.

3. If the number of points q is equal or greater thanMinPts, then the point p is considered to be a
“core point”, and is assigned to the current cluster.

4. If that number is lower thanMinPts, but one of those points is the core point, then p is the
border point and also is assigned to the current cluster.

5. If none of the above applies, then p is labelled as “noise”.

6. The process repeats by popping the stack and getting new p.

The DBSCAN algorithm can be understood as density clustering. If for two points p and q the
following is true: p is a core point, and q is a core point, and distance(p, q) < ε, then those points are
said to be joined by density edge. If for any two points p and q in the graph created by density edges
there exists a path, then p and q are density connected. In this sense, it can be said that any two points
in a cluster are density connected.

3.7.3 OPTICS

The OPTICS¹¹,⁷⁵ algorithm can be thought of as an extension of the DBSCAN, as by itself, it only
provides a way of ordering points without assigning them to clusters. OPTICS requires only the
minimum number of neighbouring points with respect to a core pointMinPts, and the maximum

*Source: https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

51

 https://commons.wikimedia.org/wiki/File:DBSCAN-Illustration.svg

allowed distance for a core point εmax is optional but can speed up calculations. It introduces two
important notions:

Core-distance - the minimum value of ε that makes the point a core point, givenMinPts. The
core_distance can be as small as needed but no bigger than εmax.

Reachability-distance - a measure between two points p and q. It can be expressed as
max(core_distance(q), distance(p, q)) if q is a core point. It is undefined if q is not a core point.

Reachability-score - calculated per point. If p is a core point then this value is equal to core_distance
otherwise it is equal to reachability_distance(q)where q is the nearest neighbour of p.

The algorithm itself relies on updating the output (reachability list). It traverses all of the points one
by one by picking the point with the highest priority (lowest reachability). The algorithm starts with
picking any starting point, and the proceeds as follows.

1. Calculate the reachability score for all neighbours of point p in the given ε range.

2. Update the sorted list of all unprocessed reachability scores.

3. Append the p to the end of the reachability-score list output.

4. Pick the top point (a one with the lowest reachability score) from the unprocessed reachability
list and repeat until all points are processed.

This can also be expressed as the following pseudo-code:

reachability_scores← ordered queue
ordered_points← ordered queue
for each unprocessed p in DB do

si ← reachability_scores_of_neighbours(p, ε,MinPts)
update_reachability(reachability_scores, si)
p.processed = True
ordered_points.append(p)
p← min(reachability_scores)

end
Algorithm 2:OPTICS algorithm steps

This process creates an ordered list of points where each neighbour of a point in the list is at a close
distance from each other. However, it does not solve the problem of clustering. One of the more
straightforward methods to do that is to use an epsilon cutoff - where those points that are below a
certain threshold εcut are attributed to the noise and others are considered to belong to a clusters.
Another method called ξ-steepness is based on the steepness of the reachability plot. Results of both
methods are presented in the Fig. 3.7.3.

52

Figure 3.7.3: Reachability plot (above) of the exemplary dataset (row below). The reachability
plot colouring was created for a ξ 11 scheme of clustering. The first scatter plot in the second row
represents clustering for the Xi scheme as well. The next two plots are for epsilon cuts as specified
in the plot’s titles. (source: scikit-learn73)

53

Science isn’t about WHY, it’s about WHYNOT!

J.K. Simmons (Portal 2)

4
Machine Learningmethods and analysis for strip

Velo

The particle beam present at the LHC, while being a source of particle colissions that can unveil
mysteries of the universe, is also constantly damaging the detector. The more particles is there flowing
through the detector, the more the detector is damaged, the less the particles it will detect. The role of
the maintainers of the detector is to balance on the edge of destruction of the detector, and expansion
of knowledge. This carefull ballet motivates the work presented in this Chapter. The studies presented
here, are hoped to foster the balance, by providing quick insights into detector behaviour.

The first Section (4.1) of this Chapter provides analysis of the calibration parameters of the Velo
detector in years 2010-2017. This analysis shows how the radiation damage influences the calibration,
and puts the bias voltage correction to the ultimate test. Additionally, using probabilistic programming
and the insight from the analysis, an intelligent method for finding anomalious calibrations (Sec. 4.2)
is presented. Which was succesfully implemented to the Velo monitoring.

The changes in the calibration may be elusive to a human operator, given a number of silicon strips
(170 000). The usual plots and visualisation tools might not suffice to reflect the overall picture, and so
the study of the dimensionality reduction techniques (PCA and autoencoders) applied on the
calibration data is presented in this chapter (Sec. 4.3).

Next (Sec. 4.4), we answer he question: how does the calibration influence the signal? The answer
led to developing a tool that can help to a detector maintainer to decide about the timing of the
calibration. The calibration process requires a specific condition of the detector, and must be carefully
scheduled.

In summary, these studies are meant to equip the detector maintainers with intelligent tools that

54

will enhance the data taking, mainly in Run 3 at the LHCb, but also the detectors to which these
methods might be transferable.

4.1 Run 1 and 2 calibration analysis

Runs 1 and 2 of the LHC machine were the initial runs of the Large Hadron Collider. Run 1 started in
2011 and lasted to the end of 2012, and Run 2 lasted from 2015 to 2018⁴⁸. Because of the global
pandemic, the plans for the years 2019-2022 changed, and the LHC actually will start taking data in
2022 (Fig. 4.1.1). Although the detector operated nominally throughout the time of its working, the
study of its behaviour was needed to ensure that the Velo team at LHCb had a complete picture of its
condition. The Velo being one of the core detectors, capable of performing the stand alone tracking
and vertexing, provided the vital input for the physics programme.

4.1.1 The Data

The data used in this Section comes from a timespan 2010-08-18 to 2017-06-21 and contains 30 Velo
calibrations.

Out of many different parameters the following ones were considered the most vital for the daily
operation of the Velo detector: Pedestals P, LowThreshold Lt andHighThresholdHt. As discussed
in the Sn 2.4.1.1 Low Threshold and High Threshold only differ in scaling factor, so in further analysis,
only high threshold and pedestal parameters will be used in this Section.

The dimensionality and complicated nature of the Velo calibration dataset pose a serious problem
for their efficient analysis. A single Velo sensor has 2048 readout channels, which constitutes the
channel dimension. The sensors are of two types R andΦ-type for each of the 42 modules, creating
sensor-type and module number dimensions. Finally, each calibration is distinguished by the
calibration date. This is summarised in Table 4.1.1.

Dimention name Symbol Size
Channel Ch 2048

Sensor type R,Φ 2 (R orΦ)
Module number # 42
Calibration date D 30

Table 4.1.1: Table of dimentionality of the calibration dataset.

As mentioned above, the dimensionality in this dataset is challenging to navigate and most certainly
needs a visualisation tool that aggregates a part of it. The most helpful graphical object for handling
this kind of data is 2D histogram, where the channel number is defined on X-axis (horizontal), and a
given parameter (Ht or Pt) value on the Y-axis (vertical), Example: Fig. 4.1.2. The colour of the
histogram is the number of occurrences of a given parameter value in a given bin. When there is no
occurrence of pairs of values, the colour is set to white for easier differentiation. In this Chapter, the
colour scale is different for each plot unless mentioned otherwise. I do not provide the exact colour

55

Figure
4.1.1:

The
schedule

ofthe
runsfrom

2019.Thisschedule
hasalready

been
changed

for2020
due

to
the

globalpandem
ic.

56

scale in most plots, but it follows the intuitive rule of warmer colours meaning more occurrences. This
kind of figure has proved to be very useful since it can aggregate multiple dimensions of the data.

For ease of understanding, I introduce the following notation of the dataset slice:

ParameterType(Ch, S,#,D)

where ParameterType stands for the type of the parameter like P orHt and the other symbols are
explained in the Table 4.1.1. A single symbol without values marks the use of a full range of data on
that dimension. Exemplary notation: P(Ch100− Ch500,R,#11,D) is a slice of R-type sensor
channels from 100 to 500 in module#11 in all of the calibrations. As one can see, even the slicing
procedure is quite challenging and needs to take into account many aspects of the whole calibration
dataset collected for Velo during its operation.

4.1.2 Pedestals

Pedestals represent the absolute electronics offsets measured in each detector readout channel. Their
variations have proven to influence the data taking significantly (see Sec. 4.4). A special procedure,
called noise data taking, was designed and put in place for Run 1 and Run 2 in order to evaluate the
pedestals for each individual channel of the Velo detector. Basic exploratory analysis of this parameter
starts with an overall look at all pedestal values in the calibration dataset (see Fig. 4.1.2). The pedestals
oscillates around 520 ADC, with visible artefacts at channels 1400-1520 in R-type type sensor and
near channel 1750 in both sensor types. The first artefact (ranges 1400-1520) comes solely from the
sensor #85 , visible in the Fig. 4.1.3. This is believed to be a sensor malfunction (a visual inspection
identified surface cracks). The other artefact near channel 1750 is believed to be coming from a design
feature, identified as coupling to the digital clock line. This is not a significant problem for the overall
data quality, since the effects can be precisely evaluated and seem to be fixed in time.

The intense mixed radiation field, consisting of fast hadrons, gradually damaged the sensors during
their operation, resulting in the need to adjust the bias voltage. Proper estimation and correction for
the pedestal value turned to be the critical part of the calibration procedure for Velo. The nature of this
quantity is complicated and reflects the overall properties of the whole electronics readout chain. In
principle it should not change significantly over time under stable conditions of the hardware. Any
strong variations could be interpreted as serious problems with the detector. Thus, a study of the
pedestal trend is an essential aspect of this analysis. The trend was calculated by fitting a line
y = ax+ b to the pedestal values using the time of the calibration as an independent variable. The
value of the linear coefficient a, which is responsible for the trend, is calculated individually for each of
the detector channels. The distribution of this coefficient is presented in the Fig. 4.1.4. Themean value
of the coefficient is 9.63e−5 which is so close to zero that it can be assumed that there is no overall
trend, which proves that the detector did not suffer from any systematic effects, related to its hardware
component, during the Run 1 and Run 2 data taking periods.

57

(a) All phi pedestals.

(b) All R-type pedestals.

Figure 4.1.2: Histogram of the all of the pedestal values across all of the calibrations The his-
togram above is P(Ch,R,#,D) and the below P(Ch,Φ,#,D)).

Figure 4.1.3: Pedestal plot for sensors (from the top) P(Ch,R,#64,D) P(Ch,R,#35,D)
P(Ch,R,#85,D). #64 and #35 represent a typical pedestal values, while in #85 there is a mal-
function visible close to channel 1500.

58

Figure 4.1.4: Histogram of linear coefficients of the pedestal trend per channel. Some of the out-
lying coefficient values have been trimmed and are outside the scope of this plot.

4.1.3 Clusterisation Thresholds

The high threshold parameter,Ht, is the one actually responsible for the sensitivity the hit detection. It
is one of the many steps of filtering the signal coming from Velo. Further, the hit information is crucial
for the tracking algorithms that aggregate the collection of hits into a track and fit its trajectory (see Sec.
2.4.1.1). Again, first the simple exploratory analysis of the whole dataset takes place. At the first glance,
the 2D histograms presented in Fig. 4.1.5 are cluttered by outlying values. The most visible ones are
near value 127 across all channels. This is an expected sight, as value 127 is the maximal possible value.
Setting the value of the threshold in the channel to 127 means that only the signal that exceeds this
threshold is accepted. Which, in reality, means that no signal will come through the channel as it
would have to reach values greater than the dynamic range of the ADC value after the pedestal
subtraction*. This, forces the data coming from such channels to be discarded. This is a masking value,
evolution of the distribution of those masks are discussed in detail in the next Section (4.1.4). The
other visible artefact are spikes within channel range fron 1000 to 1250. This comes from faulty sensor
#67 and dates ’2016-11-07’ and ’2016-11-11’, where the threshold values reached non-physical value
of 400 ADC. This is likely an error that could accidentally get into the dataset, and yet there is no
explanation for those values (most likely an electrical disturbance influenced severely the global offset
level). Moving on, those values will be treated as outliers and removed from the analysis.

The Fig. 4.1.6 depictsHt(Ch,R,#,D) andHt(Ch,Φ,#,D) in range of values from 0 to 30. One of
the immediately visible features are the sparse spikes regularly distributed across the sensors. Those
spikes represent, so called, header cross-talk effect (Sec. 2.4.1.2), that affects specific channels during

*The dynamic range of the Velo readout chain after signal digitisation and before pedestal subtraction is 10 bits without
sign. Pedestal subtraction aims at equalisationof theproperties of the readout channels across thedetector. After thepedestal
correction thedynamic range corresponds to8bitswith sign, so effectively, the signals in the rangeof -128 to127ADCcounts
can be observed.

59

Figure 4.1.5: High threshold distribution of all of calibrations, across all sensors. Ht(Ch,Φ,#,D)
is above, and Ht(Ch,R,#,D) is the plot below.

Figure 4.1.6: High threshold distribution with header cross-talk Ht(Ch,R,#,D).

the analogue transmission of the data from the detector to the trigger processing farm. In some cases,
it might be helpful to exclude the channels that contain the header cross-talk effect. The Ch∗ denotes
all of the channels without the header cross-talk effect. The reader can examine the difference of the
histogram with and without header cross-talk in the Fig. 4.1.6 and 4.1.7.

Another insight coming from the 2D histogram presented in Fig. 4.1.7 is that low-intensity
regularities repeat roughly every 512 channels. The periodicity of those regularities comes from the
sensors’ physical design and the specific topology of the strip implants. More precisely, they are related
to imperfect calibrations coming from two dates: ’2012-07-30’, ’2012-08-01’. Those two dates are
imperfect due to the improper response of the high voltage system that failed to provide bias voltage to
the sensors on those dates. In consequence a very large noise was observed. The particular shape of
the noise distributions for R− andΦ-type sensors reflect the physical dimensions of the strips. For the
former strip length increases gradually, in each of the sensor’s four sectors, as a function of radius. For
the latter strip length is constant for inner and outer sectors (with shorter strips in the inner region).

Figure 4.1.7: High threshold distribution without header cross-talk Ht(Ch∗,R,#,D)

60

(a) Ht(Ch∗,R,#, 2012-08-01),X = 10

(b) Ht(Ch∗,R,#, 2012-07-30),X = 10

(c) Ht(Ch∗,R,#, 2012-08-02),X = 3

(d) Ht(Ch∗,R,#, 2011-03-07),X = 1

Figure 4.1.8: Histograms of imperfect calibrations in R-type sensors with their outlierness value X.

These imperfect calibrations influenced the sensitivity of the detector and impacted severly the Velo
data quality. Additionally, for the purpose of outliers analysis, two calibration dates also are being
recognised as imperfect 2012-08-02 and 2011-03-07. The overall four imperfect calibrations can be
seen in Fig. 4.1.8 and Fig. 4.1.9. Those occurrences of mis-calibrations were a direct motivation for
detecting anomalies in the calibration in Section 4.2. Lack of such automatic procedures led to data
loss due to very low hit reconstruction efficiency of the Velo.

4.1.4 Analysis of the outliers

As mentioned previously, theHt = 127 ADC means that the channel is masked. Setting the threshold
so high means that no hit will be registered in a given channel. The masks were given to the channels
that exhibited exceptional noise levels, were associated with broken or cold bonds, were connected to
problematic readout chips or were close to sensor surface damage. Their occurrences are depicted in
Figs 4.1.11 and 4.1.12. In 4.1.11 the channels from all calibrations are plotted as a number of blocked
channels per sensor in the time domain. The important insight is that some sensors are more prone to
masking than others and that the amount of masked channels changes. In some cases, the masked
channels can go away and return to the sensor. The figure 4.1.12depicts a number of masked channels
in the time domain with a sensor split. It is clearly visible that the total number of masked channels
grows with time. This is expected as with time the negative radiation effects accumulate (see Sec.
2.4.1.3).

61

(a) Ht(Ch∗,Φ,#, 2012-08-01),X = 10

(b) Ht(Ch∗,Φ,#, 2012-07-30),X = 10

(c) Ht(Ch∗,Φ,#, 2012-08-02),X = 3

(d) Ht(Ch∗,Φ,#, 2011-03-07),X = 1

Figure 4.1.9: Histograms of imperfect calibrations in Φ sensors with their outlierness value X.

(a) Ht(Ch,R,#,D),X = 0

(b) Ht(Ch,Φ,#,D),X = 0

Figure 4.1.10: Non-outlying calibrations, for R-type sensor (a) and Φ-type sensor (b).

62

Figure 4.1.11: Distribution of blocked (masked) channels per sensor in time.

Figure 4.1.12: The total number of occurrences of masked channels versus time.

63

Figure 4.1.13: Anomalous values other than masked channels.

Apart from the masked values, the usual and outlying calibration, there is still a part of the data
which doesn’t fit any of those categories. This part of data can be characterised as the
Ht > 50ADC ∧ Ht ̸= 127ADC. Fig 4.1.13 depicts those other outliers. The number of occurrences of
these outliers changes from calibration to calibration, but overall is limited to three sensors: #85 #67
and #94 (allΦ-type sensors). These anomalies have never been clearly characterised. The visual
inspection did not indicate any surface damage on sensors, so that would point to instabilities in the
electronics readout chain. Nevertheless, these bad channels were accounted for and did not affect the
data quality.

4.2 Intelligent analysis of the threshold data with probabilistic programming

The threshold evaluation procedure in the Velo directly influences the overall data taking quality in
LHCb. If the thresholds are too high, then there is a missing signal that decreases the precision of the
track reconstruction and, in turn, decreases the trigger efficiency. If the thresholds are too low, then the
channel contributes to the noise and also may harm the quality of the data and stress the trigger system
with a large number of fake hits. Calibration process also requires time without beam, which is beyond
the control of the LHCb and is the LHC collaboration responsibility. To facilitate the correct
calibration process, an additional check is advised. The next Section presents the method for detecting
anomalies in the calibration process.

4.2.1 Dataset creation

The exploratory analysis of the calibration data presented in the previous Section yielded a helpful
insights into the properties of the high threshold,Ht, parameters. Since high thresholds are evaluated
using noise measured for each individual channel for R- andΦ-type sensors, they are expected to be

64

within a well defined interval that should not depend on time *. It is assumed further that the
distribution of the high thresholds should approximately follow a Gaussian distribution for properly
configured detector. One should note, that the electronics noise has a number of components one of
which is proportional to the strip capacitance, that in turn, is proportional to the strip length. For
properly biased silicon sensors this component does not contribute significantly to the total noise,
thus, the noise for R-type sensors is assumed to stay constant within one ADC count. The same
behaviour is measured forΦ-type ones. Complete opposite behaviour is observed for the improperly
configured sensors, i.e., the noise component proportional to the strip capacitance completely
dominates the total noise value measured on each strip. This effect led to inventing an auxiliary
variable, called “outlierness”, that can quantify the departure of the noise distribution from the regular
operation conditions.

The “bad” calibrations were assigned an “outlierness” value X. This “outlierness” measure is purely
artificial and subjective and also expresses the strength of belief that a given calibration is an outlier.
The bigger the number, the stronger the belief that calibration is an anomaly. There is no scale or limit
on the outlierness number. Other than that, the 0 represents a normal calibration. The actual assigned
values can be seen in the Table 4.2.1, and the related calibration parameters can be seen in Fig.
4.1.9a-4.1.9d and Fig. 4.1.8a-4.1.8d.

Calibration date X
2011-03-07 1
2012-08-02 3
2012-07-30 10
2012-08-01 10
all others 0

Table 4.2.1: Calibration dataset and their corresponding outlierness values.

4.2.2 Model

Although the method was developed for both R- andΦ-type sensors, in this subsection only the
R-type sensor data will be used for simplicity. For theΦ the procedure is exactly the same. I will use
the following notation to describe the high threshold:

T′n = Ht(n,R,#,D′) (4.1)

Tn = Ht(n,R,#,D) (4.2)

Where n stands for a channel number across all sensors in time, andD′means calibration date with
the assigned outlierness values X = 0. As mentioned previously, it is assumed that the threshold
distribution in a particular channel follows a Gaussian distribution.

*Properly configured detector should yield a noise that is approximately independent on time, however, there may be
non trivial dependence on the radiation damage induced by fast hadrons.

65

T′n ∼ Gaussian(μ = μ′n, σ = σ′n) (4.3)

As presented in 4.1.10, the value of the normal calibration for the R-type sensors oscillates around
12 ADC counts. Therefore the parameters μ′n and σ′n can be calculated by fitting the channels
histogram to a Gaussian distribution. In this case, the probabilistic programming paradigm is used to
achieve that. The dataset containing only “good” calibrations is used (D′) for this calculation.

In order to extend the model to the “bad” calibrations, an additional term is added to the model:

Tn ∼ Gaussian(μ = X ∗ μn + μ′n, σ = X ∗ σn + σ′n) (4.4)

The X, as previously, stands for the outlierness of the calibration, and μ and σ are coefficients of the
linear dependency on the X. These parameters are taken as an intrinsic property of the n-th channel.
The X value is the same across the calibration date for all channels and sensors. Notice that when
X = 0, the model in Eq. 4.4 is equivalent to 4.3. This allows to use the parameters μ′n and σ′n
calculated for the previous base-line model to be used in the extended one. Given X from the Table
4.2.1, it is possible to calculate μn and σn.

4.2.3 Training

This entire model was implemented using PYMC3⁷⁹ framework, and was trained using the PLGRID
computation network. The training process was split into two parts, embodying two parts of the
models. The first part is visible in Listing 1, and the second in listing 2. The first part uses onlyD′
calibrations, and the second part usesD \ D′. Both of the learning processes were conducted with
80000 training steps and 20000 tuning steps.

with pm.Model() as model:
sds = pm.Uniform("sds", 0, 0.75, shape=positive.shape[1])
centers = pm.Uniform("centers", 0,50, shape=positive.shape[1])
observations = pm.Normal("obs", mu=centers, sd=sds, observed=positive)

with model:
step = pm.Metropolis(vars=[sds,centers, observations])
trace = pm.sample(**settings, step=step, chains=1)

Listing 1: A snippet from the training process for the first part of the model (Eq. 4.3)

66

with pm.Model() as model:
x = pm.Uniform('x', 0,40, observed=xfactor[:,np.newaxis])
k = pm.Uniform('k', -10,10,shape=negative.shape[1])
m = pm.Uniform('m', -10,10,shape=negative.shape[1])
observations = pm.Normal(
"obs",
mu=meancenters.values.T[0]+k*x,
sd=meansds.values.T[0]+m*x,
observed=negative

)
with model:
step = pm.Metropolis(vars=[k,m, observations])
trace = pm.sample(**settings, step=step, chains=1)

Listing 2: A snippet from the training process for the second part of the model (Eq. 4.4)

4.2.4 Results

The model presented in this subsection is a machine learning model but is quite different from the
models used typically (such as those based on neural networks).

It is not a black-box model, as for each of the channels, there are only four parameters that are
needed. Such low complexity of the model also allows for no train-test split (usual practice in machine
learning). This approach has additional benefits such as:

• Partial dimensional independence - This model can be used to extract the value of the
outlierness not only for the entire calibration but also for a specific sensor, or module, or a
group of channels, or even just a specific channel. This allows for a more detailed insight as it
can bring focus to one particular part of a detector that exhibits more anomalous behaviour.

• Generation of artificial data - Because the probabilistic programming is based on statistical
inference, simply by calculating the μ, μ′ and σ, σ′ parameters of a Gaussian distribution a high
quality artificial sample can be generated.

• Interpolation and Extrapolation - This model was trained only on four different values of X, and
yet, it is capable to assess the outlierness value not only in the range between those four values
(e.g. X = 5), but also through the generation of artificial data, it can show what a calibration
that is outside the scope of observed calibration dataset (e.g. X = 12) might look like. This
feature is also essential for detecting any further anomalies (see 4.2.1).

In Fig. 4.2.1a there is a sample of the data (500 channels) that comes from one of the improper
calibrations. It can be noted that the range of theHt values is on par with those visible in the plot of the
generated dataset Fig. 4.2.1b. Additionally in Fig. 4.2.1c there is a plot of calibration with value
X = 12, which was not present in the dataset and is actually outside the scope of the dataset.

67

(a)

(b)

(c)

Figure 4.2.1: 500 channels from a (a) single calibration date marked with X=10, (b) an example
of a single generated calibration parameters at X=10, (c) an example of a single generated calibra-
tion parameters at X=12.

68

Figure 4.2.2: Screenshot from the outlierness monitoring in Lovell software.

This model was introduced to the Lovell Velo monitoring system in the second half of the year 2018,
and was used to monitor the calibration data. The Figure 4.2.2 depicts a screenshot from the
monitoring system and shows outlierness levels for sensor#21, for all consecutive calibrations. It is
noticeable that the value of the outlierness was slightly elevated in 2017, which is attributed to some
changes in the cooling system. It is worth noticing that this algorithm was the first Machine Learning
based model specifically trained for purpose of supporting the monitoring tasks in the LHCb
experiment.

4.3 Dimensionality reduction

TheVelo detector, in its strip version, had approximately 172 000 readout channels (that corresponded
to physical strips). Many of the parameters needed for its calibration were calculated per channel. This
is a huge amount of numbers, which is not easily understandable for human operators. In its pixel
version, the number of such parameters will grow to approximately 41 million (exactly
256 ∗ 256 ∗ 12 ∗ 52 = 40894464)²⁶. Thus, an early test of dimensionality reduction techniques will
be very useful for the future. A very popular class of models targeting specifically dimensionality
reduction is based on PCA (Principal Component Analysis) or on a particular deep network
architecture called the autoencoder. There are multiple ways of applying PCA or autoencoder to a
given dataset (using different sets of values - or dimensions). This Chapter presents selected
applications of dimensionality reduction applied to the VELO calibration dataset.

4.3.1 Pedestals dimensionality reduction

One potential benefit of dimensionality reduction would be to see what differentiates the pedestal
parameter in some sensors from the others. For this purpose, PCA reduction was used by reducing
each channel’s time progression (a single dimensionality reduction for each of the sensor’s channels).

69

This dimensionality reduction can be understood as a mapping:

P(n,R,#,D)→ Xn,#,Xn,# ∈ R2 (4.5)

This means that Xn,# is a 2 dimensional vector, representing an n-th channel in# sensor. Because of
the high number of individual sensors and for the clarity, the result of the PCA application on the
dataset was split into several plots (Fig. 4.3.1, 4.3.2 and 4.3.3, 4.3.4).

The reduced dataset shows a 2D gaussian distribution. It can be seen that some of the channels
from a particular sensor can form clusters or be distributed on a ring on the border of the dataset.
Examining the particular channels can explain what happens with a single datapoint with the
transformation. In Fig. 4.3.5 there are three selected channels from a plot of the reduced data in sensor
11. Those points are also plotted at the Fig. 4.3.6. It can be seen that the channels on the opposing
edges of this circle-like structure formed by the reduced data, represent different trends in the
pedestals’ value. Channel’s 1899 pedestal value grows over time, but 543’s decreases. Values in channel
322 stay high and stable. Therefore it can be said, that essentially the PCA reduction separates the
channels based on their trend. The 2-dimensional Gaussian distribution structure makes it consistent
with the trend calculation in previous sections, as the distribution centre around 0. This means that
there is no overall trend (no growth or decrease).

Figure 4.3.5: A 2-dimensional representation of the PCA-reduced dataset for sensor 11, with
three distinct exemplary channels marked.

70

−5 0 5

−4

−2

0

2

4

6

8
sensor

0
1
2
3
4
5
6
7
8
9
10

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(a) PCA, R-type sensors 0-10

−5 0 5

−4

−2

0

2

4

6

8
sensor

11
12
13
14
15
16
17
18
19
20

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(b) PCA, R-type sensors 11-20

Figure 4.3.1: Pedestal calibrations in R-type sensors (0-20) reduced with PCA.

71

−5 0 5

−4

−2

0

2

4

6

8
sensor

21
22
23
24
25
26
27
28
29
30
31

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(a) PCA, R-type sensors 21-31

−5 0 5

−4

−2

0

2

4

6

8
sensor

32
33
34
35
36
37
38
39
40
41

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(b) PCA, R-type sensors 32-41

Figure 4.3.2: Pedestal calibrations in R-type sensors (21-41) reduced with PCA.

72

−5 0 5

−4

−2

0

2

4

6

8
sensor

64
65
66
67
68
69
70
71
72
73
74

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(a) PCA, Φ-type sensors 64-74

−5 0 5

−4

−2

0

2

4

6

8
sensor

75
76
77
78
79
80
81
82
83
84

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(b) PCA, Φ-type sensors 75-84

Figure 4.3.3: Pedestal calibrations for Φ-type sensors (64-84) reduced with PCA.

73

−5 0 5

−4

−2

0

2

4

6

8
sensor

85
86
87
88
89
90
91
92
93
94
95

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(a) PCA, Φ-type sensors 85-95

−5 0 5

−4

−2

0

2

4

6

8
sensor

96
97
98
99
100
101
102
103
104
105

Principal component 1

Pr
in

ci
pa

l
co

mp
on

en
t

2

(b) PCA, Φ-type sensors 96-105

Figure 4.3.4: Pedestal calibrations for Φ-type sensors (85-105) reduced with PCA.

74

Figure 4.3.6: Time progression of the pedestal value for the selected values.

4.3.2 Threshold dimensionality reduction

Because threshold data for the R andΦ-type sensors differ significantly, it’s necessary to split the
dimensionality reduction into two cases respectively. That means training the chosen algorithm for the
Ht(Ch∗,R, s, d) andHt(Ch∗,Φ, s, d) separately. This transformation can be written as Eq. 4.6 and 4.7.

Ht(Ch∗,R,#, d)→ X#,d,X#,d ∈ R2 (4.6)

Ht(Ch∗,Φ,#, d)→ X#,d,X#,d ∈ R2 (4.7)

The two separate models reduce the dimension of the channels into two dimenstions. The X#,d means
that for each sensor# on given calibration date d there is a dimensional vector X. This form of
reduction allows us to easily see any changes common to all of the sensors at once. For studying the
high threshold parameters two models, PCA and autoencoder artificial neural network, were used. In
Figures 4.3.7-4.3.10 high thresholds for ten consecutive calibrations are plotted after the
dimensionality reduction. In this case the high thresholds measured at one sensor with dimensionality
ndim = 2048, corresponding to all physical readout channels, are reduced to a single point on a
2-dimensional (ndim = 2) plane. Respective sensors are colour coded for convenience. Regardless of
the used model, PCA or autoencoder, one can clearly see two outlying calibrations 2012-07-30 and
2012-08-01. In contrast with an autoencoder, the PCA is deterministic and does not require random
initialisation. Because of this, there may be some variance in autoencoder model results, even when
using exactly the same setup. This may, in some cases, make the PCA based reduction more robust.

75

−10

−5

0

5

0 50 100 150

−10

−5

0

5

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
0

5

10

15

20

25

30

35

40

2012-04-27 2012-05-04 2012-06-27 2012-07-06 2012-07-30

2012-08-01 2012-08-02 2012-08-14 2012-09-23 2013-01-30

Figure 4.3.7: Time progression of the selected section of calibration dates, with reduced dimen-
tionality using PCA, only for R-type sensors. Color marks sensor number.

0

50

0 100 200

0

50

0 100 200 0 100 200 0 100 200 0 100 200

65

70

75

80

85

90

95

100

105
2012-04-27 2012-05-04 2012-06-27 2012-07-06 2012-07-30

2012-08-01 2012-08-02 2012-08-14 2012-09-23 2013-01-30

Figure 4.3.8: Time progression of the selected section of calibration dates, with reduced dimen-
tionality using PCA, only for Φ-type sensors. Color marks sensor number.

76

1

2

3

4

1 2 3 4

0

2

4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0

5

10

15

20

25

30

35

40

2012-04-27 2012-05-04 2012-06-27 2012-07-06 2012-07-30

2012-08-01 2012-08-02 2012-08-14 2012-09-23 2013-01-30

Figure 4.3.9: Time progression of the selected section of calibration dates, with reduced dimen-
tionality using an autoencoder, only for R-type sensors. Color marks sensor number.

0

2

4

1 2 3 4 5

0

2

4

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

65

70

75

80

85

90

95

100

105
2012-04-27 2012-05-04 2012-06-27 2012-07-06 2012-07-30

2012-08-01 2012-08-02 2012-08-14 2012-09-23 2013-01-30

Figure 4.3.10: Time progression of the selected section of calibration dates, with reduced dimen-
tionality using an autoencoder, only for phi sensors. Color marks sensor number.

The Figures 4.3.11a-4.3.12b represent all calibration dates on the same plot, split into different
sensors, and created with different techniques. Notice that all of the plots have different axes scales, as
the methods used to reduce dimensionality do not retain the scale. The most helpful insight to those
plots is that the relative change represents outlying calibrations.

4.3.3 Results

The dimentionality reduction task belongs to the unsupervised learning area of ML and, as such,
escapes the possibility of precise quantitive measures. The results must be interpreted visually.

77

0 50 100 150

−10

−5

0

5

symbol
other
anomaly

0

5

10

15

20

25

30

35

40

sensor

A

B

(a) PCA, R sensor type

−50 0 50 100 150 200

−20

0

20

40

60

symbol
other
anomaly

65

70

75

80

85

90

95

100

105
sensor

A

B

(b) PCA, Φ sensor type

Figure 4.3.11: All of the calibrations, with reduced dimentionality using PCA.

78

1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5 symbol
other
anomaly

0

5

10

15

20

25

30

35

40

sensor

A

B

(a) autoencoder, R sensor type

1 2 3 4 5

0

1

2

3

4

5
symbol

other
anomaly

65

70

75

80

85

90

95

100

105
sensor

A

B

(b) autoencoder, Φ sensor type

Figure 4.3.12: All of the calibrations, with reduced dimentionality using autoencoder.

79

The method presented in the pedestal dimentionality reduction section learned to recognise the
trend. As such, it may be a valuable substitute for observing the trends of the pedestals at a glance.

The method for the threshold dimentionality reduction shows clear signs of being sensitive to
significant changes in the calibration process and may be used for relative comparison of the threshold.

In summary, both PCA and autoencoders are viable options for dimentionality reduction in the
space of the calibration of Velo detector.

4.4 Time to the next calibration forecasting

The calibration procedure requires a special LHCb trigger activity and had to be always planned with
great deal of care. This special data taking task was performed during no-beam time slots and due to
the complicated Velo system at least one expert must have been present. Also, the RAW data necessary
for the calibration are of completely different nature than the regular physical data taken during
proton-proton collisions. A typical event size from the entire detector amounted to a few kB during
Run 1 and 2, whilst, a single RAW data event from Velo (no suppression, signal is written out from
each detector channel) amounted approximately to 190 MB. That large amount of data sent through
the trigger system put an enormous stress on it. Also, the significant volume of data challenged each
time the disk storage system. Due to its complexity the calibration procedure was run approximately
once per month. The data was then processed and the benchmark calibration parameters were
evaluated and uploaded to the memory of Tell1 boards.

All these inconveniences related to the calibration data taking motivated a study on an intelligent
method of predicting the necessity of the calibration based on the detector’s current condition. The
studies performed with the machine leaning approach are described in Section.

4.4.1 Dataset

The calibration data stream contains, in principle, two related types of data: RAW data and setup
parameters (also called calibration parameters). The latter are extracted by a set of algorithms,
identical for all calibration dates, from the RAW data. The RAW data contains, in turn, signals
registered on each readout channel during no-beam time slot.

The statistical analysis of the calibration parameters’ trends, described previously, has indicated a
candidate for a key quantity that could be used to identify a need for the next calibration. Since, the
pedestals turned out to be critical for the quality of the data produced by the vertex detector the
analysis focused on them. It was observed, that the pedestal subtracted data slowly drifted, as a
function of time, to the point where the data quality was no longer acceptable. During the regular
operation a 1-dimensional histogram, also called the summary pedestal histogram, with pedestal
subtracted values evaluated on each channel, was used as an observable related to the data quality.
Formally, one can define the Δμ as:

Δμ = μcurrent − μcalibration (4.8)

80

Where μcurrent is the mean of all pedestal subtracted data coming from the current run and μcalibration all
pedestal subtracted data evaluated after the calibration. Since, the calibration should produce the flat
baseline (i.e., the mean value measured at each channel should be centred at 0 ADC), the
1-dimensional summary histogram after the calibration was expected to be approximately normal with
the mean value equal to 0 ADC counts and variance close to 0.5 ADC counts. Now, one can analyse
the time evolution of the summary histograms produced for RAW data taken at later times* with
respect to a given calibration parameters. The main premise being, that the drifting pedestals should
affect the summary histogram in a specific way. The study of the Δμ was not conclusive, which is
compatible with previous analysis that showed no clear trend in pedestal values over the time.
However, the analysis of the variance, σ(Δμ), showed a clear trend in time. An example of this is
presented in Fig. 4.4.1a. These results show that the width of subsequent summary plots getting larger,
thus, σ(Δμ) steadily grows in time between calibrations.

The data used for the forecasting model comes from 2018. The respective calibration RAW data sets
collected in 2018 show the best quality and in this year the calibrations were performed relatively
frequently comparing to the previous years (e.g., in 2017 only two calibrations were performed). The
more frequent calibrations are related with the radiation damage effects that started to be very
pronounced in 2018. The exact time span of the data is from 2018-05-08 to 2018-09-24. This
constitutes exactly four calibration periods. The used data comes in the form of σ(Δμ)n where t stands
for a given run time. The time information is translated to delta time (dtn = tn − tn−1). Both of the
vectors are used to craete an input Xn.

Xn =

[
σ(Δμ)n
dtn

]
(4.9)

The continuous-time series of data is transformed to windowed time series of 100 data points,
beginning with the first data point after calibration and padded with zeroes. The padding here means
that the the σ(Δμ) vector calculated at the first input looks like this: [0, 0, 0, ..., 0, 0, σ0] and the next
one [0, 0, 0, ..., 0, σ0, σ1] etc. The analogical padding was used for the dtt.

As it is a case of supervised learning, the additional component Yn is set to be a number of days left
until the next calibration. The number of days was chosen as the most suitable time range for this
purpose, as there can be many runs per day. In practice, it means that the input to the neural network is
a vector with 42 values + 1 value for the time difference. The used model is a version of a recurrent
neural network, which means that the temporal dimension of the data can be modulated. In this case,
the model is trained using 100 vectors long sequence.

4.4.2 WTTE-RNN model for Velo

The WTTE-RNN, as discussed in Sec. 3.4.3 is capable of outputting the parameters of the Weibull
distribution. The actual type of problem, related to analysis of the time ordered events, in machine
learning is called survival analysis. The architecture of the neural network used for forecasting is

*RAW data samples were also taken during regular physics runs for the monitoring purposes. Usually, for a long run a
few thousands of RAW events were taken.

81

(a)

(b)

(c)

Figure 4.4.1: σ(Δμ) plotted for the whole detector (top), Φ-type sensors (middle), and in R-type
sensors (bottom). Dates of the benchmark calibrations are marked as red vertical lines for conve-
nience, the green lines correspond to linear trends calculated between calibrations.

82

(a) The loss metrics during the training of the
WTTE-RNN.

(b) The mean square error metrics during the
training of the WTTE-RNN.

Figure 4.4.2: The training process of the model.

presented in Table 4.4.1. It contains six layers in total. The LSTM layer is necessary for the time series,
that is used as input data, in order to retain the knowledge on time relation between the analysed
events.

Layer No. Layer type Layer size
1 Dense 43
2 Dropout
3 LSTM 20
4 Activation - Tanh
5 Dense 2
6 WTTE-Activation

Table 4.4.1: The neural network layers used for the WTTE-RNN model

4.4.3 Training and results

The Adam optimiser was used with 400 epochs in the training process, with the Weibull log-like
discrete loss. The batch size was equal to 50. The training data used the first three calibration periods
visible at Fig. 4.4.3, with the last period being left out as a test dataset.

The process of the network training is depicted in Fig. 4.4.2. You can see that both loss metrics and
the additional MSE is decreasing. For testing purposes, it is helpful to compare the output to the real
data. In Fig. 4.4.3 you can see a comparison of the time left to the calibration with the time predicted
from our model. The model is incorrect about its predictions at the beginning, right after calibration,
due to a low number of available data points, because the model has less knowledge about current
callibration, since it is a new calibration. It is also visible that the discrepancy between the ground
truth and a prediction comes from the large gaps in the subsequent pedestal subtracted data coming
from the in the last weeks of the data taking. The results shown here are auspicious, but ideally should
be confirmed on a larger set of data in the upcoming runs of the LHCb detector. Because this method

83

Figure 4.4.3: Real time to calibration (blue points) and the predicted by the trained WTTE-RNN
model (red points)

relies on the pedestal information, it could be easily adapted to other detectors.

4.5 Chapter Discussion

This concludes the studies for the strip Velo.
The analysis in Section 4.1 proves that the Velo maintainers mitigated the radiation damage. The

bias voltage introduced to the detector has kept the overall trend of the pedestals close to zero. The
noisy channels have been systematically turned off when exhibiting improper behaviours. However,
the total number of masked channels was increasing, which is consistent with the expectation of the
effect of the ionising radiation.

This analysis also shows that the imperfect calibration process influences the thresholds. We have
shown that it can leverage that influence to create a probabilistic programming algorithm for anomaly
detection in the calibration.

We have shown that the PCA and autoencoders create a valid candidate for the dimensionality
reduction tasks in the space of the calibration parameters for the strip Velo.

The studies of the influence of the calibration on the detector signal have shown that the difference
between the calibration pedestal and the mean noise of the signal coming from the channel is growing
with time after the calibration and can be used to predict the need for recalibration.

Becaues the methods presented here are reliant on a simple calibration process, we believe they may
be used in other kinds of the silicon detectors.

The ideal course of further developement of this research would be to extend it on the Velo in the
run 3, with larger set of data.

84

Any sufficiently advanced technology is indistinguishable from
magic

Arthur C. Clarke

5
Machine Learningmethods and analysis for VeloPix

While the studies in Chapter 4 were necessary, they were also the testbed for developing methods that
may find use in Run 3 with the upgrade of Velo detector (VeloPix). They also rely heavily on the
calibration data recorded during the working of the detector. Without the newly upgraded detector
working entirely and without the actual data, it is impossible to introduce the samemethods before the
data taking starts. It is also worth noting that VeloPix has a different calibration process and data taking
mode, therefore any method based on strip Velo will need to be properly adjusted. Nevertheless, using
the test-beam data which was used for finding the optimal configuration of VeloPix ASIC and the
experience gained in the process, we can continue research before Run 3.

In the field of particle detectors, one should always be wary of the unexpected. The radiation
damage or just pure unluck can lead to various scenarios. One of them is a scenario when sensor either
introduces too high an amount of variance, or behaves unexpectedly. Similarly to the strip Velo, the
VeloPix has mechanisms to silence such a sensor, which renders the detector ”blind” in a given sensor.
However, even when the noisy sensors are silenced, another malicious effect still exists, which can
harm the reconstruction of the track of particles. Given an unfortunate grouping (clusters) of the
masked pixels in multiple sensors, there can exist a track that the entire detector can be blind to. This
exceptional threat to particle track reconstruction is nearly impossible to be found on a detector
calibration with about 65 million individual pixels. In Section 5.1 we present a novel tool based on an
unsupervised learning algorithm for detecting clusters of masked pixels. We believe this algorithm can
be used not only for resolving the particle track reconstruction problem but also broadly for mask
cluster tracking in any MediPix family sensor.

The radiation damage in a silicon sensor is a foe most effectively fought off with preparation and
awareness. The Velo (both strip and pixel versions) detector was designed to be retractable from the

85

collision point. This allows for regulation of the amount of particles flowing through the detector,
which in another case, could overflow it with data. However, this also makes a compelling case for
measuring the fluence of the detector, as quite literally, it is a moving target. One would think that
since the detector is designed for particle track reconstruction, it would allow for easy calculation of
the fluence by counting the hits. Sadly it is not the case. The data-taking mode of the VeloPix is
focused on selecting the tracks that can be used for physics study purposes and discards all other
information. The rate of the particles incoming to the detector enforces the processing speed and
forces not to process more data than is necessary. The awareness of the radiation damage always comes
only after the fact, since we cannot measure it before it happens. Luckily, in the VeloPix sensors, there
exists a mechanism that is influenced by the damage introduced to the silicon. By measuring the
change in the behaviour of that mechanism, we can determine the damage and, in turn, the fluence
delivered to the sensor. The surrogate function relates the ToT signal (Sec. 5.2) from the sensor to the
charge gathered. The process of calculating the parameters of the surrogate function is de-facto
measuring the response of the silicon to the charge deposit. This is the link between the fluence and
the detector calibration parameters that can be leveraged to our advantage. The Sec. 5.2 presents the
studies of the method for linking the surrogate parameters with the fluence delivered to th e sensor.

5.1 Intelligent pixel mask cluster tracking

As discussed in Sec. 2.4.2.1, the VeloPix masks are essential for filtering signals that otherwise would
significantly increase the number of produced noise hits. In short, the pixels in the VeloPix sensor that
exhibit too large noise are “masked” - meaning that their readout is deactivated. The masked pixels are
less problematic when they are evenly distributed across the sensor, but when they are grouped
(clustered) together, they can cause a problem for the particle track reconstruction algorithm (Fig.
5.1.2). Simple counting of the masked pixels may not be enough to detect clusters or other structures*
that can be formed by the masked pixels. During a regular operation of a properly configured pixel
sensor the distribution of masked channels should be flat and random and should not feature any
accumulation points or structures. Due to its critical impact on the data quality the masking procedure
is going to be, arguably, the most important for the daily operation of VeloPix detector. Precise, robust
and fast analysis of the masked channels will play a vital role and cannot just include a simple counting
algorithm but should also offer more sophisticated metrics. For instance, per sensor analysis of the
masked channel density distribution as a function of the channel position.

5.1.1 Simulation of the VeloPix masks

Due to the VeloPix being still under development and commissioning during these studies the real
calibration data were not available at the time of this analysis. Instead, a dedicated readout system built
in the microelectronics lab at AGH-UST was used to produce a fake mask files. Each such file contains
255 x 255 masks that can be uploaded to the memory of VeloPix chip to configure it. The masks can
take on two values zero or one, where zero stands for good channel and one for channel to be masked.

*The worst case scenario is a problem with an entire column or row of pixels.

86

0 50 100 150 200 250

0

50

100

150

200

250

0

1

2

A

Figure 5.1.1: An example of clusterisation performed using DBSCAN (ε = 10, MinPts = 4) on
the binary pixel-map. Clusters are numbered 1-3., and pixels belonging to cluster are colored red.

The position of the mask is directly mapped to a position of a channel on the sensor. To make a
realistic simulation, the following scenarios have been considered:

• Random uniform changes P, in which a random portion of pixels changes their state to masked
• Linear cluster Lwhere a linear portion of pixels are masked.
• Blob clusterGwith masks created by a 2D isotropic Gaussian distribution.

These scenarios were created to reproduce some effects observed during the preliminary lab tests of
the VeloPix pixel sensors. These intrusions are added to an initially empty mask file with a different
probabilities. Each of the intrusions is created and added to an empty mask matrix to form a single
simulated matrix A. One crucial step of this simulation is a random cleaning of the mask matrix, where
a random fraction of the bad pixels are set back to a no-masked state. The pseudocode, describing the
fake mask files generation, can be found in Listing 3. This process creates a continuous simulation of
VeloPix mask matrices, as the new masks and clusters are generated and the old ones slowly disappear.
In this way multiple sensors and multiple calibration runs can be simulated.

87

masked
pixel

unaffected
pixel

pixel registering hit
possibly missed track

Matrix 1 Matrix 2 Matrix 3 Matrix 4 Matrix 1 Matrix 2 Matrix 3 Matrix 4

Figure 5.1.2: A visualisation of the problem of the clustered masks. Both images contain a rep-
resenataion of multiple aligned sensor matrices pixels, with particle tracks marked with lines. The
left image contains uniformly distributed masks, while the right one containse clustered masks.
Both cases have the same number of masked pixels.

Data: n ≥ 0
Result: y = xn

N← n;
whileN ̸= 0 do

if random()< blob_prob then
A← A+ G

else if random()< line_prob then
A← A+ L

else
A← A+ P

end
A← A+ Pu
A← N− 1

end
Algorithm 3: Steps of the mask cluster simulation.

5.1.2 Mask clustering

It was decided to use machine learning approach for searching for potential ordered structures in mask
files. Due to the nature of the data an unsupervised technique was chosen based on clusterisation.
There are many clustering algorithms present in the field of machine learning. Although they all come
under the term ”clustering”, there are multiple different goals that various algorithms can achieve. The
most common density search clustering algorithms are DBSCAN and OPTICS. The details of these

88

algorithms are described in Section 3.7. In the case of application of the clustering algorithm towards
analysis of mask files produced during the calibration, the desired algorithm should be able to
differntiate points that belong to a cluster from the outliers. The two algorithms selected for this study
fulfill this requirement.

5.1.3 Mask cluster features

After finding mask clusters for a given calibration (a one set of mask files), they can be characterised by
a set of features.

1. Position pk = (x̄k, ȳk), where x̄k =
∑Nk

i xik
Nk

, ȳk =
∑Nk

i yik
Nk

.

2. Size sk = {nk, dk} where nk is the number of pixels in a cluster divided by the mean number of

the pixels in the given sensor’s clusters. The dk =
√∑Nk

i (xik−x̄k)2−(yik−ȳk)2

Nk
is a density of a cluster.

3. Shape hk = {αk, ck}, where αk is the directional coefficient of the cluster measured by the fit to
the line yk(x) = αk ∗ x+ bk. The ck is the roundness of the cluster calculated as it’s Pearson
Coefficient.

With those metrics, the spacial characteristic vector can be defined as vk = [sk; hk]. Then a cluster
can be dfined as a set of unique features clusterk = pk, vk.

5.1.4 Mask cluster tracking

This set of unique features, defined in the previous Section, characterises every cluster found for a
given calibration. The clusterk features are then used to identify cluster k from timestep tn as the same
in the timestep tn−1. It is performed by calculating a cosine similarity matrixM. TheMmatrix is
calculated in the following manner:

Mi,j = Φi,j ∗ Vi,j (5.1)

WhereΦ is defined as:
Φi,j =

1
dmin
∗max(dmin − Di,j, 0) (5.2)

andDi,j is a distance matrix:
Di,j = ||pj − pi|| (5.3)

Also, the Vi,j is a cosine similarity matrix:

Vi,j =
vi ∗ vj

||vi|| ∗ ||vj||
(5.4)

The index i and j are indeces of clusters in tn−1 and tn. The value dmin is set to be a limiting factor. If
the distance of centroids of the clusters stays the same, the value is 1., but as the distance approaches
dmin, the value approaches 0. In the tests of the cluster tracking dmin = 10was used. The exemplary

89

pairing of the clusters in consecutive simulation steps is visible in the Fig. 5.1.4 with it’s similarity
matrix calculation in Fig. 5.1.3.

Figure 5.1.3: Rows represent clusters on image A in Figure 5.1.4, columns represent clusters on
image B in Figure 5.1.4. Values indicate the Spacial Characteristics Similarity Measure V (first
plot), and Positional Similarity Measure Φ (second plot). The M matrix is the last plot.

90

0 50 100 150 200 250

0

50

100

150

200

250

0

1

A

0 50 100 150 200 250

0

50

100

150

200

250

new

1new

B

Figure 5.1.4: The algorithm chooses clusters labelled with the same integer as the consecu-
tive generations of the same cluster. Clusters labeled as ’new’ are clusters on the time step tn
(Bottom) that were absent on time step tn−1 (Top).

91

5.1.5 Results

The DBSCAN and OPTICS algorithms were tested on 3000 consecutive simulation steps of a single
sensor evolution in time. The ground truth in the context of clustering of the masks is not something
that can be determined in real-world data. But the simulation, along with the simulation steps, can
attribute any generated mask pixel to its source (random uniform, linear, Gaussian blob), thus
providing information that can be used as ground truth. It is assumed, in this analysis, that the
generated pixel should be identified as belonging to a cluster after up to 8 timesteps. The Table 5.1.1
presents a confusion matrix calculated using that ground truth information. The OPTICS algorithm
has three times as many false positives as the DBSCAN. On the other hand, it has almost twice more
true positives.

Table 5.1.1: Confusion matrix values in 3000 consecutive simulation steps.

Value OPTICS DBSCAN

True Negative 7608 16207
False Positive 11680 3081
False Negative 1156 3167
True Positive 5665 3654

Accuracy 0.51 0.76
Precision 0.33 0.54

Both algorithms have been tested for the ability to track the consecutive mask cluster’s through the
steps of the simulation. Fig. 5.1.5 depicts the number of the masks associated with any cluster starting
at the timestep of the introduction of said masked pixel. It is visible that The OPTICS algorithm
recognises more pixels as belonging to clusters and for an extended amount of time, whereas the
DBSCAN very quickly drops its attention to the pixels.

92

Figure 5.1.5: The fraction of pixels categorised as belonging to any cluster (Y-axis) in the next
consecutive calibrations (X-axis), since the cluster introduction to calibration (number of timesteps
n = 300). The number of detected masked pixels slowly decreases with time. The OPTICS algo-
rithm (left plot) recognises the masked pixels of the clusters as belonging to a cluster (not neces-
sarily the same one) for a more extended amount of time. The DBSCAN is more strict in distin-
guishing the masked pixels that belong to clusters.

The important test is the influence of the clustering algorithm on the cluster tracking ability. The Fig.
5.1.6 shows a total number of mask clusters in a given simulation timestep, recognised as new or
coming from the previous timestep. It is clear that the cluster tracking with OPTICS detects much
more clusters as new, and loses more clusters from calibration to calibration, whereas the DBSCAN is
finding fewer new clusters, and retains old ones.

Figure 5.1.6: The number of clusters classified as being ”old” - same as in previous calibration
(blue colour), and a number of clusters marked as ”new” - not being the same clusters as in pre-
vious calibration (orange colour). The left plot belongs to OPTICS, and the one on the right to
DBSCAN.

5.2 Studies of the surrogate activation functions in VeloPix sensors

The LHCb vertex locator upgrade led to a major change in sensor technology to provide a much larger
channel density and radiation hardness. Both of these features targeted the need to cope with five
times higher particle fluence after the upgrade and could only be realised by using silicon planar pixel
sensors. The initial design assumed that the new pixel sensors would be read out in analogue mode.

93

However, simulation studies showed that it would lead to an unmanageable high data stream. Thus, a
few years into the project, the decision was made to support only the binary readout for the upgrade
VeloPix detector. Still, there is a dedicated data channel, called ECS (Experiment Control System) link,
that allows to send out extended digital data at a low rate. This is essential for taking calibration data
and understanding the radiation damage effects and measurement of noise. The information about the
deposited energy is measured using the TOT³⁷ (Time-Over-Threshold) technique. So, instead of
measuring voltage pulse amplitudes, the readout electronics measure the time window when the
voltage pulse is higher than a set analogue threshold (see Fig. 5.2.1). One should stress that the TOT
is, by definition, a digital signal. In order to properly get the proper relation between the TOT counts
and the deposited energy, each pixel should be calibrated via measurement of the so-called surrogate
or activation function (see Section 5.2.1). With the ECS data link it will still be possible to take the
extended data and measure the charge collection efficiency for the irradiated VeloPix sensors. The
technique that will be used for VeloPix is the measurement of the MPV (Most Probable Value) value
of the Landau deposition curves. Such studies have been performed during dedicated test beam
campaigns to evaluate if the new pixel sensors will efficiently operate at the end of the Run 4. One idea,
that can possibly bring a significant breakthrough for irradiation studies, pertains to particle fluence
estimation based on the properties of the surrogate function that, as it turns out, changes in a function
of particle fluence. This would bring a novel method for measuring the particle fluence for VeloPix,
and possibly for other sensors of MediPix family.

Figure 5.2.1: A schematic of the TOT working mode.

5.2.1 Surrogate function model

The surrogate function is the analytical model that relates the TOT counts to the generated charge,
that in turn, is proportional to the deposited energy⁸⁶. In essence, the surrogate function is required
for the proper energy calibration of each individual pixel in the sensor. It is predicted that the surrogate
curves may change significantly during the operation time of the VeloPix detector due to severe
radiation damage. Understanding and quantifying such changes is a top priority for predicting the
detector behaviour after irradiation. This work shows that using the properties of the surrogate
functions one can attempt to evaluate the fluence.

The surrogate function can be approximately modelled using the following analitical formula:

94

ToT(q) = p0 + p1q−
c

q− t
(5.5)

The formula depends on four parameters: p0, p1, c, t, and is essentially a combination of linear and
hyperbolic functions. There is an underlying assumption that q > 0. An exemplary surrogate function
is presented in Fig. 5.2.2. Starting from the lower values, the surrogate function’s hyperbolic part is
most dominant. Later, the linear component of the function is most dominant as the deposited energy
increases.

Figure 5.2.2: An exemplary plot of the surrogate function. Source:74.

5.2.2 Experimental data

For the source of the data in our studies, the dataset collected during one of the test beam⁷
experiments is used. The test beam was conducted while developing the LHCb VeloPix upgrade
detector. Particulary, the case where the irradiation of the sensor was performed non-uniformly is the
most interesting. That is, that within the sensor different areas have different ammount of total fluence.
This allows to link the parameters of the surrogate (which are calculated on per-pixe basis) with
different fluence levels. The test beam setup used a Timepix3 telescope device¹⁰ that allows for a very
precise charged particles tracking with a track pointing resolution, at the centre of the telescope, close
to 2 μm. The device was also able to provide a timestamp for each track with a resolution of 1 ns.

5.2.3 Cross sensor study

The test beam data contained multiple different types of sensors with different irradiation schemes.
Unfortunately, in the entire dataset, only one sensor (designated as S8) is suitable for studying the
surrogate activation curves in function of particle fluence. This is due to the irradiation profile of the
sensors and available raw data. Sensor S8 was the only one with a clear, non-uniform profile of the
irradiation. For easier analysis and better statistics, the pixels are grouped into bins of simmilar level of
fluence (Fig. 5.2.5). The S8 sensor was the only one that allowed for a binning of the sensor based on
the amount of irradiation that the sensors were exposed to. The S8 is a 200 μm thick, Hamamatsu
n-on-p planar silicon pixel sensor that is virtually identical to the sensors used in the upgrade VeloPix
detector construction. During the test beam experiment it was connected to the Timepix3 readout
chip.

95

Although other tested sensors featured uniform irradiation profile, their activation curves were also
investigated . The main strategy of the analysis was to study the properties of the surrogate function
paramaeters distributions before and after the irradiation. The respective distributions are presented in
Figs. 5.2.3 and 5.2.4. The important feature, from the perspective of our analysis, is that for most of the
sensors, the distributions of p0 and p1 parameters shifted to the left after the irradiation. This shift
shows that those parameters are sensitive to the fluence. For the parameters c and t the trend is not as
evident.

Figure 5.2.4: Distributions of the surrogate model’s parameters measured using sensors S27, S29
and S30. The rows of plots represent respective sensors, each of the columns of the plots repre-
sents a parameter of the surrogate model (p0, p1, c, t). The colour blue (pre) denotes the distribu-
tion before irradiation of a given sensor; the orange colour is the distribution after the irradiation
of the sensor..

5.2.4 The fluence

As mentioned previously, the sensor S8 was the only one with well-documented non-uniform
irradiation profile. For the purpose of this studies, an innovative analysis using an adaptive elliptical
binning presented in Fig. 5.2.5 is proposed. This binning allows for assigning fluence values per bin
and group the pixels with similar fluence level. The actual value of the fluence per bin is the total
fluence in the bin. Such approach not only accommodates in a natural way the actual fluence profile

96

Figure 5.2.3: Distributions of the surrogate model’s parameters measured using sensors S8, S16,
S17, S21 and S22. The rows of plots represent respective sensors, each of the columns of the plots
represents a parameter of the surrogate model (p0, p1, c, t). The colour blue (pre) denotes the
distribution before irradiation of a given sensor; the orange colour is the distribution after the irra-
diation of the sensor.

97

but also allows to evaluate various properties of the sensor, expressed as a function of the fluence, with
much greater precision and sensitivity. The measured total fluence per bin, is as seen in the table 5.2.1,
the innermost bin has the highest fluence level. This means that the effects of the radiation will be
expected to be most visible in the centre of the studied pixel matrix.

Figure 5.2.5: A heat-map of the binning used in the analysis of the fluence. The binning starts
from 0 at the centre, and the outermost bin is labelled as 7. Each colour represents a different
elliptical binning.

Bin label Fluence [neq/cm21̇e15] No. pixels
0 7.504 2153
1 7.187 6406
2 6.595 10718
3 5.760 15040
4 4.766 13715
5 3.655 12228
6 2.681 5141
7 1.779 135

Table 5.2.1: Table of fluence per bin

The visible shifts in the surrogate model’s parameters p0 and p1 distributions (with respect to the
irradiation) visible across the sensors (Figs. 5.2.3, 5.2.4) are complementary to the shift visible in the
sensor S8, when comparing the distributions of these parameters per bin, in the Fig. 5.2.7. The
parameters distributions are depicted as boxplots, per fluence bin, pre- and post-irradiation. A detailed
explanation of the used boxplot can be seen in Fig. 5.2.6. One can notice that the p0 and p1 parameters,
measured for the irradiated sensors, exhibit lower values in comparison to the pre-irradiated ones.
Interestingly, the trends for both investigated parameters are reversed, the p0 increases as a function of

98

fluence, whilst, the p1 decreases. The c parameter exhibits a more significant variance with slightly
elevated values. The T parameter also shows large variance, with a visible overall decrease.

Figure 5.2.6: A plot explaining the scope of the boxplot. The top plot represent the boxplot, with
median in the middle. The range of the box spans from Quartile 1 to Quartile 3. The interquartile
region (IQR) is the width of the box. The whiskers span from the edges of the box to length of 1.5
IQR to either side of the axis. The two bottom plots explain the ranges in terms of percentages
and width of the distribution. Additionaly, an outlier is a value lying outside the both whiskers
range.

99

Figure 5.2.7: Surrogate model’s parameters measured for sensor S8 plotted as boxplots for the
respective fluence regions. Left-hand side plots represent parameters for non-irradiated sensor,
whilst, the right-hand side ones after irradiation. Note, that the highest fluence bin, on the post-
irradiation plots, is the far-left one.

100

Figure 5.2.8: Pearson correlation coefficients between the surrogate parameters in pre- and post-
irradiation cases.

When analysing the parameters, it is important to note their correlation. The Pearson correlation
parameters presented in Fig. 5.2.8 show a high correlation between c and t pair, as well as c and p1. The
reasons for such correlation are not explored but acknowledged it in further studies.

Figure 5.2.9: Average surrogate functions plotted for selected fluence regions. Broken lines shows
the measured curves before the irradiation, the solid ones after irradiation.

To better understand the evolution of the surrogate functions, some exemplary activation curves are
presented, plotted using the mean value for each respective parameter in selected sensor regions
corresponding to appropriate fluence bins. These exemplary surrogates, plotted for four sensor regions,
showed in Fig. 5.2.9 are just approximations since they are not de-correlated parameters, rather just
the mean values. In both cases a similar spread of the curves is observed, which is normal, since there
is always a spread in physical properties of individual pixels. Interestingly, the spread seems to be
approximately the same before and after the irradiation. The most pronounced difference is a
significant change in the surrogates’ slope after irradiation. This effect can be interpreted as a decrease
in charge collection efficiency after irradiation. This is well reflected in the behaviour of the parameter
p1 - the slope of the activation curve is decreasing as a function of particle fluence. Also, it is visible,
alas less clear, that the charge necessary for pixel activation is higher after irradiation.

101

Given this change in pixels behaviour after irradiation, the problem can be inversed, by measuring
the evolution in the surrogates’ parameters before and after the irradiation, it might be possible to
estimate the fluence based solely on the data coming from the sensor. One should stress, that this
technique may be a major innovation in the field of the silicon radiation studies. So far only reliable
methods of fluence estimations exists based only on Monte-Carlo modelling. Typically, the
uncertainty of such modelling is assumed to be at least 100%

5.2.5 Modelling the surrogate curves evolution in the fluence domain

In order to discover the exact nature of the relation of the surrogate parameters with the fluence, a
statistical model is created. As previously shown in Fig. 5.2.3, the four parameters have a distribution
that can be aproximated with a gaussian. In case of one free parameter this could be done simply by
aproximating it’s distribution. With four parameters and partial correlation between them, additional
steps in the analysis are needed. The model, used in our studies, for the surrogates evolution as a
function of fluence consists of two parts, rescaling and application of the PCA (Principal Component
Analysis). In this way, a large set of surrogate curves can be generated. This set of surrogate curves will
allow to search for potential pattern of the fluence evolution. Because the parameters have different
ranges of values, scaling is needed to bring them to the same range. A standard scaler in form of
(z = x−u

s is used, where u is mean and s is standard deviation). Next, because the Pearson coefficient
indicates that the parameters are correlated, and the PCA is used to decorrelate them. Since it is easy to
decorrelate the variables using the PCA, which assumes that the variables follow the normal
(Gaussian) distribution, the Gaussian distribution for the activation curves’ parameters is assumed.
The PCA internally fits the dimensions of the variables to a 1D Gaussian, and its transformation matrix
is holding the width and mean information. And so the model can be summed in two steps

1. Scaling (z= (x-u)/s)
2. Decorrelation with PCA.

The PCA decorrelation allows then for the sampling of the parameters from the decorrelated space
using four random Gaussian generators and the following procedure;

1. Inverse PCA
2. Inverse scaling (x = (z*s) + u)

This process is useful for checking the loss of the quality of the parameters resulting from assuming
that the parameters follow normal distribution. Fig. 5.2.10 shows the results of applying the model of
the surrogates measured for the sensor S8, for all pixels pre-irradiation. It is clear that the generated
parameters are of sufficient quality for our purposes (for more detailed studies a more sophisticated
model, such as an autoencoder, may be used). An additional test for the model is presented in Fig
5.2.11. The plot depicts the combination of the generated parameters into respective surrogate
functions, both using the real world data, and the generated output from our statistical model using
learned distribution.

102

In the two previous tests of the model (Fig. 5.2.10 and 5.2.11) all of the pixels of the sensor were
modelled for either pre-irradiated sensor or post-irradiated sensor without the distinction of fluency.
By separating the sensor into 8 distinctive bin areas, it is possible to relate the surrogate parameters to
the fluence level. For each of the two cases (pre or post-irradiated) and each of the 8 bins, the
distribution parameters are learned separately. The Figs 5.2.12 and 5.2.13 depict the results for the full
fluence model, split according to respective sensor regions, are presented. The real-world data and the
simulation result are overlayed. Although all parameters are shown (p0, p1, c, t), the p0 and p1 have
the most substantial impact on the overall shape of the surrogate function. While in Fig 5.2.12 it can
be seen that the distributions in the consecutive bins for the p0 and p1 do not change, in the Fig.
5.2.13 a noticeable change dependant on the bin is visible. This change corresponds to the change in
the fluence in the bins. What is also important is that in both cases, the real and generated data overlay
quite well, showing that our model reflects the change influence.

103

Figure
5.2.10:

Exem
plary

resultsofthe
surrogate

fluence
m

odelforthe
entire

sensor.Each
colum

n
ofthe

plotrepresentsa
differentparam

eterofthe
surro-

gate
function.The

firstrow
ofplotpresentsthe

distribution
ofrespective

surrogate
m

odelparam
etersasm

easured
forthe

sensorS8.The
m

iddle
row

shows
the

distribution
afterscaling

and
applying

the
PCA,with

the
Gaussian

function
fitin

orange.The
bottom

row
showsthe

sam
e

actualdistribution
asin

the
firstrow

in
blue,and

a
distribution

ofgenerated
param

etersusing
the

inverse
m

odelprocedure.

104

(a) Real data

(b) Generated data

Figure 5.2.11: Comparison of true and generated surrogate functions. In case of real data a sam-
ple of 300 curves were selected on random from measured data set (plot a). Plot b presents a gen-
erated sample of the same size.

105

Figure 5.2.12: Comparison of real (blue) and generated (orange) parameters for all bins before
the irradiation.

106

Figure 5.2.13: Comparison of real (blue) and generated (orange) parameters for all fluence re-
gions after the irradiation.

107

5.2.6 Results: Particle fluence estimation based on the surrogate curve properties

Using the model described in the previous section a correlation beetween the fluence and the
parameters of the surrogate curves can be made. In other words, it should be possible, by analysing the
activation curves of an irradiated sensor to recover the fluence level to what the sensor was subjected to.

Fig. 5.2.14 depicts the most important output of this work. Here the exact correlation between the
surrogate parameters and the fluence is shown. It depicts the mean and standard deviation of the
parameter per fluence bin. In case of p0 and p1 parameters, there is a clear dependence on the fluence.
It can be seen that the p0 (intercept) is increasing with the fluence, and p1 (slope) is decreasing. This
in accordance with our expectations, as it means that with the same signal (eV) the lower ToT number
is produced, which meanse the decrease in sensitivity of the sensor after irradiation. On the other
hand, the dependency of the remaining two parameters c and t is not so clear. Based on that one can
conclude that the fluence has much more impact on the linear part of the surrogate function than on
the hyperbolic part. The hyperbolic part of the surrogate determines the minimum of the generated
charge needed to exceed the activation threshold. The progression of the parameter change in respect
to fluence is also fitted with a third-degree polynomial, which can be used for inter and extrapolation.
This fit can be used for reverse estimation of the fluence based on the surrogate (Tab. 5.2.2).

The fluence estimation was cross-checked in the following way. Using the surrogate function
evolution model a fake ’irradiated sensor’ is generated. These generated activation functions were then
used in the simulation software to produce TOT response and reconstruct the Landau deposition
functions. The appropriate MPV values taken from the simulated deposites and real ones have been
compared in Fig. 5.2.15. As it can be seen, the value of measured and simulated MPV agrees very well.
Additionally, the procedure is performed for all fluence bins to get the complete evolution of the MPV
value. The results are presented in Fig. 5.2.16. Again a good agreement between the measured and
simulated data is apparent.

(a) Ground truth (b) Generated surrogates

Figure 5.2.15: Distribution plots of the charge collected in bin 0. The left image shows the dis-
tribution made using the actual calibration surrogate functions, and the right image shows the
distribution made using generated surrogate functions using our model.

108

Fi
gu

re
5.

2.
14

:
Su

rro
ga

te
pa

ra
m

et
er

sa
sa

fu
nc

tio
n

of
pa

rti
cle

flu
en

ce
.T

he
se

va
lu

es
co

m
e

fro
m

m
od

el
of

th
e

se
ns

or
po

st
irr

ad
iat

io
n.

Th
e

er
ro

rb
ar

sd
en

ot
e

th
e

st
an

da
rd

de
via

tio
n

of
th

e
di

st
rib

ut
io

n.
Th

e
bl

ue
lin

e
is

a
th

ird
de

gr
ee

po
lyn

om
ial

fit
.

109

Figure 5.2.16: The plot of the MPV in different bins, using both the ground truth data and the
generated parameters.

parameter x3 x2 x 1
p0 -3.26e-47 3.33e-31 -1.10e-15 3.59
p1 1.53e-50 -1.69e-34 6.84e-19 1.81e-03
c 5.38e-44 -6.73e-28 2.64e-12 1.95e+03
t -1.45e-44 1.85e-28 -7.09e-13 4.91e+02

Table 5.2.2: Paraemeters of the third degree polynomial fit.

5.3 Disussion

In this Section, we discussed the purpose of the surrogate function and its meaning in the sensor. We
have shown a correlation between fluence and surrogate parameter values. We also presented a simple
statistical model that describes the surrogate parameter distribution. This model was later used to find
the exact nature of the relationship between the surrogates and fluence. We have shown that this trend
can be approximated with a third-degree polynomial.

The results of this work have the following implication: it indicates that it may be possible to use the
surrogate calibration to asses the overall fluence experienced by the sensor. Unfortunately, using only a
single sensor and single profile of fluence is not enough to calculate the exact coefficient that would
lead to the immediate calculation of the fluence based on the surrogates for the entirety of the VeloPix
detector.

However, these methods may be used after the commissioning of the detector by repeating our
studies and correlating the surrogates with other means of calculated fluence.

110

Talk is cheap. Show me the code.

Linus Torvalds

6
Software for Velo daily operation

The development of the Large Hadron Collider was foreseen in steps, consisting of data-taking runs
and technical stops. Since the radiation may cause damage to the parts of the accelerator as well as to
the parts of the detectors, these interruptions are necessary not only to mitigate the radiation damage
but to provide a window of opportunity for the upgrade of the composition of the detectors. Since
many of the procedures that rely on the detectors are tailor-fitted to the devices, parts of the software
created for previous versions of the hardware cannot be possibly used for the upgraded setup. The
Storck project was created for handling and tracking of the calibration data. The Titania project was
designed and implemented in place of the old monitoring system called Lovell.

6.1 Storck

Storck stands for “Data Storage and Tracking”. It is a database system created to store Velo calibration
data. It was developed using python⁸⁸ and Django framework³⁶. At the time of writing, it is being
adapted at CERN for use in the commissioning of upgraded Velo pixel detector and subsequently in its
daily operation. This section will present its design. The implementation details can be referred to in
the CERN’s GitLab repository⁶³ and online documentation page⁶⁴.

6.1.1 Motivation

The scientific workflow when preparing or managing a high energy particle detector requires taking
vast amounts of different types of data. Apart from the immediate data coming from the device, other
data types, such as detector’s condition (sensors’ temperature, date, and duration of the run), are also
needed. The development of the monitoring process might be messy and evolve in time. This is also

111

true for the monitoring tasks when using the detector for taking physical data. Usually, data storage
problems are solved with relational databases. But, the relational databases require a predefined
structure that is not easy to be modified when the data have been uploaded. Relational and
non-relational databases are both inefficient for storing large binary files. For those reasons, the Storck
project was created. It utilises a relational database with non-relational elements using the filesystem
storage. It is not oriented towards one type of file, nor does it expect any kind of predefined structure.
Storck allows to share data between its users and track the changes in the data.

6.1.2 Software stack

The software stack of the Storck project reflects the newest trends in the enterprise software
development, as well as best practices in the industry.

6.1.2.1 Django and Django rest API

Python language provides many web frameworks. One of the most popular of them is Django³⁶.
Django is a mature web design framework based on the Model-View-Controller (MVC) design
pattern. Django is split between Model, View and Template. It is important to note that functionally
Django View corresponds to Controller and Template to View parts of MVC. This design pattern
allows for logical separation of the functional responsibility of the code. Functionality of a Django
project are encapsulated in, so called, applications. Each of the application implements its own version
of MVC, though it is possible to use any of the components of the MVC design from any other
application. This framework also utilises object-relational mapping, which frees the framework user
from writing queries using SQL language, and allows for high-level object-oriented usage of the model.

6.1.2.2 PostgresSQL

PostgresSQL⁴ is a widespread implementation of a relational database. It is SQL compliant.
Importantly, it is free and open source. A recent version introduced a non-relational capability, which
is storing the JSON data format along with the ability to make queries using JSON data format.

6.1.2.3 Docker

Docker⁶⁸ provides OS-level virtualisation. It uses images and containers. Docker image is a software
package that contains everything necessary to run an application. Images are defined in special files
called Dockerfiles. Image definition is done by using Dockerfile commands. Images are usually based
on operating systems, like Ubuntu Linux or Alpine Linux. The former is the most popular choice, as
the base image from alpine Linux needs only 8 MB of disk space. When Images are being mounted to
the docker daemon, they are referred to as containers.

112

6.1.3 Service Design Overview

The system’s design at heart uses REST API communication for managing the access to the database.
Users have multiple ways of interacting with Storck, but all of them internally use REST API. Users
can use the web interface and manually input or download the data. For convenience, a python
wrapper to the REST API also exists, so users can easily create scripts that will interact with Storck.
When the webserver receives commands via REST API, it interacts with PostgresSQL to validate the
request and responds using an HTTP request, either by providing the requested information (like a list
of files, file details) or by sending the file. Because HTTP servers may be a bottleneck when serving
large amounts of data, the possibility of downloading the data using direct files access is implemented.
When storing files, Storck doesn’t write them directly to the database, but it saves them to the disk. By
the design of the CERN’s computing ecosystem, this disk space is accessible by ssh connection with
the CERN’s lxplus servers. The Fig. 6.1.1 contains a schematic diagram for the data flow in the Storck.

Figure 6.1.1: The conceptual chart of the data flow in the Storck service.

6.1.4 Implementation

The overall implementation spans over a few Django applications. I will not present parts of the code
here, as I feel this would be excessive. Yet an overview of the essential parts of the implementation of
the service is provided.

6.1.4.1 Files

The most crucial element of the Storck is the StorckFile model/database. It keeps track of the
uploaded files and stores additional information and metadata. The id field contains a unique identifier

113

Property Django model type
id AutoField
file FileField
hash TextField

workspace ForeignKey
user ForeignKey

previous_version ForeignKey
duplicate_of ForeignKey

date DateTimeField
fake_path TextField
meta_open JsonField
meta_closed TextField

hide BooleanField

Table 6.1.1: Table of contents of the StorckFile model.

that identifies each of the files in the database. Next, the file, which is of Django’s File field type,
contains a path to a locally saved file. This property is not implicitly created as the request to file with
its contents comes in, but instead, it is designed with the deduplication procedure described in Sec
6.1.4.3. Hash is the md5sum of the file’s contents, calculated upon receiving. Workspace and user
contain a foreign key connection to the list of all workspaces and users. TheUser field contains the user
id of the user who uploaded this file (or its duplicate). Previous_version points to the record containing
the previous version of the given file. Here “new version” means a new file in a given workspace with
the same fake_path attribute. duplicate_of contains a reference to the file’s duplicate record. fake_path
is the logical path of the file. This property has no physical sense for the Storck database, as the files are
not stored using this path. meta_open is the metadata property. It is JsonField, which makes it flexible,
and allows to create an arbitrary structure of the data inside the field. If one does not want to show
older versions of files in the web view, the flag hide is used to decide whether the file is shown or not.

6.1.4.2 Authentication

The CERN account system allows for OAuth 2.0⁵⁹ authorisation for third party services. Each person
in CERN has a personal CERN account that identifies the user. It uses an (OIDC) OpenID Connect
system built on top of the OAuth 2.0 framework. That means that instead of requiring a proprietary
login password in Storck, the users can be redirected to login to CERN SSO (CERN single sign-on)
service. There, user can use their CERN Account password and log in, the same that is being used for
other services at CERN to log in. Automatically, in the background, CERN SSO communicates to the
web server and confirms the user’s identity. Setting up the authentication with OIDC requires setting
proper tokens on the administrator side. Those can be generated using the CERN application portal.
Although we refer to CERN’s authentication procedures in this section, for anyone willing to reuse
Storck for other purposes, it is possible to do that with any authentication system that implements the
OIDC. None of the parts of this process is specifically dedicated only to the CERN ecosystem, as
OIDC can be interfaced with other services that provide authorisation.

114

method path params
GET /api/workspaces
POST /api/workspace name (body)
POST /api/workspace/user workspacetoken (body)

userid (body)

method path params
GET /api/files hidden (query)

token (query)
GET /api/file info (query)

id (query)
token (query)

POST /api/file token (query)
file (body)
path (body)
meta (body)

Figure 6.1.2: Workspace endpoints of the REST API and their parameters (left) and the end-
points for interaction with Storck files (right).

6.1.4.3 Deduplication

The deduplication process is used when the file is about to be saved in the Storck. The server must
receive the file’s content, and when the process is finished, the server calculates the md5sum hash
value. The database is then checked for the hash matching the file. If the same hash exists in the
database, then the record containing this hash is the duplicate of the incoming file. If the file has no
duplicate, it is processed and saved normally. But if the duplicate exists, the received file content is
discarded. The entry to the file database progresses normally, and the file path to the incoming file is
set to be the same as the already existing file. Additionally, the attribute duplicate_of is also set to point
to the id of the entry of the existing file record.

6.1.5 REST API

The REST API makes for a perfect interface for projects like this. Most modern programming
languages are capable of making HTTP requests by themselves, and there CERN already utilises an
extensive internal network. REST API is agnostic of an operating system and programing language. In
my previous experience with LHCb monitoring, one of the biggest challenges was the compatibility of
the database tools, which only interfaced with the C++ library. The design of STORCK is free of this
problem, as the client of the system doesn’t need to update every time there is a change in the Storck
service.

Tab. tab:workspace-api, tab:file-api, present the listing of the REST API methods. The first
endpoint provides a way of creating and managing the workspaces. That includes the creation of the
workspace, getting workspaces information, and its associated user list. The second endpoint is
responsible for searching for the file, downloading and uploading, and getting detailed information
about the files.

6.1.6 Deployment

The novel deployment process standard in the IT industry is using Dockerisation. And so, Storck, in
its deployment, depends on it.

115

Figure 6.1.3: The schematic of the Storck deployment process. The light green colour means
optional components.

The Fig. 6.1.3 depicts the flowchart of the deployment for storck. The lowest level of the
deployment consists of 3 docker images, Web App, Database and Volume. The last two are optional as,
in fact, it is possible to use external (not dockerised) Volume and external Database service. A database
can be run simply by using a predefined docker image. Web App is created using a custom Dockerfile.
The base image is the Alpine Linux image with python 3.8. During the building of the image, it set’s up
necessary environment variables, dependencies, and migrations, and in the end, runs the uwsgi server.

6.1.7 Gitlab CI

As visible in the Fig. 6.1.3, the Gitlab CI run environment is the first part of the deployment process.
Although GitLab started purely as a service that allows for hosting and browsing the git repositories,
like many other git services, it provides a mechanism for Continous Integration / Continuous
Deployment. It means that there is no longer a need for a dedicated server that will be running a test
environment and enables manual triggering of some deployment or testing jobs just after committing
to the repository. It is now perfectly possible to do those things from the GitLab web interface.

116

Figure 6.1.4: An example view of a GitLab pipeline

Figure 6.1.5: Storck’s web interface.

Automatic deployment can be set in various ways. In the case of Storck, the pipeline was set up to
run unit tests on every git commit pushed to any branch on GitLab. Then, if the test did not fail, it is
possible to use a button to deploy Storck to the staging server. Only on the main branch, after a
successful deployment of staging, it is possible to deploy to the production server. Fig. 6.1.4 shows a
view of a single pipeline in GitLab.

117

6.1.8 Storck web interface

Storck’s web interface is very basic, as it is not meant to be the primary way of interacting with storck.
In Fig. 6.1.5, on the left side, there is a space that contains the user’s username, id and user token.
Below that space, there is a list of available workspaces. Each of the workspaces shows its workspace
token and also allows to add users to the workspace. The two areas on the right side of the screen are
devoted to files. The top area can be used as a drag-and-drop area to upload files to storck. The lower
area lists all of the files contained in the workspace and allows for the download of each using a
dedicated button.

6.1.9 Storck python client

Storck python client was created as a separate project and repository to the main Storck project. To use
it, python users can simply install it as a package using a command:

pip install git+https://gitlab.cern.ch/velo-calibration-software/storck

or
pip install storck-client

It is a very small and simple package. It is an object-oriented API in python, and users should create
and operate on the Storck client object. The very basic usage is as follows:

from storck client import StorckClient

client = StorckClinet(api_host=..., user_token=..., workspace_token=...)
print(client.get_files())

Listing 3: A snippet of code presenting how storck python client can be used.

The Storck client constructor accepts three arguments: the HTTP address to the Storck server, user
token, and workspace token. These arguments are optional as, instead the environmental variables can
be set, in order to not provide the tokens in plain text. The client has several methods, which is
presented in the form of a table (6.1.2). For a more detailed description of all of the methods, we refer
the reader to the Storck documentation page⁶⁴.

Method description
auth_verify verifies the credentials t

set_workspace_token sets the workspace token for the client object
create_workspace creates new workspace

get_files outputs list of files in the workspace
get_file returns all information about given file

upload_file uploads the contents of the file and its information
download_file downloads the contents of the file

add_user_to_workspace adds user to workspace

Table 6.1.2: Table of available methods of Storck client

118

6.2 Titania

Titania is a monitoring framework built with python, Qt⁵ and flask². Similarly to Storck, Titania is also
being adopted at the Velo group for the next LHC runs. This section will present the design and
exemplary uses of the framework.

6.2.1 Motivation

Drawing from the experience of working with monitoring in Run 1 and Run 2, we have proposed a
new project for handling the monitoring tasks. The previous software for the monitoring, although
useful, was getting complicated in the development due to the amounts of different uncoordinated
changes. The platform’s source code was not well structured, so adding new plots was usually quite the
challenge. This drove us to develop a new platform for monitoring Velo as a python framework.

6.2.2 Software Stack

Python is one of the most popular tools for plotting and visualisation in the scientific community,
thanks to packages like Matplotlib⁵⁰ or Plotly⁵¹. Famously, the first image of the black hole¹ was
created with python, and visualisation using matplotlib in the first extraterrestrial flight on mars played
a significant role³. Titania was designed with the desktop GUI in mind first (it also contains some web
interface capabilities). So naturally, we used the PyQt library, which interfaces the QtGUI library to
python. QtGUI, in short, provides an easy way to create cross-platform GUI applications. It is an
object-oriented library and implements a system of sockets and connections for action triggering.

6.2.3 Framework Design

As previously stated, one of the key goals of the new system is extensibility and orderliness. Inspired by
Django’s concept of implementing MVC in the framework, we define three key components to any
monitoring task.

• Data

• Plots

• Exploration

Those are fundamental blocks of any monitoring tasks.
Data here is understood in terms of the source of data. Anytime one wants to show some data, one

needs to access them. There are many ways that this can be done; reading files from a disk, reading a
stream of data, receiving data as an HTTP request and others. This also means a format of the data.
Data can be text files of CSV structure, binary files, images or sound recordings.

Plots are the graphical representation of the data. This means linear plots, scatter or histogram and
others. Each of the ways of representing the data has its custom options of placement, colours, and
other things.

119

Exploration - one must be able to choose between different data sources and different plot types. If
a monitoring service shows only one plot from one data file, it can hardly be a system.

6.2.4 Using Titania

The detailed API can be found online⁶⁵; nonetheless, some of the examples of the classes used are
presented here. Drawing inspiration from the Django framework, the Titania package contains a script
that enables the creation of a Titania project.

python -m titania start --name ProjectName

This command will create a folder with the following structure:

ProjectName
|�� data/
|�� panels/
|�� plots/
|�� views/
|�� main.py
|�� config.py

This script also contains an exemplary implementation of selected classes. The whole program can
be run using the main.py file. Each of the subdirectories is devoted to different parts of the framework.

6.2.4.1 Data

All of the data classes created with Titania, are required to subclassTitaniaDataInterface. This
requires an implementation of the fetch()method. The only requirement for the implementation of
this method is that it will return any kind of data. This serves one purpose; all data coming in any shape
or form after reading/processing can be sent from this class with a common interface. An exemplary
class implementation that gets the temperature data can be found in the listing below (Listing 4).

The implementation above is requesting an open REST API for the weather data, processing it, and
returns a list of measurements and a list of time points as python objects. It can be noticed that this
could also be implemented in such a way that the data could be acquired in the constructor of the class
and then statically returned from the fetch()method.

6.2.4.2 Plots

The implementation of the Plot in the Titania is slightly more complicated. While the Data
component does not depend on the interface used (Web or Desktop GUI), some plots may differ in
implementation depending on the interface.

The minimal requirement for a plot is implementation of PlotInterface class. This requires
following methods: draw_plot(), get_as_plot_widget(). The first method is used for any drawing
action that the plotting library requires. The get_as_plot_widget() requires returning theQtWidget
object. The output from this function is then used to construct the GUI. There are already classes

120

import urllib.request
import json
import datetime
from titania.data.data_core import TitaniaDataInterface

class WeatherData(TitaniaDataInterface):
def __init__(self):

self.request_string = "https://www.7timer.info/bin/astro.php"+/
"?lon=6.097&lat=46.241&ac=0&unit=metric&output=json&tzshift=0"

def fetch(self):
response = urllib.request.urlopen(self.request_string).read()
data = json.loads(response)
temp = [v['temp2m'] for v in data['dataseries']]
timepoints = [v['timepoint'] for v in data['dataseries']]
initial_date = datetime.datetime.strptime(data['init'], "%Y%m%d%H")
exact_timepoints = [initial_date+datetime.timedelta(hours=h) for h
in timepoints]
return temp, exact_timepoints

Listing 4: Example of Data implementation

implemented in the titania framework that can be used for more specific cases that are described in the
documentation of the project. In general, it is advised to use theMplPlot class for implementing a plot
class using matplotlib.

from titania.plots.base_plot import MplPlot

class WeatherPlot(MplPlot):
def __init__(self, parent=None, view=None, *args, **kwargs):

MplPlot.__init__(self, parent=parent, view=view)
self.color = 'blue'

def draw_plot(self, data=None) -> None:
self.figure.clear()
ax = self.figure.add_subplot(self.plot_number)
temp, timepoints = self.view.data.fetch()
ax.plot(timepoints, temp, color=self.color)
self.draw()

Listing 5: Example of Plot implementation

This implementation (Listing 5) makes a simple matplotlib line plot, using the colour defined in the
“self.color” attribute.

121

6.2.4.3 Exploration

This part is strictly connected to the interface. The minimal requirement for implementing the
“Exploration” in the framework is implementation of theControlPanelInterface and it’s
get_control_panel()method. That method must return the “QWidget” object containing the widget
of the panel.

from titania.panels import ControlPanelInterface
from PyQt5.QtWidgets import QVBoxLayout, QPushButton

class WeatherControlPanel(ControlPanelInterface):
def __init__(self, data=None, widget=None):

self.widget = widget
self.control_panel = QVBoxLayout()
self.red = QPushButton("Change to red")
self.blue = QPushButton("Change to blue")
self.control_panel.addWidget(self.red)
self.control_panel.addWidget(self.blue)
self.red.clicked.connect(self.change_color_to_red)
self.blue.clicked.connect(self.change_color_to_blue)

def change_color_to_red(self):
self.widget.plot.color = 'red'
self.widget.plot.draw_plot()

def change_color_to_blue(self):
self.widget.plot.color = 'blue'
self.widget.plot.draw_plot()

def get_control_panel(self):
return self.control_panel

Listing 6: Example of Exploration implementation

The exemplary implementation (Listing 6) creates a straightforward panel that contains two
buttons named “blue” and “red” (left side of the window in Fig. 6.2.1). It is connected using Qt signals
to change the “color” property of the plot class to the according name of the button and executes the
plot drawing action.

122

6.2.4.4 Views

The View connects Data, Plotting and Exploration. Views should implementTitaniaTabInterface,
with get_title() and initiate()methods. Since a tabular design of the interface is assumed, get_title()
should be returning the name displayed name of the tab. The initatemethod is used to start all of the
things needed for the view to work. As it is a very basic requirement, many classes exist that already
implement valuable features. The recommended class to use when making a tab for titania in Qt is
QtBaseLayoutTab. It’s implementation requires:

1. Passing a data class toQtBaseLayoutTab constructor using data argument.

2. Returning a Plot class frommake_plot function

3. Returning title with get_title() function

4. Returning a Exploration class, which extendsControlPanelInterface
with method create_control_panel()

The exemplary implementation of the View class is in Listing 7.
All of those exemplary implementation should be put together in the following directory structure:

ProjectName
|�� data/
 - weather_data.py
|�� panels/

� weather_panel.py
|�� plots/

� weather_plot.py
|�� views/

� weather_gui.py
|�� main.py
|�� config.py

All of this makes into a single tab that is depicted in the 6.2.1.

6.2.4.5 Optimisation and building on top

The example in the section above may seem like an excessive amount of code for such a limited
functionality. This may be true for such small projects, but when the number of features grows, such
design allows for easy reusability of the already created code. A case for it may be the following
example: TheWeatherData class created in Sec. 6.2.4.1 has a minor flaw: the actual call of fetch()
may be pretty slow due to the slow loading time of the HTTP request. In some cases, the rate of
available REST API calls per amount of time is restricted. Additionally, each time the colour of the
plot changes, the fetch()method has to be called one more time, which makes the colour changing
feature slow. One of the methods to deal with this problem could be an implementation that uses the

123

from panels.weather_panel import WeatherControlPanel
from data.weather_data import WeatherData
from plots.weather_plot import WeatherPlot
from titania.QtGUI.base_tab import QtBaseLayoutTab

class WeatherGUI(QtBaseLayoutTab):
def __init__(self, parent=None):

super().__init__(data=WeatherData(), parent=parent)

def make_plot(self):
return WeatherPlot(parent=self.parent, view=self)

def get_title(self):
return "Weather Plot"

def create_control_panel(self):
return WeatherControlPanel(widget=self)

Listing 7: Example of View implementation

class WeatherDataCached(WeatherData):
def __init__(self):

WeatherData.__init__(self)
self.last_check = None
self.data = None

def fetch(self):
now = datetime.datetime.now()
if self.last_check is None:

self.last_check = datetime.datetime.now()
else:

dif = now-self.last_check
if dif.seconds//(5*60) b>= 1:

self.data=None
self.last_check = now

if self.data is None:
self.data = WeatherData.fetch(self)

return self.data

Listing 8: Example of Exploration implementation

cache to store the API calls and creates new request when a certain timespan is exceeded. An
exemplary implementation of such a class can be seen in the Listing 8.

The classWeatherDataCached extends the classWeatherData, and adds two attributes data and
last_check. The data attribute stores the data coming from the parentWeatherData.fetch()method,
and last_check contains the last time of the call of that method. When the time span of 5 minutes is
exceeded, the data is refreshed. Otherwise, the data received with the last call of WeatherData.fetch()
is returned.

124

Figure 6.2.1: Exemplary code combined into weather plot view in Titania.

Now, to run a new upgraded version of the program, only one additional change is needed, as seen
in Listing 9.
...
class WeatherGUI(QtBaseLayoutTab):

def __init__(self, parent=None):
super().__init__(data=\textbf{WeatherDataCached()}, parent=parent)

...

Listing 9: Update to the WeatherGUI class to use cache data

As you can see, the final change to the existing code is minimal, and other parts (exploration and
plotting) do not need any changes. This proves the robustness of the framework.

6.2.4.6 Web app

Although the feature of enabling a dual interface (both desktop GUI and web) is not yet fully
developed, the titania project enables such an option.

In order to do so, the following requirements must be met for a view class:

• It must extend bothTitaniaPlotTab and theWebTab class

• It must contain an member object self.plot.figure of matplotlib’s figure type

With the usage of example snippets of code from previous sections, the dual interface can be
introduced by splitting theWeatherGui, as depicted by Listing 10.

Such split allows for the implementation of theWeatherWeb class (Listing 10), which will be used
for the web interface view. The implementation in Listing 11 implementation inherits theWeather
class andQtTitaniaWebTab. Both provide inheritance valid for the web view.

125

from panels.weather_panel import WeatherControlPanel
from data.weather_data import WeatherData, WeatherDataCached
from plots.weather_plot import WeatherPlot
from titania.common.titania_tab import TitaniaPlotTab

class Weather(TitaniaPlotTab):
def __init__(self, parent=None):

self.parent = parent
super().__init__(data=WeatherDataCached())

def make_plot(self):
return WeatherPlot(parent=self.parent, view=self)

def get_title(self):
return "Weather Plot"from titania.QtGUI.base_tab import QtBaseLayoutTab

class WeatherGUI(Weather, QtBaseLayoutTab):
def __init__(self, parent=None):

QtBaseLayoutTab.__init__(self, parent=parent)
Weather.__init__(self, parent=parent)

def create_control_panel(self):
return WeatherControlPanel(widget=self)

.

Listing 10: WeatherGUI class split into two classes

class WeatherWeb(Weather, QtTitaniaWebTab):
def __init__(self, parent=None):

self.parent = parent
Weather.__init__(self, parent=parent)
QtTitaniaWebTab.__init__(self)

Listing 11: WeatherWeb class

Additionally, for easier creation of the web view, there is also a possibility of usingWebMetaclass
(Listing 12).

from titania.web.base_tab import WebMetaclass

class WeatherWeb(Weather, metaclass=WebMetaclass):
pass

Listing 12: WeatherWeb metaclass

Both Listing 11 and Listing 12 are good ways of creating the web interface view. To enable the web
interface, a new configuration file must be created “config_web.py” (Listing 13). It should include the
new web view class in the dictionary.

126

from views.weather_gui import WeatherWeb
config = {

"ExampleTab": [WeatherWeb],
}

Listing 13: Config file for the web interface.

Next, the config dictionary should be imported and executed in a new “main_web.py” (Listing 14)
file that will start a small web server and host the interface on the http://localhost:5000.

import config_web
from titania.web.main_window import MainWindow

if __name__ == '__main__':
main_window = MainWindow(tab_config=config_web.config)
main_window.run()}

Listing 14: The main file for the web interface example.

Figure 6.2.2: A screenshot of the exemplary titania web interface app

All of the code presented in this section allows for simultaneously running the Web and Desktop
interfaces. This significantly reduces the amount of code needed to run both the desktop version and
the web interface.

127

http://localhost:5000

6.3 Conclusions

Titania is a versatile monitoring framework, and Storck should create a reliable backbone for the
calibration data in the next runs of Velo at LHCb. As of the time of writing, it is being introduced,
beside Velo, to another of the silicon systems at LHCb UT - Upstream Tracker. Both projects are open
source and fully available online. They solve not only the specific problems of the LHCb but also
provide more general solution to the problems that might occur in other areas or physics experiments.
Titania was presented in its earlier stages at the PyHep conference in 2020. Hopefully, the upcoming
year will prove in-vivo the value of both of the projects and promote its uses in other experiments.

128

I have done a terrible thing: I have postulated a particle that
cannot be detected.

Wolfgang Pauli

7
Neutrino induced processes

In this chapter a very short description of the possible reactions detectable via tracking detectors and
induced by neutrinos are described, as well as brief introduction to neutrino detection. The Author
did not perform any physics analysis regarding the neutrinos but contributed to reconstruction
algorithm described in the next chapter.

7.1 Neutrino experiments

Neutrino observation is one of the most challenging problems in modern particle physics. Neutrino
experiments come in many different shapes and sizes. The notable examples of the extreme lengths
that scientists come through pursuing the science of neutrinos include;

• Super-Kamiokande³¹ - a detector 1km deep underground, holding 50 220 tons of ultra-pure
water

• ANITA⁶⁹ - radio pulse detector suspended on the helium balloon flying at the height of about
37,000 meters over the Antarctic

• ICE-CUBE¹⁶ - contains 5 160 optical sensors placed directly on the South Pole, 1,5 - 2,5 km
deep inside the Antarctic ice sheet

7.2 LARTPC detector

LARTPC (Liquid Argon Time Projection Chamber)⁷⁸ detectors are a family of detectors developed
from TPC detectors (Time Projection Chamber)⁶⁷. In general, such detectors consist of a volume of

129

medium (radiator) between two plates (anode and cathode) that create an electric field. When a
particle travels through the detector’s active volume, it excites the electrons, which interact with the
electric field and move toward the collection plate (see Figure 7.2.1). The TPC detectors used gas, and
the LARTPC detector uses the same working principle, albeit the medium filling the volume is liquid
argon.

Figure 7.2.1: A diagram of LARTPC opration*.

The argon is an excellent choice for the medium as it has high electron mobility (electrons are easily
pulled along by the electric field) but low electronegativity (which means that the electrons will be less
likely to be absorbed into the material).

The critical part of the design of the detector is its collection plates. There are two popular solutions
of the LARTPC anode planes: pixel-based and wire-based. While the pixel-based approach is still
mainly in development, the wire-based one is more popular and has been implemented in
MicroBoone, ICARUS, SBND, and the DUNE far detectors⁹. The anode for the wire-based design
consists of multiple wire planes placed parallel to the cathode. Each of the planes consists of multiple
parallel wires. The set of wire planes is kept at a bias voltage. Their electrostatic potential allows
electrons to pass the first two planes undisturbed while inducing the signal. The electrons stop at the
last plane called a collector. Each of the first two planes (also called induction planes) has a unique
orientation of the wires. This orientation allows for a reconstruction of the 2D signal (Figure 7.2.2).
Additionally, a 3D reconstruction is possible to obtain by calculating the distance travelled by the
electrons, using the 2D and the constant flow rate of the electrons. This requires trigger information,
which can either come from the particle source or can be achieved using the scintillation effect (light
flash) of the argon. The trigger information provides the timing information about the event⁸.

*Source: https://en.wikipedia.org/wiki/File:RealSchematicTPC.png

130

https://en.wikipedia.org/wiki/File:RealSchematicTPC.png

Figure 7.2.2: A diagram of LARTPC planes8

7.3 Neutrino production and observation

In order to paint a better picture of the nature of the neutrino detection, this section depcits some of
the interactions in physics that involve neutrino. Neutrinos are notorious for their elusiveness. Their
only known interaction with matter is through the weak force. One of their most popular interaction is
in beta decay, otherwise the neutrinos in the range of medium and higher energies interact via:
Elastic andQuasielastic scattering,Deep inelastic scattering andResonance production.

Figure 7.3.1: Neutrino energy scale40

7.3.1 Beta-decay

The simplest processes that involves neutrinos are Β− and Β+ decays. The common examples of these
processes are n→ p+ e− + ν̄e and n→ p+ e+ + νe respectively, which on the quark level can be
expressed as u→ d+ e− + ν̄e (Fig 7.3.2a) and d→ u+ e+ + νe (Fig 7.3.2b).

131

(a) Beta minus (b) Beta plus

Figure 7.3.2: Two types of beta decays involving neutrino*.

7.3.2 Medium and higher energy interactions

The most interesting range of energies, defined arbitrarily, for neutrinos spans from medium (0.1GeV)
to high (1TeV) values. As previously stated, neutrinos only interact with the matter through weak
interaction. This is why the neutrino is not directly detectable, but instead, detectors rely on secondary
particles for evidence of neutrinos. Multiple probable processes can produce observable particles (see
Figure 7.3.3); I will introduce some more probable ones in this subsection.

(a) Neutrino (b) Antineutrino

Figure 7.3.3: Neutrino (A) and Antineutrino cross-section in GeV section with contribution from
different processes.40

7.3.2.1 Elastic and Quasielastic scattering

Neutrinos can elastically interact with the atom’s nucleus what leads to their excitation and possible
emission of nucleon. It is as simple as that in the case of the neutral current elastic scattering. Neutrino
interacts with the nucleus and frees a proton or neutron, which can later interact with matter more
easily. In the case of the charged current quasi-elastic (CCQE) interaction, it changes the nucleon and

*Image source: https://commons.wikimedia.org/wiki/File:Beta_Negative_Decay.svg and
https://commons.wikimedia.org/wiki/File:Electron_Capture_Decay.svg

132

https://commons.wikimedia.org/wiki/File:Beta_Negative_Decay.svg
https://commons.wikimedia.org/wiki/File:Electron_Capture_Decay.svg

emits a lepton. For the free nucleon interaction it is: ν + n→ l− + p and ν̄ + p→ l+ + nwhere l
stands for lepton. Fig 7.3.4 depicts exemplary CCQE scattering. It is important to note that this
interaction both releases a nucleon and produces charged particle. The quasi-elastic scattering is the
most popular interaction in the medium range of energies.

W−

ν̄ µ+

pn

(a) Beta minus

W+

ν µ−

np

(b) Beta plus

Figure 7.3.4: TODO

7.3.2.2 Deep inelastic scattering

In deep inelastic scattering, neutrino scatters off on a quark coming from a nucleon. The scattering is
conveyed by a virtual boson (W or Z). In cases of a CC produces a μ or μ−. The NC process doesn’t
produce additional charged particles. The examples below present the case with the νμ, but other types
of neutrinos are also allowed in deep inelastic scattering. Some of the possible processes of DIS:

νμN→ μ−X

ν̄μN→ μ+X

νμN→ νμX

ν̄μN→ ν̄μX

133

Figure 7.3.5: A diagram of deep inelastic interaction of a neutrino with a neutron (charged cur-
rent)33.

7.3.2.3 Resonance production

With enough energy, neutrinos can cause the excitation of a nucleon. This excited state produces a
baryon resonance along with a lepton, and then the resonance quickly decays into a nucleon and an
accompanied meson:

νμN→ μ−N∗

N∗ → πN

Other decays modes are also possible but less probable. The most common pion production is
possible in this interaction. For νμ and p, n targets, there are seven possible resonant single pion
reaction channels (seven each for neutrino and antineutrino). In those channels, only two of them do
not produce a charged particle.

7.4 Ultra high energy neutrinos

The neutrinos of the ultra high energy are impossible to be produced on earth (yet), so they are
searched in the cosmic radiation. All of the experiments mentioned in the list Section 7, are focused on
registering ultra high energy neutrinos from space. The task is problematic not only because of the
small cross-section of the interaction of a neutrino with the matter but also because of the other types
of radiation that can obscure the discoveries. This is why they need a very thick shielding (Super
Kamiokande and ICE-CUBE). Due to the rarity, ultra high energy neutrinos are one of the least
experimentally researched branches of particle physics and thus are worthy of mentioning here.

7.5 Summary

This chapter introduces reader to the LARTPC detector as well as basic processes in neutrino physics.

134

Although the neutrinos themselves are limited to only weak interactions, after the deposition of the
energy, a vast array of mostly charged particles can either be produced, excited or use the deposited
energy to create a further chain of reaction. The selected processes depicted in Sec. 7.3.2.1-7.3.2.3,
provide a short glance at the possibilities. It is worth noting that although there exist many channels of
interaction for the neutrino, the cross-sections are very small compared to other branches of physics.

This theoritical introduction is important in consideration of the next chapter, where I present the
algorithm for the LARTPC detector.

135

[...] to boldly go where no one has gone before [...]

Star Trek

8
Reinforcement learning for LARTPCdetector

As this thesis centres around the intersection of particle physics and machine learning, it was quite
natural to brainstorm the ideas for pushing forward this niche of science. One of the very conclusions
from studying very different applications of machine learning to many of the particle physics problems
was the lack of unification. Although many of the algorithms solve critical problems in the domain, a
significant portion is highly dependent on the type of detector.

This is partially expected; after all, each of the detectors is designed for a particular branch of
physics that they will study. Yet, all of those experiments study exactly the same universe and expect
that the underlying rules of physics are exactly the same, and the holy-grail of particle physics, called
the Standard Model aims to unify all of the branches of particle physics.

This notion is not reflected in the pursuit of machine learning algorithms for experiments.
This, and my participation in 2017 on “Machine learning for High energy physics” school in Oxford,

pushed me to sketch an idea for a more general algorithm.
In this pursuit, I decided that although the vast sea of possible methods that stem from the

supervised machine learning is ever-expanding, the nature of this branch of machine learning is too
limiting. It expects concrete examples of input-output pairs, while many of the tasks at best can only
provide an estimate of the overall performance. This is why I have chosen the Reinforcement Learning
approach for further investigation. As someone who worked both in industry and in science with
artificial intelligence, I know that the fewer constraints the problem has, the harder it is to solve it. To
put it mathematically, the difficulty of the problem is inversely proportional to its number of
constraints. This is the cost of the generalisation.

The conceptual model for a high-level reinforcement learning definition of the general problem of
both identification and tracking of the particles can be brought back to the corpuscular model of

136

particles. Intuitively this is how we perceive the particle, especially when considering the Feynman
diagrams. In this model, a particle is an object travelling through space and being subjected to the rules
of physics following decays and interactions.

Such a model can be translated into the reinforcement learning environment setting quite easily; a
particle is an agent interacting with the environment while subjected to its rules. Just like a video game
character moving through a game environment. The agent’s ability to imitate reality can be assessed by
checking how well it obeys the rules of the environment. If the agent obeys the rules, it is rewarded. If
the agent does not obey the rules, it is punished (either by receiving a smaller reward, or even a
negative reward). The ideal agent/model is then the one that maximises the reward.

The rules that govern the behaviour could also be approached as a generative task, in which the goal
is to produce realistic record of the behaviour of the particle. This could be implemented as a GAN
(Generative Adversarial Network) architecture, where the progress of a generative network is assessed
by comparison to the simulation rules. But then this would mean that the task is purely about the
generation of the data, and would not benefit from the conceptualisation of the physical rules in a
machine learning model. The information gained from the training could be use for particle tracking
and identification, which is far more useful. This is how we land on a reinforcement learning idea,
where the data generated from the simulation is used to train a model for identification and (partially)
tracking of the particle.

8.1 Simulations and Data

The inspiration for this research comes from a DeepLearnPhysics public dataset. That dataset contains
simulation data, which includes pairs X and Y of both the simulations of records of particles in the
LARTPC and their ground truth classification in each position in space. The environment for the
reinforcement learning was prepared using that simulation data.. Although the code details of the
simulation weren’t explicitly mentioned for the dataset used in this study, the DeepLearnPhysics
collaboration prepared a preprint article for the new version of the open dataset⁹, in which they
mention that the simulation was prepared using LARTSOFT⁸¹ and GEANT4¹⁹.

The simulation generates particles inside a LARTPC detector¹⁷, and their progress in time is
recorded by the detector. The source point of the generated particles is uniformly distributed in 3D.
The total particle multiplicity is set to be uniform between 2 to 5. There is an equal and uniform
probability of generating any particle from four categories presented in table:

Category Particle Type Energy range (uniform) Multiplicity
0 light lepton (electron or muon) 50 to 1000MeV 0 to 3
1 gamma ray 50 to 1000MeV 0 to 2
2 charged pion (pion or anti-pion) 50 to 1000MeV 0 to 2
3 proton 50 to 400MeV 0 to 3

Table 8.1.1: Table of simulated particle properties for LARTPC data generation.

The energy deposition for an individual particle is stored in a 3D voxel of 0.5 cm3 inMeV units, but

137

later it is saved with a scaling factor of 100¹⁷. Next, the 3D data is projected onto three 2D planes.
Then the data that contains less than 5 pixels in any given projection with a pixel value lower than 0.1
MeV is rejected. The values of voxels lower than 0.1 Mev are trimmed to 0. For the purpose of this
research I do not use full 3D voxelised information, but one of the 2D projections.

8.2 Dataset

The dataset generated from the simulations and used in this research is available at the
DeepLearnPhysics collaboration website¹⁸. This dataset contains 15.000 training samples as well as
10.000 test samples. Each of the samples contains a single simulation of a signal event, as discussed in
the previous subsection. The simulations are saved as two 2D images - a source image where only
information is the energy deposit in the pixel and a target image - where pixels hold the information
about the type of the particle in the given pixel. The target image contains 3 types of pixels:
background, EM-shower particles, and track particles (i.e. not EM-shower).

As the images are genreated from a simulation, they can have arbitraly large size. This is also
reflected in the RL environment mentioned later in the chapter. For the examplary solution the
256x256 in size of the image is used.

138

0 50 100 150 200 250
0

50

100

150

200

250

0

250

500

750

1000

1250

1500

1750

0 50 100 150 200 250
0

50

100

150

200

250

Figure 8.2.1: Exemplary data from the LARTPC dataset. Top image is the source input, and the
bottom image is the desired output (target)

139

150 160 170 180 190 200 210
120

130

140

150

160

170

180

0

250

500

750

1000

1250

1500

1750

(a) Source (X)

150 160 170 180 190 200 210
120

130

140

150

160

170

180

(b) Target (Y)

Figure 8.2.2: Examplary data zoomed into a smaller region.

8.3 Environment

The reinforcement learning approach requires a “game-fication” of the problem. That means that we
essentially want to turn the problem into a game, preferably one that allows for gaining points along
with the progress of playing. For this purpose the gym-lartpc environment was created⁶¹. It is based
on the openai-gym library¹². As explained in the Sec. 3.5 game should consist of an environment and
an agent. The agent can interact with the environment and modify it. In the case of lartpc data, the
agent will be an analogue to a particle, and the environment is analogue to the space inside LARTPC
medium. Before the detail of implementation itself are presented, it is vital to present a formalisation
of the problem.

140

8.3.1 Formalisation

The usual framework for mathematical formulation of the reinforcement learning problem requires a
definition of the problem in terms of Markov Decision Process (see Sec. 3.5.0.1) or MDP. This
subsection will present steps towards representing the gym-lartpc environment as an MDP, along with
introducing key objects that comprise the lartpc-gym package.

8.3.1.1 Maps

In the sense of translating the LARTPC data into game, the images of the dataset can be thought of as
maps, which the agent will explore. Although original dataset samples contains source and target, for
the purpose of creating the game environment an additional map called canvas is added. The agent will
explore the source map (S, 256x256) and by using it the agent will try to approximate the target map
(T, 256x256). An example of source and target can be seen at 8.2.1. The output of the approximation
is saved on the canvas map (C, 256x256x3 - the last dimention is one of the thre categories), which is
the actual output of the algorithm. The canvas map C is used to create an image containing categorised
pixels. This image then can be compared with the target of a given sample. The majority of the
environment states are not available for the agent, so only its nearest neighbourhood is considered.
This neighbourhood can be expressed as a quadratic window n x n. In total there are three types of
window objects source map windowWS, canvas map windowWC and target map windowWT.

It is useful to mentally imagine this task and the usage of those three maps as learning to paint a
picture, using a sketch. The source map S, can be thought of as an sketch of a ready painting T. Then,
the task is to paint a picture Cwhich will be the most resemblant the T, using only S as reference.

8.3.1.2 States

It is assumed that the agent occupies a position on the map p_x, p_y, with each step, this position may
change. There is only a small subset of states from an environment available for the agent, defined by
the window on the map. The center of the window is always position at the agent position p_x, p_ The
state in the current timestep t can be denoted as st = (WS

t ,WC
t). These states create state space S of

MDP.

8.3.1.3 Actions

In such defined environment the total action can be expressed as composed of two sub-actions:

Movement action - a decision on the direction of the next step in the game, expressed as a 2D vector
mt, where [1, 1] is a movement by one pixel right (x-axis) and one pixel up (y-axis).

Put action - a KxKx3 tensor denoted by ct. This matrix will be pasted into the canvas map C, using
proper window size on the coordinates defined by the center p_x, p_. The the last dimension of
the tensor denote probability of given pixel belonging to one of the three categories
(background, EM-shower particles, and track particles). The centre coordinate of the ct has the
same coordinates as the Source Window centre.

141

The action can be expressed as a tuple at = (mt, ct). Going back to analogy of painting the picture,
one can imagine, that themt would be direction of a stroke, and ct would be set of colors to use to paint.
The actions create action space A of MDP.

8.3.1.4 Rewards

Finding a correct reward function in reinforcement learning is a challenge. Therefore, this part is open
for interpretation by the user in the implementation of the environment. That being said, the default
implementation for the reward Rt calculation follows the algorithm:

R1 = Ndiscovered(Wc) (8.1)

R2 = Nnonzero(Ws) + 0.9× R1 (8.2)

R3 =

R2 − 5, if R2 == 0

R2, otherwise
(8.3)

R =

R3 − 15, if Center(Ws) == 0

R3, otherwise
(8.4)

WhereNdiscovered(Wc) is the number of the pixels inWc which haven’t been categorised (painted) yet.
This encourages to find the pixels that haven’t been visited yet. The termNnonzero(Ws) is the number of
non-zero (empty) pixels in source windowWs. The term R3 is a punishment when both R1 and R2 are
zero, meaning that the source window is empty, and target window is already fully processed. Finally, R
adds a punishement if the central position of the source window is empty.

In summary, this reward system encourages exploration of both non-empty pixels on source map,
and non-processed pixels using canvas map. The reward highly discourages to stay in one place, or in
locations in which the source map has zero valued pixels.

8.3.2 MDP and POMDP

The elements of states, actions and rewards, along with the logic of the lartpc-gym environment, give
rise to a Markov Decision Process Formulation (see Sec 3.5.0.1), and allows us to use standard
reinforcement learning methods to solve the problem posed by the environment.

But careful readers can notice that the term R1 may be breaking the Markov property. Indeed,
depending on the defined reward function, the environment can break the Markov property. And with
the reward defined as in Eq. 8.4 it does brake the Markov property, because the new state with the
canvas map is constantly updated by the agent, canvas windowWc

t contains the result of put action ct−1

from the previous step. It is important to note that in this case, only the number of already visited
locations on the map, that are apparent in theWc

t is contributing to the reward, and not the values
contained onWc

t .
Yet, the breaking of the Markov property does not mean that the environment is unsolvable with

142

reinforcement learning. Many of the novel and state of the art solution to gaming environments, such
as AlphaStar³⁵, or OpenAI five⁷¹ are known to be rather non-markovian. In this case, another
formulation of the problem may be useful: POMPD (Partially Observable MDP). POMDP can be
expressed as 6-tuple (S,A, P,R,Ω,O) , where (S,A, P,R) are the same as in MDP, but now the agent
doesn’t observe the states directly, but rather through observation o ∈ O. This observation is sampled
according to some distribution o ∼ O(s). TheO(s) is a function that provides an observation given
the state swith some probability. In essence what that means is that the full underlying state of the
environment may be obscured by theO. In a case of non-markovian environments the state can be
understood as state with it’s past history, and the observationO provides only the most recent state,
obscuring the past. A classical Deep Q-Learning has no explicit mechanism to solve the problem
stated in this way, but some works⁴⁶ show that by adding the recurrency to the network, this becomes
solvable. In the case of the model presented here, there is a hidden recurrent dependency of the model,
as it reads and writes values to the target canvas.

8.4 Gym-lartpc package

The environment formulated in the previous section was implemented in a Python Package called
“gym-lartpc”⁶¹, which contains openai-gym interface. Openai-gym¹²is a popular open-source project
containing reinforcement learning environments. Each of the environments provides exactly the same
style of the interface. The minimal requirement for creating compatible environment with openai-gym
is to extend the gym.Env class, and provide step(action), reset() and render()methods.

Although the package has the openai-gym environment interface, it also provides a separate custom
interface for more sophisticated options for users’ convenience.

Although the gym-lartpc package does not contain official API documentation, the code itself is
very clean and reads well enough.

8.4.1 Classes

The most important classes in the package are LartpcData, DetectorMaps, Lartpc2D, and Cursor.

Cursor denotes a region on any map (Source, Canvas, Target). Its x and y coordinates and can be
used to get or set a window of values on a map.

DetectorMaps contains Source Canvas and Target maps together. It allows getting random positions
on maps and nonzero positions.

Lartpc2D contains the logic of the game. Holds both Cursor instance and DetectorMaps instance.
It’s start()method allows to start a new game. step(action) can be used to make a step in the
game environment.

LartpcData uses either a path to a folder containing the data in the “.npz” format or a list of files that
contain training data. It can be used to get a tuple of source and target maps as a python
generator object.

143

8.4.2 Example game

def bot_replay(data_path, viz=True):
max_step_number = 20
data_generator = data.LartpcData.from_path(data_path)
result_dimensions = 3
game = Lartpc2D(result_dimensions, max_step_number=max_step_number)
vis = Visualisation(game)
agent = BotAgent(

game
)
for iterate_maps in range(30):

map_number = np.random.randint(0, len(data_generator))
game.detector.set_maps(*data_generator[map_number])
for iterate_tries in range(10):

game.start()
for model_run_iteration in range(game.max_step_number):

current_observation = game.get_observation()
action = agent.create_action(current_observation)
state = game.step(action)
vis.update(0)
if state.done:

break

Listing 15: Example of usage of Lartpc2D class. This function implements visualisation with a
random agent.

The listing in 15 shows an exemplary use of the Gym-lartpc package. The Lartpc2D class accepts a
dimension of the result and a maximum number of steps as arguments. Here the result dimension
means the size of the two-dimensional window that will be used on the output map. When using the
game.detector.set_maps()method the maps are set to a random source target pair coming from
LartpcData class. The game.start() resets the state of the environment and assigns a random,
non-zero, non-visited location to the cursor in the environment. Then, the current observation of the
game can be accessed by the game.get_observation() attribute and action can be passed using
game.step()method. This will move the cursor according to the movement contained inside the
action and will change the value on the canvas map at the scope occupied by the cursor. It is worth
noting that three types of objects are exchanged between the environment and agent (see
corresponding listing in 16);

Action2Dai which embodies an action at = (mt, ct). Containsmovement_vector attribute (mt),
which is eected to be a numpy array of shape 1x2 (a vector of length two), and a put_data (ct)
which is expected to be 2D array of a shape compatible with result dimension. This is the action
described in Sec. 8.3.1.3.

State2Dai which contains the state of the game, as expected by the openai-gym. The state of the game
in the gym-lartpc is a tuple consisting of current observation of the environment, reward, “done”

144

flag, and empty string. The empty string is a space-holder for any additional information
coming from the environment required by the openai-gym implementation. “Done” flag is true
if the game has ended. This condition may occur if the agent has exceeded the allowed number
of moves, or cannot make the action (steps outside the map). The reward is the float value as
described in the previous section.

Observation2Dai consists of three windows in a given positionWS WC WT.

The main loop of the game works in the following way:

1. The observation of the game is made using the game.get_observation().

2. The agent uses the observation with agent.create_action(observation)method, and creates
an instance of Action2Dai object containing the action to take in the next step.

3. The game environment processes the action using game.step(action). First, it applies the
change specified in the classification, then it changes internally the position of the cursor, and
returns a new state of the game.

@dataclass
class Observation2Dai(StaticTyped):

source: NDArray[(typing.Any, typing.Any), np.float32]
result: NDArray[(typing.Any, typing.Any, 3), np.float32]
target: NDArray[(typing.Any, typing.Any), np.int32]

@dataclass
class State2Dai(StaticTyped):

obs: Observation2Dai
reward: float
done: bool
info: object

@dataclass
class Action2Dai(StaticTyped):

movement_vector: NDArray[(1,2), np.int64]
put_data: NDArray[(typing.Any, typing.Any, 3), np.float32]

Listing 16: Impelemntation of Observation2Dai, State2Dai, Action2Dai.

8.4.3 Visualisation

The package also allows for visualisation of the game, implemented using PyQt. This feature allows for
step by step basis watching of the progress of the algorithm, using the space key. The Fig. 8.4.1
contains a screenshot of the visualisation running in 6 different windows. The top row of windows
depicts the the parts of the maps visible to the the agent, and the lower row of windows shows the
position of the agent on each of the maps.

145

(a) Mean square error loss (b) Reward curve

Figure 8.5.1: The learning process of the baseline DDQN.

Figure 8.4.1: Visualisation in the gym-lartpc package.

8.5 Deep Q-learning solution

With all of the accompanying code of the lartpc game, it is much easier to brainstorm possible
solutions. There is a vast range of reinforcement learning algorithms. Probably the two most popular
approaches are those based on DQN (Sec. 3.5.2) and policy gradients *. The most successful solution
to the problem posed by the environment in our research was DDQN, with Memory Buffer.

The Fig. 8.5.2 presents interaction of the agent and the environment. The environment, containing
three maps, outputs an observation state, consisting of three smaller windows, and after each action
provides the reward. The agent uses the canvas and source information in two blocks, called movement
block and classification block. The higher level conceptualisation of the input and output to the agent
can be seen in Fig. 8.5.3. The movement block is responsible for selecting the direction in which to

*Policy gradient methods in contrast to DQN (or value based methods), do not seek a best action, given states, but
learn the probabilistic mapping of from state to value

146

move in upcoming action (Movement Decision). The classification block chooses the values that it
should update the canvas window with (Canvas Output Window). Additionally, both blocks outputs
undergo the operation of concatenation and are fed to a unifying block, which allows for the mixing of
the information, and then creates appropriate outputs.

The classification block was pre-trained using a random sampling of the dataset images, with an
appropriate window used as an output. It was pre-trained to the level of 86% of accuracy. The
hyper-parameters of the network can be seen in Tab. 8.5.1.

The Fig. 8.5.4 presents the final version of the agent neural network. The Canvas window input, and
source input are both binarised and concatenated together. Then they are presented as input to the
movement block, which consists of 5 fully connected layers intertwined with ReLU activation
function. The Source input is also presented as an input to the classification block. The classification
block consists of smaller blocks of fully connected layer, batch normalisation, ReLU, and dropout.
These blocks of four layers are repeated four times, ending with a fully connected layer that scales the
output. Output from both blocks is concatenated and passed to three fully connected layers, the
output of which is divided into Movement output and Classification output.

Parameter Value
batch_size 128
droput_rate 0

input_window_size 5
outpu_window_size 1

result_outpu 3

Table 8.5.1: The parameters used for training the convolutional neural network for simple classifi-
ciation

8.5.1 Learning

Parameter Value
gamma 0.99

batch_size 32
reaplay_size 10 000
learning_rate 1e-4
epsilon_start 3
epsilon_final 0.01

max_step_number 8
trials 8

Table 8.5.2: The parameters used for training the convolutional neural network for simple classifi-
ciation

The details of the training process are out of the scope of this description and may be found in the
github repository⁶². The table 8.5.2 shows some of the parameters used for the training of the DQN

147

model. From the training quality metrics, depicted in the Figure 8.5.1, one can see that the value of the
reward function is growing, which proves that the model is maximising the reward. You can also see
that the MSE loss function grows and then drops. This is attributted to a high epsilon value at the start
and the memory buffer being filled with more uncomplicated episodes. Then the complexity of the
task grows when the agent learns to explore, and then overall slowly decreases and stabilises as it learns.
It is by no means trivial to evaluate the performance of a reinforcement learning agent by only basing it
upon the loss metrics and rewards defined in the previous section. The difficulty of the problem may
fluctuate, as some parts of the images are easier to solve than others, the actions of the agent may
influence future difficulty, and the epsilon-greedy * actions introduce randomness into the process.
The evaluation by observation of the agent behaviour was necessary. It is observed that the agent
indeed was following the tracks of the particles, but in the case of a more significant number of
possible steps, the agent tended to “escape” an area with only an isolated non-zero pixel visible.

8.6 Results

The proposed DDQN solution to the problem posed by the gym-lartpc environment is meant to serve
as a baseline for future research. DDQN has proved to be capable of performing very basic navigation
through the decay tree. The goal of this baseline study is to show how the gym-lartpc environment can
be used. I invite other researchers to use our environment for future experimentation with
reinforcement learning, which is openly available in the GitHub repositories⁶¹⁶². The future course for
this work may include removing canvas as the feedback input and using a recurrent layer in the
network. The other exciting possible extension could be rewarding the model to predict the direction
and classification not for the current step but rather for the next step. This prediction could be applied
to the environment and then fed back as an input to the model, generating new predictions and
forming a feedback loop. Suppose one would translate the data read from any other experiment to the
same voxel representation and scaled similar energy deposits (maintaining the same domain of
particles). In that case, it might be possible to reuse the same model, or expand the simulation data, to
create a single model for different detectors.

The presented environment is the main focus of this study, and has the potential to be the
groundwork for a more unified machine-learning-based model of physics coming from high energy
physics experiments. A cross-experimental framework could shift a focus from researching particular
branches of physics (neutrino physics, b-hadron physics, particle showers, etc.) to more holistic
research that accounts for all of the effects met in these particular areas. A model suitable for multiple
experiments could help us better understand the link between the parts of physics studied by those
experiments. I believe that the reinforcement learning-based model also has the potential to be used
for creating simulations, as it may be computationally less expensive.

*epsilon-greedy algorithm chooses either an action generated by the model, or completely random action based on a ε
probability

148

Fi
gu

re
8.

5.
2:

Re
in

fo
rc

em
en

tl
ea

rn
in

g
se

tti
ng

fo
rl

ea
rn

in
g

th
e

DD
Q

N
alg

or
ith

m
.

149

Figure 8.5.3: Exemplary input and output states for the neural network used in the analysis. The
network receives both Source and Canvas input windows, and outputs a movement and put ac-
tions.

150

Figure 8.5.4: The complete model of the employed agent neural network. Source and Canvas
input windows enter the movement block after binarisation and concatenation. The Source input
alone also enters the classification block as is. The movement block returns a vector of size N.
N is the number of possible movement directions (usually N=8 - any neighbouring pixel). The
classification block returns a vectorised matrix of classified pixels, of length K. Usually K=1 or
K=9. Both blocks outputs are then concatenated and passed to the joint layer, which outputs a
vector of size N+K.

151

9
Conclusions

This thesis combines multiple projects oriented aroundmachine learning and software applications for
high-energy physics detectors.

The projects related to Velo in runs 1 and 2 started with analysing the calibration data. This analysis
inspired other projects and validation of detector maintenance. The essential information acquired in
this process is that properly controlling the bias voltage and other factors have primarily protected the
detector from continuous radiation damage.

Importantly Pedestal calibration parameter has shown no overall trend. Some of the effects
stemming from the manufacturing of the sensors (faulty channels and coupling to the digital clock
line), as well as the progression of the masked channels in time, have been noticed and discussed.
Overall, these effects were expected to be found.

Another insight was that the Threshold parameters, which play a crucial role in hit detection, are
prone to improper calibration. Such essential factor needs are guarded with care. That need has
evolved into an anomaly detecting algorithm that is capable of early assessment of the calibration. This
novel ”outlierness” algorithm was created using probabilistic programming and was capable of
noticing anomalies and fluctuations in the calibration. The algorithm presented in the thesis was
developed and deployed successfully within the Lovell monitoring framework in 2018.

Velo detector has a large number of individual channels (about 170 000 strips), which will be only
increased in Run 3 (about 3 500 000 pixels). This makes it impossible for a human to assess the state of
the detector at one glance. Hardships in visualising such high dimensional data led to an investigation
of the dimentionality reduction methods (PCA and autoencoder), which have shown promise in
conveying crucial insights from the calibrations.

Calibration is vital for the detector and demands special conditions (no-beam). The beam at LHC

152

is centrally steered and shared with other experiments. Thus scheduling of calibration must be
deliberate. The comparison of the noise read out in during beam collisions and the Threshold
parameters have shown a connection. In this unique study, a recurrent neural network model capable
of predicting the need for calibration can help with the scheduling.

Although testing the application of the methods developed for the Velo in Run 1 and 2 on the Velo
in Run 3 is impossible (as it is still in commissioning), this presents studies for the VeloPix, based on
the insights from the test beam.

The VeloPix sensor was made to be a careful eye that will recognise the particles passing through
and reconstruct their path. However, this eye can have blind spots due to the masked pixels. The study
presented in this thesis utilises a simulation of VeloPix masked pixels to devise a breakthrough method
for associating the clusters of the masked pixels throughout the calibration. The methods utilise a
similarity matrix made of custom cluster features and tests both DBSCAN and OPTICS for clustering.
The resulting algorithm (using DBSCAN) shows 76% of accuracy in cluster recognition.

One of the key metrics for monitoring the detector is the fluence level. The methods used so far,
which include the geometry simulation, are not trivial in calculation and are burdened with low
precision. The study of the relationship between the surrogate function parameters and the fluence in
the test beam data has shown a correlation. This opens a door for a novel method of assessing the
fluence levels experienced by the sensor. We present an approximation of this relationship as a
polynomial fit.

An experience of close work with the detector calibration has led to the creation of a framework
solution to two of the challenges of maintaining the detector: calibration monitoring and calibration
data storage. The Titania framework helps to navigate the obstacles created by the monitoring tasks. It
enforces structured writing of the code needed for plotting and exploring the data. The Storck
database system solves the other problem: calibration data storage. Simple disk space on the filesystem
has proved to be a not sufficient way of storing calibration data. This kind of data requires a structure,
and it is a description while not limiting the end user to any type of data. The Storck project provides
all of those features and is being deployed along the commissioning works for the upcoming Run 3.
Both of the projects were created using an open-source MIT licence.

The last project in this thesis diverges from the LHCb and touches the LARTPC detector. It is an
innovative approach to the problem of tracking and particle identification of neutrino-induced
processes in the LARTPC detector simulation using Reinforcement Learning. It presents an
environment interface for experimentation and implementation of the Reinforcement Learning based
methods, along with the neural network model (DDQN) for baseline solution. This study shows that
this approach is a viable choice for further investigation in this area.

153

References

[1] Case study of black hole imaging. web article.
https://numpy.org/case-studies/blackhole-image/. Accessed: 2022-04-07.

[2] Flask. URL: https://flask.palletsprojects.com/en/2.1.x/.

[3] List of all of the libraries used for the ingenuity mission. https://docs.github.com/en/a
ccount-and-profile/setting-up-and-managing-your-github-profile/cus
tomizing-your-profile/personalizing-your-profile#list-of-qualifying-
repositories-for-mars-2020-helicopter-contributor-badge. Accessed:
2022-04-07.

[4] Postgresql. URL: https://www.postgresql.org/docs/.

[5] Qt. URL: https://www.qt.io/.

[6] Standard set of lhcb performance numbers - official website. URL:
https://lhcb.web.cern.ch/speakersbureau/html/PerformanceNumbers.html.

[7] A. Abba, M. Artuso, S. Blusk, T. Britton, A. Davis, A. Dendek, B. Dey, S. Ely, T. Evans, J. Fu,
P. Gandini, F. Lionetto, P. Manning, B. Meadows, R. Mountain, N. Neri, M. Petruzzo, M. Pikies,
T. Skwarnicki, T. Szumlak, and J.C. Wang. Testbeam studies of pre-prototype silicon strip
sensors for the LHCb UT upgrade project. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 806:244–257, jan
2016. URL: https://doi.org/10.1016%2Fj.nima.2015.10.031,
doi:10.1016/j.nima.2015.10.031.

[8] R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, Jonathan Asaadi, M. Auger, N. Ayoub,
L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean,
D. Boehnlein, and M. Zuckerbrot. Design and construction of the microboone detector.
Journal of Instrumentation, 12, 12 2016. doi:10.1088/1748-0221/12/02/P02017.

[9] Corey Adams, Kazuhiro Terao, and Taritree Wongjirad. Pilarnet: Public dataset for particle
imaging liquid argon detectors in high energy physics, 2020. arXiv:arXiv:2006.01993.

[10] K. Akiba, P. Ronning, M. van Beuzekom, V. van Beveren, S. Borghi, H. Boterenbrood,
J. Buytaert, P. Collins, A. Dosil Suárez, R. Dumps, L. Eklund, D. Esperante, A. Gallas,
H. Gordon, B. van der Heijden, C. Hombach, D. Hynds, M. John, A. Leflat, Y. Li, I. Longstaff,
A. Morton, N. Nakatsuka, A. Nomerotski, C. Parkes, E. Perez Trigo, R. Plackett, M.M. Reid,
P. Rodriguez Perez, H. Schindler, T. Szumlak, P. Tsopelas, C. Vázquez Sierra, J. Velthuis, and
M. Wysokiński. The timepix telescope for high performance particle tracking. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 723:47–54, sep 2013. URL:
https://doi.org/10.48550/arXiv.1304.5175,
doi:10.1016/j.nima.2013.04.060.

154

https://numpy.org/case-studies/blackhole-image/
https://flask.palletsprojects.com/en/2.1.x/
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-badge
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-badge
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-badge
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-badge
https://www.postgresql.org/docs/
https://www.qt.io/
https://lhcb.web.cern.ch/speakersbureau/html/PerformanceNumbers.html
https://doi.org/10.1016%2Fj.nima.2015.10.031
https://doi.org/10.1016/j.nima.2015.10.031
https://doi.org/10.1088/1748-0221/12/02/P02017
http://arxiv.org/abs/arXiv:2006.01993
https://doi.org/10.48550/arXiv.1304.5175
https://doi.org/10.1016/j.nima.2013.04.060

[11] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics: Ordering
points to identify the clustering structure. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’99, page 49–60, New York, NY,
USA, 1999. Association for Computing Machinery. doi:10.1145/304182.304187.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016. arXiv:arXiv:1606.01540.

[13] Andrzej J. Buras. Unitarity triangle: 2002 and beyond, 2002. arXiv:hep-ph/0210291.

[14] Colin Carroll. Step size adaptation in hamiltonian monte carlo, Apr 2019. URL:
https://colindcarroll.com/2019/04/21/step-size-adaptation-in-hamilto
nian-monte-carlo/.

[15] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π decay of the k02
meson. Phys. Rev. Lett., 13:138–140, Jul 1964. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.13.138,
doi:10.1103/PhysRevLett.13.138.

[16] IceCube colaboration. The IceCube data acquisition system: Signal capture, digitization, and
timestamping. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 601(3):294–316, apr 2009. URL:
https://doi.org/10.1016%2Fj.nima.2009.01.001,
doi:10.1016/j.nima.2009.01.001.

[17] DeepLearnPhysics collaboration. Deeplearnphysics public dataset tutorial, 2018. URL:
http://deeplearnphysics.org/Blog/2018-01-01-BrowsingSegmentationDat
a_v0.1.0.html#overview.

[18] DeepLearnPhysics collaboration. Deeplearnphysics website, 2018. URL:
http://deeplearnphysics.org.

[19] Geant4 collaboration. Recent developments in geant4. Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
835:186–225, 2016. URL:
https://www.sciencedirect.com/science/article/pii/S0168900216306957,
doi:https://doi.org/10.1016/j.nima.2016.06.125.

[20] LHCb Collaboration. LHCb inner tracker: Technical Design Report. Technical design report.
LHCb. CERN, Geneva, 2002. revised version number 1 submitted on 2002-11-13 14:14:34.
URL: https://cds.cern.ch/record/582793.

[21] LHCb collaboration. Overview of lhcb alignment. Proceedings of the 1st LHCDetector
Alignment Workshop, 01 2007.

[22] LHCb collaboration. Roadmap for selected key measurements of lhcb, 2010.
arXiv:0912.4179.

[23] LHCb collaboration. Letter of Intent for the LHCb Upgrade. Technical report, CERN,
Geneva, Mar 2011. URL: http://cds.cern.ch/record/1333091.

[24] LHCb collaboration. Framework TDR for the LHCb Upgrade: Technical Design Report.
Technical report, CERN, Apr 2012. URL: https://cds.cern.ch/record/1443882.

155

https://doi.org/10.1145/304182.304187
http://arxiv.org/abs/arXiv:1606.01540
http://arxiv.org/abs/hep-ph/0210291
https://colindcarroll.com/2019/04/21/step-size-adaptation-in-hamiltonian-monte-carlo/
https://colindcarroll.com/2019/04/21/step-size-adaptation-in-hamiltonian-monte-carlo/
https://link.aps.org/doi/10.1103/PhysRevLett.13.138
https://doi.org/10.1103/PhysRevLett.13.138
https://doi.org/10.1016%2Fj.nima.2009.01.001
https://doi.org/10.1016/j.nima.2009.01.001
http://deeplearnphysics.org/Blog/2018-01-01-BrowsingSegmentationData_v0.1.0.html#overview
http://deeplearnphysics.org/Blog/2018-01-01-BrowsingSegmentationData_v0.1.0.html#overview
http://deeplearnphysics.org
https://www.sciencedirect.com/science/article/pii/S0168900216306957
https://doi.org/https://doi.org/10.1016/j.nima.2016.06.125
https://cds.cern.ch/record/582793
http://arxiv.org/abs/0912.4179
http://cds.cern.ch/record/1333091
https://cds.cern.ch/record/1443882

[25] LHCb Collaboration. First observation of cp violation in the decays of B0
s mesons. Phys. Rev.

Lett., 110:221601, May 2013. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.110.221601,
doi:10.1103/PhysRevLett.110.221601.

[26] LHCb Collaboration. LHCb VELO Upgrade Technical Design Report. Technical report,
CERN, Nov 2013. URL: https://cds.cern.ch/record/1624070.

[27] LHCb Collaboration. LHCb Tracker Upgrade Technical Design Report. Technical report,
CERN, Feb 2014. URL: https://cds.cern.ch/record/1647400.

[28] LHCbCollaboration. Observation of cp violation in charm decays. Phys. Rev. Lett., 122:211803,
May 2019. URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.211803,
doi:10.1103/PhysRevLett.122.211803.

[29] LHCb collaboration. Updated LHCb combination of the CKM angle γ. Technical report,
CERN, Geneva, Oct 2020. URL: http://cds.cern.ch/record/2743058.

[30] LHCb collaboration. Test of lepton universality in beauty-quark decays, 2021.
arXiv:2103.11769.

[31] Super-Kamiokande collaboration. The super-kamiokande detector. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 501(2):418–462, 2003. URL:
https://www.sciencedirect.com/science/article/pii/S016890020300425X,
doi:https://doi.org/10.1016/S0168-9002(03)00425-X.

[32] The LHCb Collaboration. The LHCb detector at the LHC. Journal of Instrumentation,
3(08):S08005–S08005, aug 2008. doi:10.1088/1748-0221/3/08/s08005.

[33] Janet M. Conrad, Michael H. Shaevitz, and Tim Bolton. Precision measurements with
high-energy neutrino beams. Reviews of Modern Physics, 70(4):1341–1392, oct 1998. URL:
https://doi.org/10.1103%2Frevmodphys.70.1341,
doi:10.1103/revmodphys.70.1341.

[34] Cameron Davidson-Pilon. Probabilistic Programming and Bayesian Methods for Hackers.
Addison-Wesley Data Analytics, Oktober 2015. URL: https://github.com/CamDavids
onPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers,
doi:10.5555/2851115.

[35] DeepMind. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature,
2019. doi:10.1038/s41586-019-1724-z.

[36] Django Software Foundation. Django. URL: https://djangoproject.com.

[37] Michela Esposito, G. Mettivier, and P Russo. 14 c autoradiography with an energy-sensitive
silicon pixel detector. Physics in medicine and biology, 56:1947–65, 03 2011.
doi:10.1088/0031-9155/56/7/003.

[38] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. pages 226–231. AAAI Press, 1996.

[39] Lyndon Evans and Philip Bryant. LHC machine. Journal of Instrumentation,
3(08):S08001–S08001, aug 2008. doi:10.1088/1748-0221/3/08/s08001.

156

https://link.aps.org/doi/10.1103/PhysRevLett.110.221601
https://doi.org/10.1103/PhysRevLett.110.221601
https://cds.cern.ch/record/1624070
https://cds.cern.ch/record/1647400
https://link.aps.org/doi/10.1103/PhysRevLett.122.211803
https://doi.org/10.1103/PhysRevLett.122.211803
http://cds.cern.ch/record/2743058
http://arxiv.org/abs/2103.11769
https://www.sciencedirect.com/science/article/pii/S016890020300425X
https://doi.org/https://doi.org/10.1016/S0168-9002(03)00425-X
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1103%2Frevmodphys.70.1341
https://doi.org/10.1103/revmodphys.70.1341
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
https://doi.org/10.5555/2851115
https://doi.org/10.1038/s41586-019-1724-z
https://djangoproject.com
https://doi.org/10.1088/0031-9155/56/7/003
https://doi.org/10.1088/1748-0221/3/08/s08001

[40] J. A. Formaggio and G. P. Zeller. From ev to eev: Neutrino cross sections across energy scales.
Rev. Mod. Phys., 84:1307–1341, Sep 2012. doi:10.1103/RevModPhys.84.1307.

[41] Professor E. Rutherford F.R.S. Lxxix. the scattering of α and β particles by matter and the
structure of the atom. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 21(125):669–688, 1911.
arXiv:https://doi.org/10.1080/14786440508637080,
doi:10.1080/14786440508637080.

[42] A. Gelman, W. R. Gilks, and G. O. Roberts. Weak convergence and optimal scaling of random
walk Metropolis algorithms. The Annals of Applied Probability, 7(1):110 – 120, 1997.
doi:10.1214/aoap/1034625254.

[43] LHCbVELO gorup. LHCb VELO (VErtex LOcator): Technical Design Report. Technical design
report. LHCb. CERN, Geneva, 2001. URL: http://cds.cern.ch/record/504321.

[44] LHCb VELO group. Performance of the LHCb Vertex Locator. Performance of the LHCb
Vertex Locator. JINST, 9:P09007. 61 p, May 2014. Comments: 61 pages, 33 figures. URL:
https://cds.cern.ch/record/1707015, arXiv:1405.7808,
doi:10.1088/1748-0221/9/09/P09007.

[45] Particle Data Group. Review of Particle Physics. Progress of Theoretical and Experimental
Physics, 2020(8), 08 2020. 083C01. arXiv:https://academic.oup.com/ptep/articl
e-pdf/2020/8/083C01/34673722/ptaa104.pdf, doi:10.1093/ptep/ptaa104.

[46] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable
mdps, 2015. URL: https://arxiv.org/abs/1507.06527,
doi:10.48550/ARXIV.1507.06527.

[47] W. Heisenberg. Über den Bau der Atomkerne. I. Zeitschrift fur Physik, 77(1-2):1–11, January
1932. doi:10.1007/BF01342433.

[48] Andreas Hoecker. Physics at the LHC Run-2 and Beyond. Physics at the LHC Run-2 and
Beyond, Nov 2016. Lecture notes from the 2016 European School of High-Energy Physics,
15-28 June 2016, Skeikampen, Norway (61 pages, 56 figures). URL:
https://cds.cern.ch/record/2236645, arXiv:1611.07864,
doi:10.23730/CYRSP-2017-005.153.

[49] B J Holzer, R Versteegen, and R Alemany. Vertical Crossing Angle in IR8. Technical report, Apr
2013. URL: https://cds.cern.ch/record/1541986.

[50] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007. doi:10.1109/MCSE.2007.55.

[51] Plotly Technologies Inc. Collaborative data science, 2015. URL: https://plot.ly.

[52] D. Iwanenko. The neutron hypothesis. Nature, 129:798–798, 1932.

[53] M Knecht, A Bay, F Blanc, M-O Bettler, G Conti, V Fave, R Frei, N Gauvin, G Haefeli, A Keune,
J Luisier, R Muresan, T Nakada, M Needham, L Nicolas, A Perrin, C Potterat, O Schneider,
M Tran, C Bauer, M Britsch, W Hofmann, F Maciuc, M Schmelling, H Voss, J Anderson,
A Buechler, N Chiapolini, V Hangartner, C Salzmann, S Steiner, O Steinkamp, J Van Tilburg,
M Tobin, A Vollhardt, B Adeva, J Fungueiri no Pazos, A Gallas, A Pazos-Alvarez, E Pérez-Trigo,
M Pló-Casasus, P Rodriguez Perez, J Saborido, P Vázquez, V Iakovenko, O Okhrimenko, and

157

https://doi.org/10.1103/RevModPhys.84.1307
http://arxiv.org/abs/https://doi.org/10.1080/14786440508637080
https://doi.org/10.1080/14786440508637080
https://doi.org/10.1214/aoap/1034625254
http://cds.cern.ch/record/504321
https://cds.cern.ch/record/1707015
http://arxiv.org/abs/1405.7808
https://doi.org/10.1088/1748-0221/9/09/P09007
http://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
http://arxiv.org/abs/https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
https://doi.org/10.1093/ptep/ptaa104
https://arxiv.org/abs/1507.06527
https://doi.org/10.48550/ARXIV.1507.06527
https://doi.org/10.1007/BF01342433
https://cds.cern.ch/record/2236645
http://arxiv.org/abs/1611.07864
https://doi.org/10.23730/CYRSP-2017-005.153
https://cds.cern.ch/record/1541986
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly

V Pugatch. Commissioning of the LHCb Silicon Tracker using data from the LHC injection
tests. Technical report, CERN, Geneva, May 2011. LHCb-TALK-2009-014. URL:
http://cds.cern.ch/record/1214889.

[54] P. Kopciewicz, T. Szumlak, M. Majewski, K. Akiba, O. Augusto, J. Back, D.S. Bobulska,
G. Bogdanova, S. Borghi, T. Bowcock, J. Buytaert, E. Lemos Cid, V. Coco, P. Collins,
E. Dall’Occo, K. de Bruyn, S. de Capua, F. Dettori, K. Dreimanis, D. Dutta, L. Eklund, T. Evans,
L. Meyer Garcia, O. Boente García, M. Gersabeck, T. Gershon, C. Sanchez Graz, K. Hennessy,
W. Hulsbergen, D. Hutchcroft, D. Hynds, P. Jalocha, M. John, N. Jurik, I. Kostiuk, T. Latham,
A. Leflat, V. Franco Lima, F. Marinho, L.H. Mendes, M. Merk, A. Morris, D. Murray, S. Naik,
I. Nasteva, A. Oblakowska-Mucha, J. Otalora, C. Parkes, B.G. Plana, A. Fernández Prieto,
B. Rachwal, P. Vázquez Regueiro, K. Rinnert, G. Rodrigues, L. Scantlebury-Smead, M. Schiller,
H. Schindler, T. Shears, A. Snoch, P. Svihra, A. Gallas Torreira, M. Van Beuzekom, J. Velthuis,
V. Volkov, M. Williams, W. Funk, and M. Ferro-Luzzi. The upgrade I of LHCb
VELO—towards an intelligent monitoring platform. JINST, 15:C06009. 11 p, Jun 2020. URL:
https://cds.cern.ch/record/2723996, arXiv:2006.09559,
doi:10.1088/1748-0221/15/06/c06009.

[55] Wojciech Krupa. Selected Results on the CKM Angle γ Measurement at the LHCb. Acta Phys.
Pol. B, 48:1989–1993. 5 p, 2017. URL: https://cds.cern.ch/record/2314451,
doi:10.5506/APhysPolB.48.1989.

[56] Evgenii Kurbatov. Lhcb results on rare leptonic decays of b-mesons. EPJ Web of Conferences,
222:02008, 01 2019. doi:10.1051/epjconf/201922202008.

[57] Maxim Lapan. Deep Reinforcement Learning Hands-On. Packt Publishing, Birmingham, UK,
2018.

[58] T. D. Lee and C. N. Yang. Question of parity conservation in weak interactions. Phys. Rev.,
104:254–258, Oct 1956. URL:
https://link.aps.org/doi/10.1103/PhysRev.104.254,
doi:10.1103/PhysRev.104.254.

[59] Torsten Lodderstedt, Mark McGloin, and Phil Hunt. OAuth 2.0 Threat Model and Security
Considerations. RFC 6819, January 2013. URL:
https://www.rfc-editor.org/info/rfc6819, doi:10.17487/RFC6819.

[60] S Löchner and M Schmelling. The Beetle Reference Manual - chip version 1.3, 1.4 and 1.5.
Technical report, CERN, Geneva, Nov 2006. URL:
https://cds.cern.ch/record/1000429.

[61] Maciej Majewski. Gym-lartpc repository, 2021. URL:
https://github.com/mmajewsk/gym-lartpc2d/tree/master/gym_lartpc.

[62] Maciej Majewski. Repository with code for the dqn solution of gym-lartpc, 2021. URL:
https://github.com/mmajewsk/lartpc2D.

[63] Maciej Majewski. Storck - cern repository.
https://gitlab.cern.ch/velo-calibration-software/storck, 2021. [Online;
accessed 10-Nov-2021].

[64] Maciej Majewski. Storck - official documentation page. https://storck.docs.cern.ch,
2022. [Online; accessed 07-Apr-2022].

158

http://cds.cern.ch/record/1214889
https://cds.cern.ch/record/2723996
http://arxiv.org/abs/2006.09559
https://doi.org/10.1088/1748-0221/15/06/c06009
https://cds.cern.ch/record/2314451
https://doi.org/10.5506/APhysPolB.48.1989
https://doi.org/10.1051/epjconf/201922202008
https://link.aps.org/doi/10.1103/PhysRev.104.254
https://doi.org/10.1103/PhysRev.104.254
https://www.rfc-editor.org/info/rfc6819
https://doi.org/10.17487/RFC6819
https://cds.cern.ch/record/1000429
https://github.com/mmajewsk/gym-lartpc2d/tree/master/gym_lartpc
https://github.com/mmajewsk/lartpc2D
https://gitlab.cern.ch/velo-calibration-software/storck
https://storck.docs.cern.ch

[65] Maciej Majewski. Titania - official documentation page.
https://titania.docs.cern.ch, 2022. [Online; accessed 07-Apr-2022].

[66] Egil Martinsson. WTTE-RNN : Weibull Time To Event Recurrent Neural Network. Master’s
thesis, Chalmers University Of Technology, 2016.

[67] J N Marx and D R Nygren. Time projection chamber. Phys. Today; (United States), 31, 10 1978.
URL: https://www.osti.gov/biblio/6545918, doi:10.1063/1.2994775.

[68] Dirk Merkel. Docker: lightweight linux containers for consistent development and
deployment. Linux journal, 2014(239):2, 2014.

[69] P. Miocinovic, S. W. Barwick, J. J. Beatty, D. Z. Besson, W. R. Binns, B. Cai, J. M. Clem,
A. Connolly, S. Coutu, D. F. Cowen, P. F. Dowkontt, M. A. DuVernois, P. A. Evenson,
D. Goldstein, P. W. Gorham, C. L. Hebert, M. H. Israel, J. G. Learned, K. M. Liewer, J. T. Link,
S. Matsuno, J. W. Nam, C. J. Naudet, R. Nichol, K. J. Palladino, M. Rosen, D. Saltzberg,
D. Seckel, A. Silvestri, G. S. Varner, and D. Williams. Tuning into uhe neutrinos in antarctica -
the anita experiment. 2005. URL: https://arxiv.org/abs/astro-ph/0503304,
doi:10.48550/ARXIV.ASTRO-PH/0503304.

[70] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL:
https://arxiv.org/abs/1312.5602, doi:10.48550/ARXIV.1312.5602.

[71] OpenAI et al. Dota 2 with large scale deep reinforcement learning, 2019. URL:
https://arxiv.org/abs/1912.06680, doi:10.48550/ARXIV.1912.06680.

[72] C Parkes, T Ruf, and T Szumlak. Reconstruction of Cluster Positions in the LHCb Velo.
Technical report, CERN, Geneva, Dec 2007. URL:
https://cds.cern.ch/record/1074928.

[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[74] M Platkevic, Jan Jakubek, V Havranek, Martin Jakubek, Stanislav Pospisil, V Semian, and Jan
Žemlička. Evaluation of local radiation damage in silicon sensor via charge collection mapping
with the timepix read-out chip. Journal of Instrumentation, 8:C04001, 04 2013.
doi:10.1088/1748-0221/8/04/C04001.

[75] H.I. Rhys. Machine Learning with R, the tidyverse, and mlr. Manning Publications, 2020. URL:
https://books.google.pl/books?id=BoeryQEACAAJ.

[76] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer New York,
second edition, 2004. doi:10.1007/978-1-4757-4145-2.

[77] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65 6:386–408, 1958.

[78] Carlo Rubbia. The liquid-argon time projection chamber: a new concept for neutrino detectors.
Technical report, CERN, Geneva, 1977. URL: https://cds.cern.ch/record/117852.

159

https://titania.docs.cern.ch
https://www.osti.gov/biblio/6545918
https://doi.org/10.1063/1.2994775
https://arxiv.org/abs/astro-ph/0503304
https://doi.org/10.48550/ARXIV.ASTRO-PH/0503304
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1912.06680
https://doi.org/10.48550/ARXIV.1912.06680
https://cds.cern.ch/record/1074928
https://doi.org/10.1088/1748-0221/8/04/C04001
https://books.google.pl/books?id=BoeryQEACAAJ
https://doi.org/10.1007/978-1-4757-4145-2
https://cds.cern.ch/record/117852

[79] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
python using PyMC3. PeerJ Computer Science, 2:e55, April 2016.
doi:10.7717/peerj-cs.55.

[80] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2014. URL: https://arxiv.org/abs/1409.1556,
doi:10.48550/ARXIV.1409.1556.

[81] E. L. Snider and G. Petrillo. LArSoft: Toolkit for Simulation, Reconstruction and Analysis of
Liquid Argon TPC Neutrino Detectors. J. Phys. Conf. Ser., 898(4):042057, 2017. URL:
https://larsoft.org/, doi:10.1088/1742-6596/898/4/042057.

[82] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018. URL:
http://incompleteideas.net/book/the-book-2nd.html.

[83] T Szumlak and C Parkes. Application of the Beetle Header cross-talk correction algorithm for
the VELO Detector. Technical report, CERN, Geneva, Jan 2010. URL:
http://cds.cern.ch/record/1177860.

[84] C.C.W. TAYLOR. The Atomists: Leucippus and Democritus: Fragments. University of Toronto
Press, 1999. URL: http://www.jstor.org/stable/10.3138/9781442671102.

[85] J.J. Thomson and Smithsonian Institution. On Bodies SmallerThan Atoms. Annual report -
Smithsonian Institution, 1901-1902. U.S. Government Printing Office, 1901. URL:
https://books.google.pl/books?id=aCqjjwEACAAJ.

[86] Panagiotis Christos Tsopelas. A Silicon Pixel Detector for LHCb. PhD thesis, Vrije U.,
Amsterdam, 2016.

[87] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning, 2015. URL: https://arxiv.org/abs/1509.06461,
doi:10.48550/ARXIV.1509.06461.

[88] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009.

[89] Renilde Vanden Broeck. THE CERN ACCELERATOR COMPLEX. Complexe des
accélérateurs du CERN. image for poster use, Sep 2019. URL:
https://cds.cern.ch/record/2693837.

[90] LHCb velo group. Radiation Damage Effects and Operation of the LHCb Vertex Locator.
Radiation Damage Effects and Operation of the LHCb Vertex Locator. IEEE Trans. Nucl. Sci.,
65:1127–1132. 6 p, 2018. This is an expanded version, including new results, of the paper
presented at the conference. URL: https://cds.cern.ch/record/2633496,
doi:10.1109/TNS.2018.2824618.

[91] Wikipedia contributors. History of artificial intelligence — Wikipedia, the free encyclopedia,
2022. [Online; accessed 22-April-2022]. URL: https://en.wikipedia.org/w/index
.php?title=History_of_artificial_intelligence&oldid=1076647189.

[92] Lincoln Wolfenstein. Parametrization of the kobayashi-maskawa matrix. Phys. Rev. Lett.,
51:1945–1947, Nov 1983. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.51.1945,
doi:10.1103/PhysRevLett.51.1945.

160

https://doi.org/10.7717/peerj-cs.55
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1409.1556
https://larsoft.org/
https://doi.org/10.1088/1742-6596/898/4/042057
http://incompleteideas.net/book/the-book-2nd.html
http://cds.cern.ch/record/1177860
http://www.jstor.org/stable/10.3138/9781442671102
https://books.google.pl/books?id=aCqjjwEACAAJ
https://arxiv.org/abs/1509.06461
https://doi.org/10.48550/ARXIV.1509.06461
https://cds.cern.ch/record/2693837
https://cds.cern.ch/record/2633496
https://doi.org/10.1109/TNS.2018.2824618
https://en.wikipedia.org/w/index.php?title=History_of_artificial_intelligence&oldid=1076647189
https://en.wikipedia.org/w/index.php?title=History_of_artificial_intelligence&oldid=1076647189
https://link.aps.org/doi/10.1103/PhysRevLett.51.1945
https://doi.org/10.1103/PhysRevLett.51.1945

	Introduction
	High Energy Physics
	Standard Model
	CP symmetry violation
	Tree-level determination of the unitarity triangle angle γ - CKM matrix
	Test for the lepton universality.

	The Large Hadron Collider beauty experiment
	Large Hadron Collider
	LHCb spectrometer
	LHCb subsystems
	Rich
	Trackers
	Magnet
	Calorimeters
	Muon station

	Velo
	Strip Velo in Run 1 and 2
	Velopix

	Machine Learning
	Areas of machine learning
	Neural Networks
	Multi-Layer Perceptron
	Stochastic gradient descent and Backpropagation
	Convolutional neural networks

	Dimensionality reduction - Autoencoders
	Recurrent networks
	Standard recurrent network
	LSTM
	WTTE-RNN

	Deep Reinforcement learning
	Q-Learning
	Deep Q-Learning
	Experience replay buffer
	Double Deep Q-Learning

	Probabilistic programming
	Metropolis-Hastings algorithm example
	Probabilistic programming and Bayesian modelling

	Clustering
	K-means
	DBSCAN
	OPTICS

	Machine Learning methods and analysis for strip Velo
	Run 1 and 2 calibration analysis
	The Data
	Pedestals
	Clusterisation Thresholds
	Analysis of the outliers

	Intelligent analysis of the threshold data with probabilistic programming
	Dataset creation
	Model
	Training
	Results

	Dimensionality reduction
	Pedestals dimensionality reduction
	Threshold dimensionality reduction
	Results

	Time to the next calibration forecasting
	Dataset
	WTTE-RNN model for Velo
	Training and results

	Chapter Discussion

	Machine Learning methods and analysis for VeloPix
	Intelligent pixel mask cluster tracking
	Simulation of the VeloPix masks
	Mask clustering
	Mask cluster features
	Mask cluster tracking
	Results

	Studies of the surrogate activation functions in VeloPix sensors
	Surrogate function model
	Experimental data
	Cross sensor study
	The fluence
	Modelling the surrogate curves evolution in the fluence domain
	Results: Particle fluence estimation based on the surrogate curve properties

	Disussion

	Software for Velo daily operation
	Storck
	Motivation
	Software stack
	Service Design Overview
	Implementation
	REST API
	Deployment
	Gitlab CI
	Storck web interface
	Storck python client

	Titania
	Motivation
	Software Stack
	Framework Design
	Using Titania

	Conclusions

	Neutrino induced processes
	Neutrino experiments
	LARTPC detector
	Neutrino production and observation
	Beta-decay
	Medium and higher energy interactions

	Ultra high energy neutrinos
	Summary

	Reinforcement learning for LARTPC detector
	Simulations and Data
	Dataset
	Environment
	Formalisation
	MDP and POMDP

	Gym-lartpc package
	Classes
	Example game
	Visualisation

	Deep Q-learning solution
	Learning

	Results

	Conclusions
	References

