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Abstract

The strongly interacting matter phase diagram is not yet well explored. In particular, the search for the

expected phase transition and critical point between the hadronic gas (protons, neutrons, etc.) and the quark-

gluon plasma (deconfined quarks and gluons) is one of the greatest challenges in nuclear and high-energy

physics nowadays. Theoretical studies predict that the fluctuations in the baryon number, electric charge,

and strangeness are sensitive to such a transition and critical point. These fluctuations are quantified by

the cumulants, factorial cumulants, and factorial moments which are measured experimentally at the major

particle collider facilities. The cumulants naturally appear in statistical mechanics and lattice numerical

calculations. On the other hand, factorial cumulants are useful when investigating multiparticle correlations.

The recent results of the STAR and HADES collaborations might be interpreted as a signature of the critical

phenomena. However, greater statistics as well as a careful study of various effects such as baryon number

conservation or volume fluctuations are needed.

In this thesis, the cumulants and factorial cumulants originating from various effects are calculated an-

alytically. First of all, the mixed proton-antiproton factorial cumulants from global baryon number conser-

vation are obtained. They include more information than often studied net-proton cumulants. What is more,

they might be helpful in distinguishing between the effects of the baryon annihilation with local baryon num-

ber conservation law and another scenario assuming global baryon number conservation only. Then, in this

dissertation, the baryon number cumulants and factorial cumulants in the subsystem are obtained assuming

the global baryon number conservation and short-range correlations. The fact that they are expressed by the

cumulants without baryon number conservation can enable correcting the experimental data or numerical

results for this effect. In the next step, a method of calculating corrections to the cumulants from baryon

number conservation and short-range correlations is developed. It is especially important for small systems.

In the last part, the cumulants and factorial cumulants due to fluctuations in the width of the proton rapidity

density distribution are derived. They are expected to be caused, e.g., by the event-by-event fluctuations in

the energy deposition of stopped protons resulting in longitudinal fluctuations of the fireball density. This

effect is found to be potentially important when studying proton or baryon number cumulants.
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Streszczenie

Diagram fazowy materii oddziałującej silnie nie jest jeszcze dobrze zbadany. W szczególności poszuki-

wanie spodziewanego przejścia fazowego i punktu krytycznego pomiędzy gazem hadronowym (protony,

neutrony itp.) i plazmą kwarkowo-gluonową (nieuwięzione kwarki i gluony) jest jednym z największych

wyzwań w dzisiejszej fizyce jądrowej i fizyce wysokich energii. Badania teoretyczne przewidują, że fluktu-

acje liczby barionowej, ładunku elektrycznego i dziwności są czułe na takie przejście fazowe i punkt kryty-

czny. Te fluktuacje są opisywane ilościowo przez kumulanty faktorialne, kumulanty i momenty faktorialne,

które są mierzone eksperymentalnie w największych zderzaczach cząstek. Kumulanty naturalnie pojaw-

iają się w mechanice statystycznej oraz obliczeniach numerycznych na sieciach. Z drugiej strony kumu-

lanty faktorialne są użyteczne w badaniu korelacji wielocząstkowych. Najnowsze wyniki kolaboracji STAR

i HADES mogą być interpretowane jako przejaw zjawisk krytycznych. Jednakże potrzebna jest zarówno

większa statystyka, jak i staranne zbadanie różnych efektów, takich jak zasada zachowania liczby bari-

onowej, czy fluktuacje objętości.

W niniejszej rozprawie obliczono analitycznie kumulanty faktorialne i kumulanty pochodzące z różnych

efektów. Najpierw otrzymano mieszane protonowo-antyprotonowe kumulanty faktorialne z globalnej za-

sady zachowania liczby barionowej. Zawierają one więcej informacji niż często badane kumulanty wypad-

kowej liczby protonowej. Co więcej, mogą one być pomocne w rozróżnieniu pomiędzy efektami anihi-

lacji barionów z lokalnym zachowaniem liczby barionowej i innym scenariuszem zakładającym tylko glob-

alne zachowanie liczby barionowej. Następnie w tej rozprawie otrzymano kumulanty faktorialne i kumu-

lanty liczby barionowej w części układu, zakładając globalne zachowanie liczby barionowej oraz korelacje

krótkozasięgowe. Fakt, że kumulanty te są wyrażone przez kumulanty bez zachowania liczby barionowej,

może pozwolić na uwzględnienie tego efektu przy korygowaniu danych eksperymentalnych lub wyników

numerycznych. W kolejnym kroku opracowano metodę obliczania poprawek do kumulantów z zachowania

liczby barionowej i korelacji krótkozasięgowych. Jest to ważne szczególnie dla małych układów. W ostat-

niej części wyprowadzono wzory na kumulanty faktorialne i kumulanty wynikające z fluktuacji szerokości

rozkładu gęstości protonów w pośpieszności (ang. rapidity). Spodziewać się można, że są one spowodowane

na przykład fluktuacjami energii deponowanej przez zatrzymane protony. Skutkują one podłużnymi fluktu-

acjami gęstości gorącej materii. Zauważono, że ten efekt jest potencjalnie ważny w badaniu kumulantów

liczby protonowej lub barionowej.
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Chapter 1

Thesis structure

The central part of this doctoral thesis consists of a collection of four published articles. They present

analytical calculations of the proton and baryon number cumulants and factorial cumulants originating from

different effects. These effects should be taken into account when analyzing experimental data from rela-

tivistic heavy-ion collisions in the context of the search for the predicted phase transition and critical point

between hadronic matter and quark-gluon plasma. The articles are listed below.

Article 1: M. Barej and A. Bzdak, Factorial cumulants from global baryon number conservation,

Phys. Rev. C 102, no. 6, 064908 (2020). DOI:10.1103/PhysRevC.102.064908.

Article 2: M. Barej and A. Bzdak, Factorial cumulants from short-range correlations and global baryon

number conservation, Phys. Rev. C 106, no. 2, 024904 (2022). DOI:10.1103/PhysRevC.106.024904.

Article 3: M. Barej and A. Bzdak, Cumulants from short-range correlations and baryon number conserva-

tion at next-to-leading order, Phys. Rev. C 107, no. 3, 034914 (2023). DOI:10.1103/PhysRevC.107.034914.

Article 4: M. Barej and A. Bzdak, Cumulants from fluctuating width of rapidity distribution, Phys. Rev. C

108, no. 1, 014907 (2023). DOI:10.1103/PhysRevC.108.014907.

The thesis begins with the introduction where the quantum chromodynamics (QCD) phase diagram

is discussed. Then, the measures of fluctuations and correlations, i.e., cumulants, factorial cumulants, and

factorial moments are explained in the context of particle multiplicity distribution in heavy-ion collisions.

This is followed by an overview of the selected recent theoretical and experimental results. Finally, the goal

of this thesis is presented. The next chapter constitutes a guide to the articles. For each article, its content is

summarized with a focus on its aim, assumptions, and main findings. The last chapter is a summary of the

thesis. In the appendixes, the supplemental information is included and the articles are attached.
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Chapter 2

Introduction

2.1 The QCD phase diagram

The understanding of matter and its different phases is one of the most fundamental problems in science.

Different phases of matter and conditions governing the transitions between them can be summarized in the

phase diagrams. The temperature–pressure phase diagram of water is perhaps the best-known one. It shows

the ranges of temperature and pressure when the water is solid (ice), liquid, or gaseous (water vapor). The

research discussed in this thesis is related to the phase diagram of the strongly interacting matter, known as

the quantum chromodynamics (QCD) phase diagram, which is not yet well explored [1].
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Figure 2.1: The conjectured QCD phase diagram with the predicted first-order phase transition and corre-

sponding critical endpoint [1, 2].

The conjectured QCD phase diagram is shown in Fig. 2.1. It is the temperature–baryon chemical poten-

tial (T −µB) diagram. The baryon chemical potential is the chemical potential for baryons.1 It is commonly

1The chemical potential can be defined as µ = ∂E/∂.N |S,V , where E is the system energy, N is the number of particles, S is

the entropy, and V is the volume. Therefore, its meaning is the energy cost to add an infinitesimal number of particles to the system

while its entropy and volume are fixed [3].
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2. Introduction 4

known that the regular nuclear matter building up the atomic nuclei consists of protons and neutrons. The

protons and neutrons, being hadrons, consist of quarks and gluons. Under typical conditions, quarks and

gluons are always confined in hadrons. However, they can be deconfined at very high temperatures. It is be-

lieved that the early Universe was filled with deconfined quarks and gluons, the quark-gluon plasma (QGP)

state. There are signatures of strongly interacting QGP created for an enormously short time in a tiny volume

in the relativistic heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) of Brookhaven National

Laboratory (BNL), at the Super Proton Synchrotron (SPS), and the Large Hadron Collider (LHC) of the Eu-

ropean Organization for Nuclear Research (CERN). These signatures include the azimuthal asymmetry of

particle production, known as elliptic flow, triangular flow, and others [4, 5], the jet quenching effect [6, 7],

and the strangeness enhancement [8–10].

It is conjectured that at low temperatures and extremely high µB , corresponding to high densities, a

matter consisting mostly of neutrons is deconfined into quarks. Under these conditions, the quark pairs

(analogous to Cooper pairs in superconductivity) are expected to be formed due to attractive strong interac-

tion between two quarks. Perhaps, such a phase of color superconductivity is created in the core of a neutron

star [11–13].

The Lattice QCD numerical calculations showed that at µB ≈ 0, there is a rapid but continuous crossover

between the hadronic matter and QGP with a pseudo-critical temperature of about 155 MeV [14, 15]. This

is seen from the fast increase of the energy density and entropy density when increasing temperature.

Most of the regions of the QCD phase diagram are not accessible by pure QCD theory because it be-

comes non-perturbative there. Due to the so-called sign problem [16], Lattice QCD methods are limited

to a small µB regime. Most of the experiments at the LHC and RHIC also reproduce the conditions of

nearly vanishing baryon chemical potential. Consequently, the QCD phase diagram regions with greater µB

are still not well known [1]. Nevertheless, many effective models predict a first-order phase transition with

the corresponding critical endpoint between the hadronic matter and the quark-gluon plasma [13, 17–20].

Nowadays, there is a big effort, both theoretical and experimental, to search for this phase transition.

Baryons are always produced as baryon-antibaryon pairs satisfying the baryon number conservation law.

In the heavy-ion collision experiments at high energies (LHC energies and top RHIC energies), there are

many baryon-antibaryon pairs produced. Consequently, the number of baryons is approximately the same as

the number of antibaryons. This situation corresponds to the vanishing baryon chemical potential. At lower

collision energies, fewer pairs are created. The incoming baryons (from the incoming nuclei) that are stopped

in the acceptance region contribute more to the total baryon number. Therefore, there are more baryons than

antibaryons in the system. This results in greater µB . Consequently, heavy-ion collisions at different energies

allow the exploration of different regions of the QCD phase diagram. Such experiments include, e.g., the

Beam Energy Scan program at RHIC [21–23] and the heavy-ion program of the NA61/SHINE Collaboration

at the CERN SPS [24–26]. There are also hopes for interesting results from future experiments at the Facility

for Antiproton and Ion Research (FAIR) of the GSI Helmholtz Center for Heavy Ion Research [27].

At this point, it should be mentioned that understanding heavy-ion collision experiments is challenging.

The two atomic nuclei are accelerated to almost the speed of light, thus they are Lorentz-contracted. They

collide and, in the overlapping zone, the quark-gluon plasma is likely created, thanks to the enormous

M. Barej, Exploration of Baryon Number Factorial Cumulants in the Context of the Quantum Chromodynamics
Phase Diagram



2. Introduction 5

energy density. Then, the QGP expands and cools down. At some point (about 155 MeV for µB = 0), the

hadronization happens - the quarks and gluons become again confined into hadrons such as pions, kaons,

protons, antiprotons, etc. The system further expands. Subsequently, the chemical freeze-out takes place.

This means that the abundances of particles are frozen - there is no longer inelastic scattering between the

hadrons. Then, in the kinetic freeze-out, the momenta of the particles become frozen - there is no more

elastic scattering. All these phenomena happen within approximately 10 fm/c (which corresponds to about

3 × 10−23 s). Because of the extreme conditions, none of these processes can be accessed directly. All

the experimental information is obtained from the particles observed at the complicated detector systems

where they reach approximately 1015 fm/c (about 3 × 10−9 s) after the collision. The detectors in modern

experiments consist of many parts aiming to detect different kinds of particles. They are equipped with

advanced electronic and triggering systems. The physical conclusions from the experiments can be obtained

only after sophisticated analysis of the huge amounts of collected data.

One of the simplest models to study the phase transitions and critical points is the Ising model applied

to magnetism. In this model, the system consists of the lattice of many spins; each of them can be pointing

either up or down. The energy of each spin depends on its state, the states of its nearest neighbors, and

the external magnetic field, h. The total energy is minimized when all the spins are aligned in the same

direction. The Ising model is usually studied with the mean field approximation. At T = 0, the system is in

its ground state. Namely, either all of the spins are up or all are down, depending on h. Therefore, there is

a sudden jump in the average magnetization (magnetization can be thought of as a balance between spins

up and down) when crossing h = 0. When the temperature grows, some of the spins in the system change

their orientation due to thermal fluctuations. Thus, the difference in magnetization when crossing h = 0

is still sharp but smaller. Eventually, at the critical temperature, Tc, recognized in this context as the Curie

temperature2, this difference decreases to zero and there is a smooth transition between h > 0 and h < 0,

see Fig. 2.2. This means that the difference between the properties of the two states disappears. At h = 0

and T < Tc, there is the first-order phase transition between negative and positive average magnetization. At

h = 0 and T > Tc, there is a crossover. (h = 0, T = Tc) is the critical point. The mathematical similarity in

the description of the phase transition and critical phenomena in different systems is well-known in physics.

Therefore, a similar behavior is expected also in the case of the QCD phase diagram. As mentioned earlier,

the smooth crossover is known to appear in the QCD phase diagram at a small µB . Thus, the predicted first-

order phase transition has to end somewhere with the critical point where it transforms into the crossover.

In general, the phase transition is the coexistence of two phases, e.g., the coexistence of water and ice

or of water and water vapor. Consider water in an open container. Let us focus on a little subsystem of the

water volume. At 0◦C < T < 100◦C, the probability distribution P (N) of having N water molecules in

the subvolume is expected to be a unimodal distribution. At higher temperatures, there can be only water

vapor in the subvolume. Consequently, P (N) would be also a unimodal distribution with a peak at lower

N due to the lower density of molecules in vapor than in water. At T = 100◦C, the water is boiling

and the vapor bubbles are appearing in the volume of water. The two states coexist. Therefore, one can

expect a bimodal P (N) distribution. Following this reasoning, the model of two-component distribution,

2Typically, a material is a ferromagnet at T < Tc and a paramagnet at T > Tc.

M. Barej, Exploration of Baryon Number Factorial Cumulants in the Context of the Quantum Chromodynamics
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2. Introduction 6

Figure 2.2: The phase diagram of the magnetic system in the Ising model [1].

P (N) = (1 − α)PA(N) + αPB(N), where 0 < α < 1, was proposed in Ref. [28] where it was also

shown that even a very small α can result in large higher-order cumulants. Recently, this model was tested

by the STAR Collaboration [23]. No two-component structure is observed at collision energies per nucleon-

nucleon pair, √sNN ≥ 11.5GeV. No conclusions can be drawn for lower energies yet. This potentially is

a method to put a limit on the location of the predicted critical point, suggesting that it may be observed at
√
sNN < 11.5 GeV corresponding to greater µB . However, the modifications of the probability distribution

are likely very tiny. Hence, sensitive measures of the fluctuations of its shape should be used. These measures

are discussed in the next section.

2.2 Correlations and fluctuations

The results of statistical mechanics obtained, e.g., within the Ising model apply also to other phase

transitions. For instance, some quantities change in a common way when approaching the critical point,

e.g., they are proportional to (T − Tc)
γ , where Tc is a critical temperature and γ is a critical exponent.

It is also known that the correlation length grows near the critical point. This results in an increase in the

fluctuations of the quantities relevant to the discussed medium. In the case of the strongly interacting matter,

when approaching the critical point, an increase in fluctuations of the net-baryon number, electric charge,

and strangeness is expected [1, 29–41]. These fluctuations are most often described by the cumulants, κm,

factorial cumulants, Ĉm, and factorial moments, Fm [1, 42].

The probability generating function for the discrete probability distribution P (n) is given by

H(z) =

∞�

n=0

P (n)zn . (2.1)

P (n) in this context is the probability of producing or observing n particles of one kind in a heavy-ion

collision. The mth factorial moment is defined as

Fm =

�
n!

(n−m)!

�
, (2.2)

where �x� = �∞
n=0 xP (n) is the expected value of x. Fm can be calculated from H(z):

Fm =
dmH(z)

dzm

����
z=1

. (2.3)

M. Barej, Exploration of Baryon Number Factorial Cumulants in the Context of the Quantum Chromodynamics
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Moreover, Fm is the integrated m-particle rapidity3 density distribution, �m, [43]

Fm =

�
dy1dy2 . . . dym �m(y1, y2, . . . , ym) . (2.4)

The cumulants are obtained from the cumulant generating function, K(t):

K(t) = ln

� ∞�

n=0

P (n)etn

�
=

∞�

m=1

tm

m!
κm . (2.5)

Therefore, the mth cumulant can be calculated using the mth derivative of K(t):

κm =
dmK(t)

dtm

����
t=0

. (2.6)

The mth central moment is defined in probability theory as

µm = �(n− �n�)m� . (2.7)

The central moments can be obtained from the relevant central moment generating function,

C(t) =
∞�

n=0

P (n)et(n−�n�) ⇒ µm =
dmC(t)

dtm

����
t=0

. (2.8)

The cumulants are related to central moments. Namely, from Eqs. (2.5) and (2.8),

K(t) = ln[C(t)] + t�n� . (2.9)

From this one obtains

κ1 = �n� ,

κm =
m�

k=1

(−1)k−1(k − 1)! Bellm,k(0, µ2, µ3, ..., µm−k+1) , m > 1 ,
(2.10)

where the result for m > 1 is obtained using Faà di Bruno’s formula and Bellm,k are the partial exponential

Bell polynomials. In particular, the first four cumulants read

κ1 = �n� ,
κ2 = µ2 ,

κ3 = µ3 ,

κ4 = µ4 − 3µ2
2 .

(2.11)

Therefore, the quantities describing the shape of the probability distribution can be expressed by cumulants,

i.e., the expected value: �n� = κ1, the variance: σ2 = µ2 = κ2, the skewness: S = µ3/σ
3 = κ3/κ

3/2
2 , and

3Here the formalism is presented in terms of rapidity densities and rapidity correlation functions because rapidity is the variable

commonly used in the analysis of the heavy-ion collisions experimental data. However, other variables can be used instead of

rapidity. For completeness, the rapidity is defined as y = 1
2
ln

�
E+pz
E−pz

�
, where E is the particle energy, pz is its longitudinal

momentum (momentum along the axis determined by the incoming nuclei motion), and the speed of light c = 1.

M. Barej, Exploration of Baryon Number Factorial Cumulants in the Context of the Quantum Chromodynamics
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2. Introduction 8

the kurtosis4: κ = µ4/σ
4 − 3 = κ4/κ

2
2. From this, the interpretation of the following cumulant ratios is

seen,

κ2
κ1

=
σ2

�n� (scaled variance) ,

κ3
κ2

= Sσ (scaled skewness) ,

κ4
κ2

= κσ2 (scaled kurtosis) .

(2.12)

The particle number cumulants also appear in statistical mechanics, in the grand-canonical ensemble.

Here, the mth scaled susceptibility is defined as [44, 45]

χm =
∂m

�
P/T 4

�

∂ (µB/T )
m =

κm
V T 3

, (2.13)

where P is pressure, T is temperature, V is volume, and µB is baryon chemical potential. Therefore, the

cumulant ratio is equivalent to the scaled susceptibility ratio,

χm

χl
=

κm
κl

(2.14)

for any positive integers m and l. The cumulants naturally appear not only in statistical mechanics but

also in Lattice QCD calculations [14, 36, 46]. For these reasons, the cumulant ratios are often measured

experimentally, see, e.g., Refs. [47–52].

The factorial cumulant generating function, G(z), reads

G(z) = ln

� ∞�

n=0

P (n)zn

�
=

∞�

m=1

(z − 1)m

m!
Ĉm . (2.15)

By analogy to cumulants, the mth factorial cumulant, Ĉm, is calculated using G(z):

Ĉm =
dmG(z)

dzm

����
z=1

. (2.16)

The factorial cumulants represent the integrated multiparticle correlation functions [1, 53–55]. This fact can

be seen as follows. The second factorial cumulant obtained by straightforward calculation from Eq. (2.16)

reads

Ĉ2 = �n(n− 1)� − �n�2 . (2.17)

On the other hand, the two-particle rapidity density distribution, �2(y1, y2), is given by

�2(y1, y2) = �(y1)�(y2) + C2(y1, y2) , (2.18)

where �(y) is the single-particle rapidity density and C2(y1, y2) is the two-particle rapidity correlation

function. Integrating both sides of this equation, one obtains
�

dy1dy2 �2(y1, y2) =

�
dy1 �(y1)

�
dy2 �(y2) +

�
dy1dy2 C2(y1, y2) , (2.19)

4The kurtosis is often defined as µ4/σ
4. This gives three for the normal distribution. Therefore, it is convenient to define kurtosis

as presented in the main text so that κ = 0 for the normal distribution.
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which is, by Eqs. (2.4) and (2.2),

�n(n− 1)� = �n�2 +
�

dy1dy2 C2(y1, y2) . (2.20)

Therefore, by comparison of Eqs. (2.17) and (2.20), the second factorial cumulant is indeed the integrated

two-particle correlation function,

Ĉ2 =

�
dy1dy2 C2(y1, y2) . (2.21)

The analogous relations are also found for higher-order factorial cumulants. Namely,

Ĉm =

�
dy1dy2 . . . dym Cm(y1, y2, . . . , ym) , (2.22)

where Cm(y1, y2, . . . , ym) is the m-particle genuine correlation function, which means that the contributions

of the lower-order correlations are subtracted, e.g., for the three-particle correlation function:

C3(y1, y2, y3) = �3(y1, y2, y3)− �(y1)�(y2)�(y3)

− �(y1)C2(y2, y3)− �(y2)C2(y1, y3)− �(y3)C2(y1, y2) .
(2.23)

The formulas for the higher-order genuine correlation functions can be found, e.g., in Ref. [56].

The cumulants, κm, mix correlation functions of different orders as seen from the relation in which the

mth cumulant can be obtained from the factorial cumulants of different orders,

κm =
m�

k=1

S(m, k)Ĉk , (2.24)

where S(m, k) are the Stirling numbers of the second kind. Hence, the factorial cumulants are easier to

interpret in terms of multiparticle correlations. Eq. (2.24) has been discussed in Ref. [57]. For the first four

cumulants, it reads:

κ1 = �n� = Ĉ1 ,

κ2 = �n�+ Ĉ2 ,

κ3 = �n�+ 3Ĉ2 + Ĉ3 ,

κ4 = �n�+ 7Ĉ2 + 6Ĉ3 + Ĉ4 .

(2.25)

Obviously, one can invert this relation and calculate the mth factorial cumulant from the cumulants [57].

The application of factorial cumulants has also provided important experimental results [22, 23, 58, 59].

The Poisson distribution,

P (n) =
e−�n��n�n

n!
, (2.26)

is an important special case. A straightforward calculation using Eq. (2.15) gives the factorial cumulant

generating function

G(z) = �n�(z − 1) . (2.27)

Hence, the factorial cumulants are given by, see Eq. (2.16),

Ĉ1 = �n� ,
Ĉm = 0 , m > 1 .

(2.28)
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This indicates that if the number of particles follows the Poisson distribution, there are no multiparticle

correlations in the system. In the language of factorial moments, applying Eqs. (2.1) and (2.3), one obtains

Fm = �n�m, whereas all the cumulants of the Poisson distribution are equal to the expected value,

κm = �n� . (2.29)

Hence, every cumulant ratio
κm
κl

= 1 . (2.30)

The Poisson distribution constitutes the baseline of the no-correlations case.

For the net-proton number, n = (np−np̄) (with np and np̄ being the number of protons and antiprotons,

respectively), the relevant baseline is obtained from the Skellam distribution, which is the distribution of the

difference between two Poissonian random variables. Namely,

P (n) =

∞�

np=0

∞�

np̄=0

P1(np)P2(np̄)δnp−np̄,n , (2.31)

where P1 and P2 are the Poisson distributions with means �np� and �np̄�, respectively. The Kronecker delta

requires the constraint that n is a difference between two variables. Eq. (2.31) leads to

P (n) = e−(�np�+�np̄�)
��np�
�np̄�

�n/2

In

�
2
�
�np��np̄�

�
, (2.32)

where

In(x) =
∞�

m=0

1

m!(m+ n)!

�x
2

�2m+n
(2.33)

is a modified Bessel function of the first kind.

The multiparticle correlations are called short-range correlations if the correlations are local in, say,

rapidity. Usually, short-range rapidity correlations depend solely on relative distances between particles

and they are significant only when this distance is small [54]. In this case, each factorial cumulant, Ĉm,

is proportional to the mean number of particles, �n�, and to the range in rapidity, Δy. Therefore, the mth

cumulant, κm, is also proportional to �n�, so the cumulant ratios, κm/κl, are constant with respect to �n�.
By contrast, the long-range correlations are the correlations that are constant over the whole rapidity region.

It turns out that for long-range correlations, Ĉm scales as �n�m and as (Δy)m. Therefore, κm is a linear

combination of �n�k, k = 1, 2, ...,m, and the cumulant ratios, κm/κl, are the ratios of such polynomials.

The factorial moments, cumulants, and factorial cumulants can be generalized to the case of multiple

variables. In particular, the factorial cumulant generating function for the bivariate discrete probability dis-

tribution, P (np, np̄), is defined as

G(z, z̄) = ln




∞�

np=0

∞�

np̄=0

P (np, np̄)z
np z̄np̄


 . (2.34)

In terms of heavy-ion physics, np and np̄ can be interpreted as the numbers of two species of particles, e.g.,

protons and antiprotons. From this, one can calculate the (m, l) factorial cumulant corresponding to the

correlation of m particles of the first kind (protons) and l particles of the second kind (antiprotons),

Ĉ(m,l) =
∂m

∂zm
∂l

∂z̄l
G(z, z̄)

����
z=z̄=1

. (2.35)
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For instance, Ĉ(1,1) is the integrated one proton – one antiproton correlation function.

By analogy, the cumulant generating function of two variables (for two kinds of particles) is given by

K(t, t̄) = ln




∞�

np=0

∞�

np̄=0

P (np, np̄)e
tnpet̄np̄


 . (2.36)

Net-proton cumulants are often measured experimentally, see, e.g., Refs. [52, 59]. When substituting t̄ = −t

into Eq. (2.36), one obtains

K(t,−t) = ln




∞�

np=0

∞�

np̄=0

P (np, np̄)e
t(np−np̄)


 (2.37)

and

κm(np − np̄) =
dmK(t,−t)

dtm

����
t=0

(2.38)

is the mth net-proton cumulant. For example,

κ1(Δn) = �Δn� ,
κ2(Δn) = �(Δn− �Δn�)2� ,
κ3(Δn) = �(Δn− �Δn�)3� ,
κ4(Δn) = �(Δn− �Δn�)4� − 3�(Δn− �Δn�)2�2 ,

(2.39)

where Δn = np − np̄ and �...� means averaging over P (np, np̄). Note that these relations are analogous to

those given in Eqs. (2.11).

2.3 Selected recent results

For the measurements of the proton (or baryon) number cumulants and factorial cumulants, the first step

in the search for the expected first-order phase transition and critical point is to observe any deviations from

the Poisson (Skellam for net-protons or net-baryons) baseline. It is predicted that near the critical point, the

deviations of the cumulants from the noncritical baseline will depend non-monotonically on the collision

energy [30, 35, 38, 60, 61].

The NA61/SHINE Collaboration’s recent measurements provide a dependence of charged hadron cumu-

lant ratios on the collision energy per nucleon-nucleon pair √sNN between 5.1 and 17.3 GeV for different

colliding systems (p+p, Be+Be, and Ar+Sc) [62, 63]. However, no indication of critical behavior is observed.

The same conclusion is also drawn from the analysis of the scaled factorial moments in central Ar+Sc and

Pb+Pb collisions [24, 62].

The results of the STAR and HADES Collaborations [52, 58] suggest that the proton and net-proton

number cumulant ratio κ4/κ2 measured in central (0-5%) Au+Au collisions does depend non-monotonically

on the collision energy, see Fig. 2.3.5 Note that the experimental uncertainties especially at the lower energies

are still quite large. Therefore, greater statistics are needed.
5Note that the HADES data point and the STAR measurement at √sNN = 3 GeV are obtained in different acceptance which

makes the comparison challenging as discussed, e.g., in my recent paper [64].
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Figure 2.3: The proton and net-proton cumulant ratio κ4/κ2 (denoted by STAR as C4/C2) measured by

the STAR Collaboration (plus one data point from the HADES Collaboration) in central (0-5%) Au+Au

collisions [52, 58]. Data points are compared with model predictions. Note that the HADES data point and

the STAR measurement at √sNN = 3 GeV are obtained in different acceptance.

These results might be interpreted as a possible signature of the desired critical phenomena. However,

one should be careful because the fluctuations may be caused by other non-critical contributing effects. They

play the role of background in the search for the signal of phase transition and critical point.

One important example of such background effects is known as volume fluctuation [65]. The impact pa-

rameter in the atomic nuclei collision, thus the resulting overlapping geometry, and the number of wounded

nucleons6 fluctuate event by event. It is impossible to measure directly the initial geometry of a collision.

Instead, the collision centrality is determined based on the number of produced particles which is related

to the number of participants and can be studied using the Monte Carlo simulations based on the Glauber

model [66–71]. Even the tight centrality cuts do not fully reduce the volume fluctuations. Nowadays, in

experimental data analysis, centrality bin width correction (CBWC) [72] is used to address this issue [22].

In some analyses, it is convenient to use strongly intensive quantities [73–75].

Another contribution to baryon number fluctuations originates from the global baryon number conserva-

tion law [76]. The baryons are always produced as baryon-antibaryon pairs and can annihilate also as such

pairs. Therefore, the total net-baryon number is conserved. If all the particles were observed, the baryon

number would not fluctuate in the experimental results. This corresponds to the canonical ensemble known

in statistical mechanics. If the measurable part was much smaller than the total system, it would be described

by the grand canonical ensemble in which the number of particles is not fixed since the system can exchange

them with the reservoir. Real experiments represent a case between these two extreme scenarios since a fi-

nite acceptance is covered by the detectors. The baryon number fluctuates because a particle can be inside or

6A wounded nucleon (a.k.a. participating nucleon) is a nucleon of an incoming nucleus that underwent at least one inelastic

collision with a nucleon from another nucleus.
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outside the acceptance but the system (inside the acceptance) is comparable in size to the reservoir (outside

the acceptance). In Ref. [76] it was shown that the global baryon number conservation law significantly

modifies the baryon number cumulants. Many recent studies are taking this effect into account, e.g., Refs.

[77–79].

The ALICE Collaboration measured the normalized second net-proton cumulant

R1 =
κ2(np − np̄)

�np + np̄�
(2.40)

as a function of the pseudorapidity7 interval size in central (0-5%) Pb+Pb collisions at √sNN = 2.76 TeV,

see Fig. 2.4 [80]. They showed that in the interpretation of these results, the global baryon number conserva-

tion is favored over local conservation and it leads to long-range correlations. Recently, in Ref. [81], another

explanation was proposed. The local baryon conservation underestimates data however baryon-antibaryon

annihilation results in a decrease of the denominator of R1 while keeping its numerator unchanged. There-

fore, the combination of the baryon-antibaryon annihilation and local baryon number conservation may also

reproduce the ALICE data. Further measurements of other cumulants and factorial cumulants are necessary

to distinguish between the two scenarios.

Figure 2.4: The normalized second net-proton cumulant, R1 = κ2(np −np̄)/�np +np̄�, as a function of the

pseudorapidity interval size, Δη, measured by the ALICE Collaboration in central (0-5%) Pb+Pb collisions

at √sNN = 2.76 TeV, compared with different models [80].

In heavy-ion collision experiments, the particles are observed by the detector systems only in some

regions of the momentum space. This fact is often modeled by the binomial acceptance in which each

produced particle has the same probability of being observed. In Ref. [78], the subensemble acceptance

method (SAM) was proposed instead. In this method, the system is divided into two subsystems. All the

7The pseudorapidity is defined as η = − ln
�
tan

�
θ
2

��
, where θ is the angle between the momentum of a particle and the beam

axis (the axis along which the incoming nuclei are moving).
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particles from the first subsystem are observed whereas all the others are not. The partition function is given

by [78, 82]

Z(V, T ) =
�

N

ZCE(V,N, T )ZCE(V0 − V,N0 −N,T ) , (2.41)

where ZCE is the canonical ensemble partition function, V and V0−V are the volumes of the subsystems, N

and N0−N are the numbers of particles in the subsystems, and T is a common temperature of two systems

being in thermal equilibrium with each other.8 Authors have derived the net-baryon cumulants with baryon

number conservation in terms of cumulants without baryon number conservation within SAM. This method

has already been applied in a couple of studies to correct the results for the baryon number conservation,

see, e.g., Refs. [79, 82, 83].

2.4 The goal of this thesis

In this introduction, some unanswered questions about the QCD phase diagram arose. Further theoretical

predictions as well as more experimental data on the cumulants and factorial cumulants of the conserved

charges are needed in the search for the first-order phase transition and the corresponding critical point

between hadronic matter and quark-gluon plasma. Undoubtedly, a better understanding of how different

effects influence the quantities measured experimentally in heavy-ion collisions is necessary. This may be

also useful in the studies of the initial conditions and properties of strongly interacting matter in heavy-ion

collisions.

The goal of my research was to contribute to these efforts by calculating the cumulants and factorial

cumulants originating from the various effects which are important when exploring the QCD phase dia-

gram. These effects included global baryon number conservation, short-range correlations, and longitudinal

fluctuations of fireball density.

8Clearly, V0 is the total volume and N0 is the total particle number in the two subsystems. It is assumed that the two subsystems

do not interact with each other which can be approximately the case for very short-range correlations between particles.
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Chapter 3

Summary of the articles

The core of this doctoral thesis consists of four published articles. In all the articles, the proton or

baryon number cumulants and factorial cumulants originating from different phenomena are calculated.

These effects are important in the search for the predicted first-order phase transition and the critical point

in the QCD phase diagram. The studies are based on fully analytical calculations which I believe is worth

noting.

The mixed proton-antiproton factorial cumulants from the global baryon number conservation are calcu-

lated in Article 1. In Article 2, the baryon number cumulants and factorial cumulants are extracted assuming

global baryon number conservation and short-range correlations. In Article 3, a new method based on the

previous paper is developed to achieve more precise results, especially for small systems. In Article 4, the

approach to obtain the proton number cumulants and factorial cumulants due to the fluctuations in the width

of the proton rapidity density distribution is proposed. These fluctuations are expected to appear because of

the fireball density longitudinal fluctuations.

My contribution to all these articles was to plan and perform all the calculations using, among others, the

Mathematica software [84]. I also prepared the plots using Matplotlib, the package for creating visualizations

in Python [85]. I wrote the first drafts of all the published articles. Also, I actively participated in discussions

on the subsequent steps of each research project and on the interpretation of the results.

In the summary of the articles, I refer to sections, figures, and equations from the articles by their

numbers. To avoid ambiguity, the equations, and figures from the main text of the thesis are referred to by a

number preceded by a number of a section.

15
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3.1 Article 1

M. Barej and A. Bzdak, Factorial cumulants from global baryon number conservation, Phys. Rev.
C 102, no. 6, 064908 (2020).

The aim of Article 1 [86] was to calculate analytically the proton, antiproton, and mixed proton-

antiproton factorial cumulants of different orders assuming that the global baryon number conservation

is the only source of correlations in relativistic heavy-ion collisions. As explained in the previous section,

the baryon number conservation is an important background effect in the search for critical fluctuations.

Hence, it needs better understanding and theoretical predictions. The main findings of this article include

the factorial cumulant generating function from global baryon number conservation, exact formulas for

the corresponding factorial cumulants, and simple relations between them. Approximations for net-baryon

number B = 0 are provided and it is shown that they work very well.

As mentioned earlier, the ALICE Collaboration results on the normalized second net-proton cumulant

obtained in central Pb+Pb collisions at √sNN = 2.76 TeV [80] can be explained by the global baryon

number conservation law. To confirm this interpretation and distinguish it from another explanation that

assumes baryon-antibaryon annihilation and local baryon number conservation suggested in Ref. [81], it

would be helpful to measure mixed factorial cumulants or other cumulants and compare them with the

predictions presented in this paper.

The starting point of the calculation is the probability distribution of observing np protons and n̄p an-

tiprotons,

P (np, n̄p) =A
∞�

Nb=np

∞�

N̄b=n̄p

δNb−N̄b,B

��Nb�Nb

Nb!
e−�Nb�

���N̄b�N̄b

N̄b!
e−�N̄b�

�

×
�

Nb!

np!(Nb − np)!
pnp(1− p)Nb−np

� �
N̄b!

n̄p!(N̄b − n̄p)!
p̄n̄p(1− p̄)N̄b−n̄p

�
,

(3.1)

where the baryon number, Nb, and antibaryon number, N̄b, follow the Poisson distribution. The binomial

acceptance with probability p that a baryon is observed as a proton, and p̄ that an antibaryon is observed

as an antiproton, does not provide any correlations. The global baryon number conservation is required by

the Kronecker delta where B is the net-baryon number. A is a normalization constant. Therefore, the global

baryon number conservation is the only source of correlations in this model.

Using this probability distribution, the bivariate factorial cumulant generating function, G(x, x̄), see Eq.

(5), is obtained,

G(x, x̄) = ln



�
px+ 1− p

p̄x̄+ 1− p̄

�B
2 IB

�
2
�

�Nb�
�
N̄b

�
(px+ 1− p)(p̄x̄+ 1− p̄)

�

IB

�
2
�

�Nb�
�
N̄b

��


 , (3.2)

where In(x) is a modified Bessel function of the first kind. Using this generating function, the mixed facto-

rial cumulants, Ĉ(n,m), for n protons and m antiprotons are calculated. The exact formulas are given by Eqs.

(14)-(28). They are expressed in terms of the variables introduced to simplify the formulas. Nevertheless, all

these variables depend on B and z =
�

�Nb��N̄b� only. Clearly, these mixed factorial cumulants carry more
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information than net-proton cumulants. In particular, a proton–antiproton factorial cumulant, Ĉ(1,1), can be

useful. It is emphasized that Ĉ(n,m) can be obtained experimentally using the measurement of the factorial

moments of two variables, as shown in Appendix D. The net-proton cumulants can be calculated from the

mixed factorial cumulants as presented in Appendix C. This enables a comparison with many experimental

results.

In Section III B, it is noted that Ĉ(n,m)’s are proportional to pnp̄m. Therefore, it was natural to define the

acceptance-independent quantity R̂(n,m) = Ĉ(n,m)/(pnp̄m). Simple relations between R̂(n,m)’s are given in

Eqs. (32)-(40), and summarized in Eq. (41). In Section III C, approximate formulas for the special case of

B = 0 that corresponds to large collision energies are provided, see Eqs. (44)-(57). They are obtained from

the asymptotic expansion of the Bessel function. It is shown that R̂(n,m) is approximately proportional to

the mean baryon number with baryon number conservation, �Nb�c. In Section IV A, the comparison with

exact results shows that this approximation works very well and also that R̂(n,m) is proportional to �Nb�c
already at quite small �Nb�c. In Section IV B, the exact results for an example of the finite B = 300 that

corresponds to lower collision energies are presented.

3.2 Article 2

M. Barej and A. Bzdak, Factorial cumulants from short-range correlations and global baryon num-

ber conservation, Phys. Rev. C 106, no. 2, 024904 (2022).

The aim of Article 2 [87] was to calculate analytically the baryon number factorial cumulants and cumu-

lants of different orders with arbitrary short-range correlations. The global baryon number conservation is

assumed to be the only source of long-range correlations. The cumulants are obtained in a subsystem. This

follows the idea of the subensemble acceptance method (SAM) [78], discussed in the previous section. This

research is another step towards better understanding the influence of the baryon number conservation on the

baryon number correlations and fluctuations. The key result of this article is the analytic factorial cumulant

generating function from global baryon number conservation with short-range correlations. The correspond-

ing cumulants and factorial cumulants are presented. It is found that in the limit of large baryon number,

B, the mth factorial cumulant in the subsystem with baryon conservation is dominated by k-particle short-

range correlations where k ≤ m. The cumulants with baryon conservation and short-range correlations are

expressed by the global, short-range cumulants without baryon conservation. These relations reproduce the

findings of Ref. [78] but are obtained in a different way.

A system produced in a heavy-ion collision is considered. It is divided into two subsystems, say inside

and outside the acceptance. The probability that there are n1 baryons in the first subsystem (inside the

acceptance) and n2 baryons in the second subsystem (outside the acceptance) is given by

PB(n1, n2) = A P1(n1)P2(n2)δn1+n2,B , (3.3)

where P1 and P2 are the probability multiplicity distributions without baryon number conservation in the

first and second subsystem, respectively. P1 and P2 include only short-range correlations which are modeled

by the corresponding factorial cumulants, Ĉ(i)
k = �ni�αk, i = 1, 2, being proportional to the mean number of
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baryons in the ith subsystem, �ni�. αk is interpreted as a k-particle short-range correlation strength, common

in the whole system. A is a normalization constant, and the global baryon number conservation is required

by the Kronecker delta with B being the total conserved baryon number in the system. For simplicity, in this

study, only baryons are considered and antibaryons are neglected. This applies to low collision energies in

which very few antibaryons are created.

The probability that there are n1 baryons inside the acceptance, assuming baryon number conservation

and short-range correlations, is obtained by summing Eq. (3.3) over n2, see Eq. (3). The next step is to

calculate the corresponding factorial cumulant generating function, G(1,B)(z), see Eq. (9). Using the integral

representation of the Kronecker delta and Cauchy’s differential formula, one obtains

G(1,B)(z) = ln

�
A

B!

dB

dxB
exp

� ∞�

k=1

(xz − 1)kĈ
(1)
k + (x− 1)kĈ

(2)
k

k!

������
x=0

�
. (3.4)

Note that this expression includes the Bth derivative where B can be greater than 300. Using Faà di Bruno’s

formula, this equation can be rewritten in terms of the complete exponential Bell polynomials, see Eq. (14).

Eventually, the factorial cumulants in the first subsystem with global baryon number conservation and short-

range correlations are calculated by differentiating the generating function, Ĉ(1,B)
k = dk

dzk
G(1,B)(z)

���
z=1

.

First, this formalism is applied to the simple case where only two-particle short-range correlations are

considered, i.e., αk = 0 for k > 2. Consequently, Ĉ(1)
k = Ĉ

(2)
k = 0 for k > 2. An analytic approach leads to

the finite generating function, see Section III A. An approximate method using the general Leibnitz formula

and assuming a small α2 is shown in Section III B. The results are illustrated by plots in Fig. 2. They show

that for quite large B = 300 and 20% acceptance (denoted by f = 0.2), the second and third factorial

cumulants, Ĉ(1,B)
2 and Ĉ

(1,B)
3 , are very well described by the linear function of α2. This is also supported

by Eqs. (34)-(35). The higher-order factorial cumulants, Ĉ(1,B)
4 , Ĉ(1,B)

5 , and Ĉ
(1,B)
6 , are well approximated

by the quartic expansion.

In Section IV, the approximate approach (for small αk) is applied to the case of the multiparticle short-

range correlations. It is found that in the limit of large B, the nth factorial cumulant in the first subsystem

with baryon number conservation, Ĉ(1,B)
n , is weakly influenced by αk with k > n. For instance, in Ĉ

(1,B)
3 ,

only α2 and α3 (corresponding to two- and three-particle short-range correlations) are significant, whereas

terms with α4, α5, etc. are suppressed.

The cumulants can be calculated from the factorial cumulants, see Eq. (2.24). In Section V, it is shown

that our results in the limit of small αk and large B reproduce the findings of Ref. [78] that were obtained in a

different way, using statistical mechanics. The cumulants with baryon number conservation are expressed in

terms of the global cumulants (in the whole system) without baryon number conservation, κ(G)
m , where both

kinds of cumulants allow for short-range correlations. κ(G)
m is obtained from the short-range global factorial

cumulants, Ĉ(G)
n = Bαn, where the total average number of baryons �N� = B. The relations between

cumulants with and without baryon number conservation make it possible to compensate the experimental

data and Lattice QCD results for the contribution from this conservation law.
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3.3 Article 3

M. Barej and A. Bzdak, Cumulants from short-range correlations and baryon number conservation

at next-to-leading order, Phys. Rev. C 107, no. 3, 034914 (2023).

The aim of Article 3 [88] was to calculate the first correction to earlier obtained baryon number cumu-

lants in the subsystem from global baryon number conservation and short-range correlations. Previously,

these cumulants were obtained within the limit of a large baryon number, B. However, for small systems

such as Be+Be or Ar+Sc studied experimentally by the NA61/SHINE Collaboration or for peripheral colli-

sions of larger systems, it is important to provide a more precise result that is valid also at smaller B. The

main findings of this article are the simple analytic expressions for the leading-order and next-to-leding-

order terms of the studied cumulants. They depend only on the size of the subsystem (expressed by a

fraction of the total system) and on the short-range cumulants without baryon number conservation. It is

checked that the next-to-leading-order term improves the results, in particular for small B. It is also pointed

out that the multiparticle short-range correlation strengths cannot be completely arbitrary but are subjected

to constraints coming from the probability theory.

The study from the previous paper [87] is extended in this article, by proposing a method of calculating

higher-order terms of the expansion of a cumulant. The factorial cumulant generating function (3.4) is

approximated by Eq. (6), where αk’s are assumed to be small. Then, the general Leibnitz formula is used to

obtain a useful form of the factorial cumulant generating function and the factorial cumulants. The cumulants

are calculated from the factorial cumulants by Eq. (2.24).

These cumulants in the subsystem with baryon number conservation and short-range correlations, κ(1,B)
n ,

are expanded into power series in terms of B:

κ(1,B)
n ≈ κ(1,B,LO)

n� �� �
un,1B1

+κ(1,B,NLO)
n� �� �
un,0B0

+ . . .����
O(B−1)

, (3.5)

where κ
(1,B,LO)
n and κ

(1,B,NLO)
n are the leading-order and next-to-leading-order terms of the power series

in B, respectively. The leading-order term is linear in B, the next-to-leading-order term is independent

of B, and higher-order corrections are proportional to subsequent negative powers of B. κ(1,B,LO)
n ’s have

already been obtained in the previous paper [87] and agree with the results of Ref. [78] that were derived in

the thermodynamic limit. Our method allows us to obtain also next-to-leading-order terms and, in principle,

also higher-order terms. Eqs. (14) and (17) present a method of extracting the leading-order, next-to-leading-

order, and even higher-order terms, by analogy.

The main results, i.e., the leading-order and next-to-leading-order terms are presented in Section III,

Eqs. (19)-(25). The cumulants in the subsystem with baryon number conservation, κ(1,B)
n ≈ κ

(1,B,LO)
n +

κ
(1,B,NLO)
n + . . ., are expressed by the global, short-range cumulants without baryon conservation, κ(G)

n , and
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a fraction of the baryons in the subsystem, f . For example, the first two terms of the fourth cumulant read

κ
(1,B,LO)
4 = ff̄

�
κ
(G)
4 − 3ff̄

�
κ
(G)
4 +

(κ
(G)
3 )2

κ
(G)
2

��
,

κ
(1,B,NLO)
4 =

1

2
ff̄

�
κ
(G)
3 κ

(G)
5 − κ

(G)
2 κ

(G)
6

(κ
(G)
2 )2

+ 3ff̄

�
2(κ

(G)
3 )4 − 5κ

(G)
2 (κ

(G)
3 )2κ

(G)
4 + (κ

(G)
2 )2κ

(G)
3 κ

(G)
5

(κ
(G)
2 )4

+
(κ

(G)
4 )2 + κ

(G)
2 κ

(G)
6

(κ
(G)
2 )2

��
,

(3.6)

where f̄ = 1− f .

The next-to-leading-order terms are sufficient to obtain a very good precision as seen from the example

in Section IV, Fig. 2., where the leading-order and leading- plus next-to-leading-order approximations are

compared with the exact results following from the direct, brute force calculations. It is seen that the next-to-

leading-order term improves the results. It has also been checked that this conclusion remains true for other

choices of αk and f parameters. However, it is worth noticing that the values of αk’s cannot be arbitrary. As

presented in Appendix B, the multiplicity probability distribution can be written as (Eq. (B1))

P (m) =
1

m!

dm

dzm

�
exp

� ∞�

k=1

(z − 1)k

k!
Ĉk

�������
z=0

, (3.7)

where Ĉk = Bαk. Obviously, P (m) for any 0 ≤ m ≤ B has to satisfy the condition 0 ≤ P (m) ≤ 1. Also,

the even central moments, µk = �(m − �m�)k� (with k - even), have to be greater than or equal to 0. The

inequality between kurtosis, µ4/σ
4, and skewness, S, µ4

σ4 ≥ S2 +1 [89] results in relations between αk’s as

well.

Appendix A presents an alternative approach to finding the κ(1,B,LO)
n and κ

(1,B,NLO)
n terms. This method

uses the series expansion.

3.4 Article 4

M. Barej and A. Bzdak, Cumulants from fluctuating width of rapidity distribution, Phys. Rev. C 108,
no. 1, 014907 (2023).

The aim of Article 4 [64] was to study the correlations originating from the fluctuations in the width of

the proton rapidity density distribution. The multiparticle rapidity correlation functions, factorial cumulants,

and cumulants due to this effect are calculated analytically. The most important findings include the fact

that for small fluctuations in the width of the rapidity distribution, the proton number cumulant ratios are

independent of the width distribution and are dominated by two-particle correlations. Importantly, the cu-

mulant ratios are of the same order as those measured by the STAR Collaboration. Hence, this effect should

be taken into account when discussing proton number cumulants. It is also demonstrated that the size of the

rapidity interval strongly influences the cumulant ratios.

The fluctuations in the width of the proton rapidity density distribution can arise for instance from the

longitudinal fluctuations of the fireball density. In particular, in low-energy collisions, some of the protons
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and neutrons from the incoming nuclei are stopped close to the interaction region. The corresponding en-

ergy deposition due to baryon stopping fluctuates event by event and results in the longitudinal fluctuations

of the density of the created fireball. These fluctuations affect the way how the particles are emitted in the

longitudinal direction and may result in changes in the width of the proton rapidity density distribution

measured experimentally. So far, the longitudinal fluctuations have been studied by expanding the rapidity

multiplicity distribution into orthogonal polynomials [90]. This idea has been further investigated theoreti-

cally and experimentally, see, e.g., Refs. [56, 91–95]. The new approach proposed in this article focuses on

the fluctuations in the width of the distribution.

In central Au+Au collisions at low energies, the proton rapidity density distribution, dN/dy = �(y),

can be well described by the Gaussian function. In the midrapidity region (y ≈ 0), it can be approximated

by the quadratic function [96],

�(y) ≈ Nt√
2πσ

exp

�
− y2

2σ2

�
≈ Nt√

2πσ

�
1− y2

2σ2

�
, (3.8)

where Nt =
� +∞
−∞ dy�(y) is the total number of protons; see Eqs. (1) and (2).1 The fact that the width of

this distribution fluctuates event by event can be modeled by the assumption that the standard deviation, σ,

is itself a random variable following a probability distribution p(σ). Thus, the rapidity density distribution

for a given σ will be denoted by �(y,σ). The measured single-proton rapidity distribution is averaged over

many events (over σ), see Eq. (4),

�meas(y) =

�
dσ�(y,σ)p(σ) . (3.9)

Similarly, the averaged two-particle rapidity distribution is given by, see Eq. (5),

�meas,2(y1, y2) =

�
dσ�(y1,σ)�(y2,σ)p(σ) . (3.10)

Then, the corresponding two-particle rapidity correlation function reads, see Eq. (6),

C2(y1, y2) = �meas,2(y1, y2)− �meas(y1)�meas(y2) , (3.11)

and the second factorial cumulant is obtained by, see Eq. (7),

Ĉ2 =

� Y

−Y
dy1dy2 C2(y1, y2) , (3.12)

where Y characterizes the rapidity interval in which the measurement or calculation is carried. The higher-

order factorials cumulants are obtained analogously from the multiparticle correlation functions defined,

e.g., in Ref. [56], see Eqs. (8)-(10) of Article 4.

Then, this formalism is applied to the quadratic rapidity distribution (3.8). The multiparticle correlation

functions and the corresponding factorial cumulants are expressed in terms of Nt, Y , and mk = �1/σk� =
�
dσ p(σ)

σk , see Eqs. (12)-(25) and (A1)-(A8).

The underlying p(σ) distribution is unknown. Therefore, three qualitatively different probability distri-

butions, the uniform, triangular, and lognormal distributions, have been tried. Obviously, there are many
1For higher collision energies, already slightly below 10 GeV, a bimodal structure of the proton rapidity density distribution

becomes visible. However, the goal of the study is to explore the effect and provide a rough estimation rather than precise results.
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other possible choices but I believe these three are a representative selection to investigate the effect. The

three distributions are required to have the same mean and variance so that the results can be compared. The

mk’s can be used to obtain exact results. Much simpler, approximated formulas for the factorial cumulants

are given in Section II B.

The cumulants and the cumulant ratios are calculated from the factorial cumulants. In Section III A,

those ratios are plotted, assuming the values of the parameters that roughly correspond to proton rapidity

distribution from central Au+Au collisions at √sNN = 7.7 GeV. For small fluctuations in the width of the

proton rapidity distribution, the cumulant ratios obtained with all three p(σ) give very similar results as seen

in Fig. 3.1. Indeed, the expansion in Eq. (49) shows that the two leading terms are independent of p(σ).

Moreover, it turns out that these small fluctuations in width are governed by two-particle correlations.
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Figure 3.1: The cumulant ratios from the fluctuations in width of the quadratic proton rapidity distri-

bution with different underlying p(σ). ε determines the strength of width fluctuations and is defined by�
�(σ − �σ�)2� = ε�σ�.

In Figs. 4 and 5, the approximated results are compared with the exact ones. In Fig. 6, the cumulant

ratios calculated numerically for the truncated normal distribution are shown.

In Section III B, it is demonstrated how the cumulants and factorial cumulants are modified when the

rapidity interval size changes. In particular, the symmetric interval (|y| < 0.5) and two times shorter asym-

metric interval (−0.5 < y < 0), which correspond to different measurements by the STAR Collaboration

[52], are discussed. The cumulant ratios differ significantly when obtained within these two rapidity inter-

vals.
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Finally, it is noted that the cumulant ratios due to the fluctuations in width are of the same order of

magnitude as those measured by the STAR Collaboration [59]. Therefore, this effect should be taken into

account when studying the proton number cumulants in the search for the QCD first-order phase transition

and related critical endpoint.
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Chapter 4

Summary

In this set of articles, the mathematical models of various effects present in relativistic heavy-ion col-

lisions have been introduced and investigated. The proton and baryon number cumulants and factorial cu-

mulants have been calculated analytically. These results may be important in the ongoing search for the

expected phase transition and critical endpoint between the hadron gas and quark-gluon plasma.

The mixed proton-antiproton factorial cumulants from the global baryon number conservation law have

been obtained for the first time. They carry more information than often studied net-proton cumulants and,

when measured, may shed light on the distinction between the effects of global and local baryon number

conservation. They might be also helpful in studying non-trivial multiparticle correlations in the relativistic

collisions of atomic nuclei. The acceptance-independent observable has been suggested. The special cases

of small and large net-baryon numbers have been discussed.

The original approach to calculating the cumulants and factorial cumulants in the subsystem resulting

from the global baryon number conservation and short-range correlations has been presented. It is assumed

that antibaryons can be neglected. This applies to low collision energies. It has been demonstrated that

for the mth factorial cumulant, the short-range correlations of more than m particles are suppressed at

large baryon numbers. With this method, it has also been possible to reproduce the relations obtained using

statistical mechanics with the subensemble acceptance method. Namely, the cumulants subject to baryon

number conservation and short-range correlations have been related to the global short-range cumulants

without baryon number conservation. This enables extracting the influence of this conservation law.

Afterward, a method of obtaining more precise results expressed by the next-to-leading-order terms

of the cumulant expansions has been proposed. These terms are also expressed by the global short-range

cumulants without baryon conservation. This correction is needed especially for the small colliding systems,

e.g., Ar+Sc or Be+Be studied in the experiments by the NA61/SHINE Collaboration at the CERN SPS or

even in the peripheral collisions of large nuclei. The limitations of the short-range correlation strengths

originating from the probability theory have also been discussed.

In the latest research, a new method of studying the longitudinal fluctuations of the fireball density has

been proposed. This effect likely leads to fluctuations in the width of the proton rapidity density distribution.

It has been explained how to calculate the cumulants and factorial cumulants due to these fluctuations. It

has been observed that for small fluctuations in width, the cumulant ratios are independent of the underlying

25
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distribution of width and that they are controlled by two-particle correlations. Then, it has been demonstrated

that the cumulant ratios strongly depend on the rapidity interval size. The results have been presented in the

context of the STAR Collaboration measurements. The comparison suggests that the effect of fluctuations

in the width of the proton rapidity distribution may be significant and more attention should be drawn to it.
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