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Abstract 

 

In this work the stress measurement methodology for polycrystalline material using 

time-of-flight neutron diffraction technique was developed. The experiments were 

conducted mainly on the EPSILON-MSD diffractometer at the Join Institute for Nuclear 

Research in Dubna (Russia). This instrument allows to perform measurements of crystal 

lattice deformations simultaneously in 9 different directions of scattering vector. In order 

to efficiently process a large amount of measurement data, several programs for the analysis 

of the experimental results were prepared. Measurements were carried out in situ during 

mechanical and thermal loading of the samples. In order to minimize the systematic error, 

the stress increments were determined on the basis of the relative lattice strains. The 

research concerned two materials: Al/SiCp composite obtained by powder sintering, where 

the volume fraction of silicon carbide was 17,8%, and hot-rolled magnesium alloy AZ31. 

The neutron diffraction time-of-flight technique enabled to determine the stresses in each 

phase of the composite and to apply the crystallite groups method in the case of a 

magnesium alloy samples. For the composite sample, in situ measurements were carried 

out during the compression test, and also the results of previous experiment performed at 

different temperatures were used and analysed. Measurements in magnesium alloy were 

made for the compression test in the rolling direction and the normal direction. The neutron 

diffraction measurements performed at Neutron Physics Laboratory (NPI, Řež near Prague, 

Czech Republic) during the tensile test in the rolling direction were also analysed in this 

work. An important achievement of the work is the development of a methodology for 

selective stress analysis for two phases and for different crystallite orientations based on 

measurements carried out in many directions and with the use of different ℎ𝑘𝑙 reflections.  

The first part of the work concerns the analysis of the results of measurements carried 

out for the Al/SiCp composite. The phenomenon of residual stress formation between the 

SiC grains and the Al alloy matrix during cooling, corresponding to the composite 

production conditions, was investigated. These stresses result from a significant difference 

in the thermal expansion coefficients of both phases. The thermal stresses in the phases 

were correctly predicted by the thermomechanical self-consistent model (TMSC). In situ 

measurements during the compression test of the Al/SiCp composite allowed for the 

examination of stress changes in individual phases. It has been shown that in the elastic 

range, the deviatoric stresses localised on the SiC grains are much greater than theses 

localised in the aluminium matrix. The difference between the loading of the silicon carbide 

as compared to the loading of the Al matrix increased significantly when the aluminium 

was plastically deformed. There was also relaxation of thermal stresses during plastic 

deformation, the average values of which for each phase is hydrostatic. The stress 
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relaxation phenomenon was explained using a developed thermomechanical self-consistent 

model (DTMSC). 

The second part of the work concerns the research performed in order to explain the 

strong anisotropy of the response of textured samples made of magnesium alloy (AZ31) to 

the applied external load. Despite the isotropic elasticity constants of the crystallites, the 

elastoplastic behaviour of the samples depended on the direction and nature of the applied 

load. The samples were cut from hot-rolled magnesium having a strong crystallographic 

texture with a dominant basal component (0001). The measurements showed a higher yield 

point and greater hardening of the material during compression in the normal direction 

compared to compression or tension in the rolling direction. Moreover, during the 

compression test in the rolling direction, a twinning phenomenon occurred leading to a 

characteristic plateau range on the macroscopic stress-strain relationship. 

To explain such a characteristic behaviour of magnesium samples, the measurement 

method of crystallite groups was used, which allowed to investigate the  stresses localised 

at grains with different crystal lattice orientations. The different loadings of the sample in 

combination with the strong texture resulted in very different behaviour of the crystallites. 

There are 4 groups of grains: hard, intermediate, soft and grains for which twinning occurs. 

For these groups, there are different sequences of activity of the slip and twinning systems. 

The evolutions of stress tensor components for individual groups of grains, depending on 

their orientations, were measured using in situ diffraction measurements during 

compression and tensile tests. The knowledge of the stress tensor allowed for the 

determination of the shear resolved stresses (RSS) on all slip systems and the twinning 

system, along with their uncertainties. On the basis of changes in these stresses during the 

tests, the critical resolved shear stresses (CRSS) needed to activate the slip and twinning 

systems were determined. The uncertainty analysis of the determined values was also 

carried out. 

The measured CRSS values were used as input to the elastoplastic self-consistent 

(EPSC) model. This reduced the number of parameters that must be optimized to fit the 

model results to the experimentally determined lattice strains. As a result, the calculations 

became more unambiguous and allowed to verify the assumptions concerning the process 

of twins formation and the interaction between the grains. The model parameters 

determined in this study were also verified for a set of samples subjected to compression in 

various directions. In this work, for the first time, an analysis was carried out to determine 

all CRSS values, together with uncertainties, directly from the experiment and without 

model assumptions. 
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Streszczenie 

 

W niniejszej pracy rozwinięto eksperymentalną metodologię wyznaczania naprężeń w 

materiałach polikrystalicznych przy pomocy dyfrakcji neutronów z zastosowaniem 

techniki pomiaru czasu przelotu. Badania prowadzone były głównie na dyfraktometrze 

EPSILON-MSD w Zjednoczonym Instytucie Badań Jądrowych w Dubnej (Rosja). 

Przyrząd ten pozwolił wykonać pomiary odkształceń sieci krystalicznej jednocześnie w 9 

różnych kierunkach wektora rozpraszania. Aby efektywnie opracować dużą ilość danych 

pomiarowych, przygotowane zostało kilka programów umożliwiających analizę wyników. 

Pomiary prowadzone były in situ podczas mechanicznego i termicznego obciążania próbek. 

W celu zminimalizowania błędu systematycznego przyrosty naprężeń obliczane były na 

podstawie względnych odkształceń sieci krystalicznej. Badania dotyczyły dwóch 

materiałów: kompozytu Al/SiCp uzyskanego metodą spiekania proszków, gdzie domieszka 

węglika krzemu wynosiła 17,8% oraz walcowanego na gorąco stopu magnezu AZ31. 

Dyfrakcyjna technika czasu przelotu neutronów umożliwiła wyznaczenie naprężeń w 

każdej z faz kompozytu oraz zastosowanie metody grup krystalitów w przypadku próbki 

ze stopu magnezu. Dla próbki kompozytowej pomiary in situ przeprowadzone zostały 

podczas  próby ściskania, a w pracy wykorzystano również wyniki poprzednich pomiarów 

przeprowadzonych w różnych temperaturach. Pomiary dotyczące magnezu 

przeprowadzone zostały dla testu  ściskania w kierunku walcowania i kierunku normalnym. 

Wykorzystano i przeanalizowano również pomiary wykonane w Laboratorium Fizyki 

Neutronowej  (NPI, Řež koło Pragi, Czechy) podczas testu rozciągania w kierunku 

walcowania. Ważnym osiągnięciem pracy jest opracowanie metodologii selektywnej 

analizy naprężeń w dwóch fazach oraz dla różnych orientacji krystalitów na podstawie 

pomiarów przeprowadzonych w wielu kierunkach i za pomocą różnych refleksów ℎ𝑘𝑙. 

Wyniki analizy danych pochodzących bezpośrednio z eksperymentów zostały 

skonfrontowane z wynikami modelu samouzgodnionego, w wyniku czego uzyskano dobrą 

zgodność modelu z pomiarami. 

Pierwsza część pracy dotyczy analizy wyników pomiarów przeprowadzonych dla 

kompozytu Al/SiCp. Zbadano zjawisko powstawania naprężeń własnych między ziarnami 

SiC i matrycą ze stopu Al podczas chłodzenia odpowiadającego warunkom produkcji 

kompozytu. Zjawisko to wynika ze znaczącej różnicy współczynników rozszerzalności 

temperaturowej obu faz. Naprężenia termiczne w fazach poprawnie przewidziane zostały 

przez termomechaniczny model samouzgodniony (TMSC). Pomiary in situ podczas próby 

ściskania kompozytu Al/SiCp pozwoliły na zbadanie zmian naprężeń w poszczególnych 
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fazach. Pokazano, że w zakresie sprężystym naprężenia dewiatoryczne zlokalizowane na 

ziarnach SiC są znacznie większe niż w aluminiowej matrycy. Różnica między 

obciążeniem węglika krzemu w porównaniu z obciążeniem matrycy znacząco rosła, gdy 

aluminium odkształcało się plastycznie. W zakresie tym nastąpiła również relaksacja 

naprężeń termicznych, których średnie wartości dla obu faz mają charakter hydrostatyczny. 

Zachowanie to zostało wytłumaczone przy pomocy zmodyfikowanego samouzgodnionego 

modelu termomechanicznego (DTMSC).  

Drugą część pracy stanowią wyniki badań przeprowadzonych w celu wyjaśnienia 

silnej anizotropii odpowiedzi steksturowanych próbek ze stopu magnezu (AZ31) na 

przyłożone siły zewnętrze. Pomimo izotropowych stałych sprężystości krystalitów, 

zachowanie elastoplastyczne próbek zależało od kierunku i charakteru przyłożonego 

obciążenia.  Badane próbki wycięte z walcowanej na gorąco blachy posiadały silną teksturę 

z dominującą składową bazalną (0001). Pomiary wykazały wyższą granicę plastyczności i 

większe umacnianie się materiału podczas ściskania w kierunku normalnym w porównaniu 

ze ściskaniem lub rozciąganiem w kierunku walcowania. Ponadto, podczas próby ściskania 

w kierunku walcowania, wystąpiło zjawisko bliźniakowania z charakterystycznym 

zakresem plateau na makroskopowej zależności naprężenia od odkształcenia. 

By wytłumaczyć tak charakterystyczne zachowanie próbek magnezowych, 

wykorzystano pomiarową metodę grup krystalitów, która pozwoliła zbadać lokalizację 

naprężeń na ziarnach posiadających różne orientacje sieci krystalicznej. Różne obciążenia 

próbki w połączeniu z silną teksturą spowodowały bardzo różne zachowanie się 

krystalitów. Wyodrębnić można 4 grupy ziaren: twarde, pośrednie, miękkie oraz ziarna, dla 

których zachodzi bliźniakowanie. Dla grup tych występują różne sekwencje aktywności 

systemów poślizgu i bliźniakowania. Przy pomocy dyfrakcyjnych pomiarów in situ, 

podczas prób ściskania i rozciągania, zmierzono ewolucję składowych naprężeń dla 

poszczególnych grup ziaren różniących się orientacjami.  Znajomość tensora naprężeń 

pozwoliła również  na wyznaczenie wartości naprężeń ścinających (RSS) na wszystkich 

systemach poślizgu i systemie bliźniakowania wraz z ich niepewnościami. Na podstawie 

zmian tych naprężeń, podczas przeprowadzonych testów, wyznaczone zostały krytyczne 

wartości naprężeń ścinających (CRSS) potrzebnych do uruchomienia systemów poślizgów 

i bliźniakowania. Przeprowadzono również analizę niepewności wyznaczonych wartości. 

Zmierzone wartości CRSS zostały użyte jako dane wejściowe modelu 

samouzgodnionego deformacji elastoplastycznej (EPSC). Zmniejszyło to liczbę 

parametrów, które muszą być zoptymalizowane, aby dopasować wyniki modelu do 

eksperymentalnie wyznaczonych odkształceń sieci krystalicznej. Obliczenia stały się przez 

to bardziej jednoznaczne i pozwoliły miedzy innymi zweryfikować założenia dotyczące 

procesu tworzenia bliźniaków oraz oddziaływania miedzy ziarnami. Wyznaczone w tej 
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pracy parametry modelu zweryfikowane zostały również dla zestawu próbek poddanych 

ściskaniu w różnych kierunkach. W niniejszej pracy po raz pierwszy została 

przeprowadzona analiza pozwalająca na wyznaczenie wszystkich wartości CRSS, wraz z 

niepewnościami, bezpośrednio z eksperymentu i bez założeń modelowych.  
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1. Introduction 

 

The study of deformation processes in polycrystalline materials using diffraction 

methods has a long tradition. The use of neutron radiation [1–19] and high-energy 

synchrotron radiation [20–25] has proved to be particularly useful for this purpose. Due to 

the low absorption in most of the studied materials, these radiations allow for the 

measurements of the elastic lattice strains inside the sample, and the evolution of the lattice 

strains can be investigated in situ during deformation of the material. In this way, the 

mechanisms of plastic deformation in the polycrystalline grains, i.e. the phenomenon of 

slip on the crystalline planes and twinning, were studied. Interpretation of the results has 

typically been based on crystallographic models such as e.g. elastoplastic self-consistent 

(EPSC [4,8–12,16,17,19,23]) or elastic visco-plastic self-consistent (EVPSC [15,18]) 

models. The results of these models are usually compared with the lattice strains measured 

in the direction of the load applied to the sample and in the direction perpendicular to this 

load. This methodology, however, introduces ambiguities related to the assumptions of a 

specific model and the parameters used in it [26]. Therefore, attempts were made to directly 

determine the evolution of the stress tensor components for individual polycrystalline 

grains using synchrotron radiation and then to determine the variation of shear stresses on 

the slip or twinning systems [22]. The measurement method used for single crystallites is 

more direct and unambiguous, but its disadvantage is a small number of analysed grains 

which would give unrepresentative results. The task undertaken in this thesis is to use the 

selective feature of neutron diffraction to determine the evolution of the stress tensor for 

groups of grains belonging to different phases or having different grain orientations. In the 

conducted experiments, measurements are carried out for large sample volumes, containing 

a lot of crystallites, which ensures that the information is representative. Moreover, 

deformation measurements are made in many directions (not only in two), which allows 

estimating the variation of the stress tensor components and to directly investigate the 

deformation mechanisms at the level of the polycrystalline grains, without using the model. 

Moreover, the data obtained in this way allows to verify the assumptions of the models on 

the basis of the stresses at grain groups determined directly from the experiment. In this 
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work, two examples of materials described below are selected for the study, which are of 

practical importance and for which it is possible to separate stresses for groups of grains 

(AZ31 textured magnesium alloy) and for individual phases (Al/SiCp composite). 

 

 

1.1. Choice of materials and experimental methods 

 

Among the many solid-state materials, metals are still the most widely used both in 

industry and in everyday life, especially due to their very good mechanical properties. In 

terms of crystal structure or composition, polycrystalline metallic materials can be divided 

into two groups: single-phase and multiphase (or composite) materials. A characteristic 

feature of polycrystals is their crystallographic texture depending on the specific material 

and the treatment used. As shown in many works, texture has a significant influence on the 

physical properties of a material [27–30]. One of the characteristics of highly textured 

materials is their anisotropic response to external conditions such as temperature and 

applied loads. For example, the anisotropy caused by texture can be very pronounced 

during plastic deformation, as shown in this work. 

An example of a textured polycrystalline metal is the hot-rolled magnesium alloy 

AZ31 investigated in this work. This material has a hexagonal closed-packed (HCP) 

structure and isotropic crystal elastic constants. It shows a strong texture, with the dominant 

(0001) basal component, and its response to mechanical stress varies depending on the 

direction and type of load applied [31].  The high strength and low density of magnesium 

alloys make them attractive for industrial applications. Owing to their properties, they are 

often used in the aviation, automotive, electronics and medical industries [32–39].  In order 

to describe the plastic deformation of AZ31 alloy, many studies were carried out using 

various measurement techniques and analytical methods [14,16,19,29,40,41]. In previous 

works based on neutron diffraction experiments, (with the exception of paper [40]) the 

plastic properties of magnesium were studied mainly by fitting the results of the 

crystallographic model to the lattice strains measured in situ during mechanical tests. The 

disadvantage of such a methodology, however, is that it is difficult to eliminate the 

ambiguity of a large number of parameters used in the model [26]. In addition, assumptions 

such as the type of  interaction between polycrystalline grains should be introduced into the 

model. The work undertaken in [40] was an attempt to determine the parameters of plastic 

strain and stress evolution for a polycrystalline grain directly from the diffraction 

experiment, and then to compare them with the model. This avoids ambiguity in 

determining parameters such as critical resolved shear stress (CRSS) for slip and twinning 

systems, and additional model assumptions are not necessary when describing plastic 
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deformation mechanisms. What is more, having information about the evolution of stresses 

for individual grains, it is possible to verify the type of intergranular interaction assumed 

in different models. This thesis is based on the first results presented in [40] and its aim is 

to develop a methodology based on direct diffraction measurements, allowing for a full 

description of the plastic deformation of AZ31 alloy at grain scale. To do this the diffraction 

crystallite group method (CGM) [42–46] in which the grain stresses are determined 

selectively for groups of grains having different lattice orientations should be significantly 

developed. 

 

The Al/SiCp composite is another example of a polycrystalline material for which a 

diffraction selective feature was used in this work. In this case, the stresses can be measured 

separately for Al and SiC due to the different diffraction patterns obtained for each 

component (phase). Multiphase materials, including composites, have physical properties 

that differ from those of each phase and result from their interaction. The composition of 

composite materials can be modified in order to obtain materials with desirable physical 

properties. One example of such composites are metal matrix composites (MMCs). In 

MMC, the metal matrix is doped with a stiffer and harder phase (reinforcement), which is 

most often a ceramic material. Ceramic materials are characterized by high stiffness, 

strength, resistance to high temperatures and abrasion resistance at a relatively low density, 

but they are brittle and not resistant to cracking [47,48]. Metals, in turn, are softer, more 

ductile, have lower strength, stiffness and are less heat resistant, deteriorating their 

mechanical properties at temperatures close to the melting point. The combination of the 

ceramic metallic phase with an addition of ceramics increases strength, stiffness, creep 

resistance in relation to metals as well as toughness and ductility in relation to ceramics 

[49–51]. Like magnesium alloys, MMCs are usually low-density and high-strength 

materials that are widely used in railways, aviation, maritime transport, construction and 

electronics [52–58]. 

There are several types of MMCs due to the nature of the reinforcement distribution. 

The most common and the simplest to create is the particle reinforcement leading to the 

isotropic properties of the composite material [59,60]. The phases present in such a material 

interact with each other through stress transfer or by the interaction of dislocations in the 

metal matrix with the reinforcement [50,61,62]. In MMCs the residual stresses can arise in 

individual phases of the composite material as a result of the production process. These 

stresses can be modified by changing external conditions, in particular by applying a load. 

The greatest change in stresses is observed when one of the phases deforms plastically  

[4,5,63]. An example of the composite studied in this work is the Al/SiCp composite, in 

which the Al2124 aluminium matrix (83,2% by volume) is reinforced with SiC particles 

(17,8% by volume). The neutron diffraction study on the Al/SiCp composite to date 

concerned mainly mechanical or thermal loading [1,6,64–66], however, the relaxation 
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during plastic deformation of the phase stresses resulting from the production of the 

material was not thoroughly investigated and explained. This is one of the goals of this 

thesis that can be achieved thanks to the selective feature of diffraction method. 

 

 

1.2. The aims of the work 

 

The first aim of the work is to develop diffraction methods for determining stresses 

and their interpretation in terms of using their selective feature that enables measurements 

for different phases or grain orientation. For this purpose, measurements should be made 

for many directions of the scattering vector and for different reflections ℎ𝑘𝑙, which is 

possible e.g. in the case of a diffractometer at the EPSILON-MSD diffractometer used at 

the Frank Laboratory for Neutron Physic in Joint Institute for Nuclear Research in Dubna, 

Russia. This diffractometer is equipped with 9 detectors measuring the lattice strains in 

different directions, by using the TOF (time of flight) technique. Due to the possibility of 

collecting a lot of information about lattice deformation at the same time, this instrument 

enables the application of the crystallite group method with the use of neutron diffraction 

measurements. However, software should be developed that enables the preparation of the 

experiment and the interpretation of a large number of data. 

The second goal is to study the stress evolution in both constituents of the thermally 

treated Al/SiCp composite during the compression test. It is expected that the relaxation of 

the thermally induced phase stresses can be observed simultaneously with the evolution of 

the phase stresses induced by elastoplastic deformation. Then, the thermo-mechanical self-

consistent model should be developed to explain the observed evolution of the two types 

of phase stresses during the compression test.  

Another aim of the research is to verify the crystallite groups method (CGM) as a 

method that allows for the determination of stresses localized at various groups of 

crystallites, including those which are not dominant in the sample (it concerns the textured 

AZ31 alloy). Then, the stresses localized at groups of grains having different lattice 

orientations will be determined and the analysis of these data will show which groups of 

grains are the most responsible for the macroscopic behaviour of the sample subjected to 

different types of loading (the anisotropy of the plastic behaviour of the sample will be 

explained on the basis of plastic deformation mechanics occurring at the scale of 

polycrystalline grain). 

Finally, the EPSC model will be verified on the basis of the experimental data obtained 

from the experiment performed with the AZ31 sample, i.e. experimental CRSS values can 

be entered into the model. Therefore, the type of intergranular interaction will be 
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determined by comparing the stress evolution determined for grain groups with the stresses 

predicted by the model for the corresponding grain orientations. In addition, the hardening 

process for slip systems will be described from the measured RSS evolutions and those 

predicted by the model. 

 

It should be emphasized that the wide scope of this work concerns the development of 

experimental methodology, the study of material properties and theoretical modelling of 

the observed processes. 
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2. Elastic behaviour of crystals and polycrystalline materials 

 

Each solid body subjected to external loads is deformed. Depending on the material 

from which the solid body is made, this deformation will proceed in different ways. 

Ceramic materials are hard, brittle materials that only deform elastically and break when 

the critical stress is exceeded. Metallic materials, which are the main topic of this work, 

belong to the group of materials in which the elastic behaviour occurs up to a certain critical 

stress, called the yield point. Then they undergo plastic deformation with strain hardening 

up to the ultimate strength, followed by necking and final fracture (plastic deformation will 

be described in next chapter). The nature of both behaviours is shown in Fig. 2.1 

It is noteworthy that stiff ceramic materials generally undergo much less deformation 

at the same applied stress compared to metals. Therefore combination of the ductile metal 

and stiff ceramic materials in the composites leads to significant improvement of the 

mechanical properties (as in the case Al/SiCp composite studied in this work).  

 

Fig. 2.1 Example macroscopic behaviour of material determined using tensile test. 

The relation between macroscopic stress (Σ) and sample strain (𝐸) is presented. 

fracture 
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ceramic 

elastic 
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 Σ 
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𝐸 
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(𝜎𝑝𝑙) 
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This chapter presents the basic theoretical information on the elastic behaviour of  solid 

body below the yield point, especially concerning crystals and polycrystalline materials. 

Moreover, the most important definitions and basic mathematical conventions are 

introduced. Therefore, the physical quantities (stress, strain and elastic tensors) used to 

describe the mechanical state of the material under an applied load are presented.  

It should be emphasized that during the deformation of the polycrystalline material, 

various stresses are localised at the grains, hence their characteristic is very important. 

Depending on the  local stress state, elastic or plastic deformation, and even damage 

process, occur at the grain scale. The relationship between the elastic deformation of the 

solid body and stresses are described by the macroscopic elastic constants defined in this 

chapter. To describe the mechanical behaviour of the polycrystalline material under applied 

load the stresses and strains at the microscopic and macroscopic scales, as well as elastic 

constants of crystallites and the intergranular interactions are considered. 

 

 

2.1. Elasticity of solid body under applied load 

 

The mathematical description of stresses requires the use of a second order tensor. To 

define the stress tensor components, one should divide the solid body into many 

infinitesimal cubes and determine the values of normal and tangential forces’ components 

acting on an unit area of rectangular surfaces, as illustrated in Fig. 2.2. The components 

of a stress tensor and are defined as: 

𝜎𝑖𝑗 = lim
∆𝑆𝑗→0

(
𝐹𝑖

∆𝑆𝑗
) = 

𝜕𝐹𝑖

𝜕𝑆𝑗
  (2.1) 

where 𝐹𝑖 is a force component acting on the surface ∆𝑆𝑗 (cf. Fig. 2.2). 

If i=j, the values of 𝜎11, 𝜎22 , 𝜎33 are called normal stress components, while for 𝑖 ≠ 𝑗 

the values of 𝜎12, 𝜎21, 𝜎13, 𝜎31, 𝜎23, 𝜎32 are called the shear components. The equality 

between the symmetrical components of the stress tensor (𝜎𝑖𝑗 = 𝜎𝑗𝑖),  occurring due to the 

static equilibrium of force moments, reduces the number of independent components 

from 9 to 6. This allows us to write the stress tensor in one of two forms, i.e. as a 3 𝑥 3 

matrix or according to Voigt notation in the form of a vector with 6 components. The 

relations between components defined using these conventions is given by equation (2.2) 

[43,67]. 
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Fig. 2.2 The stress components defined for an infinitesimal cube (force acting on the 

surface 𝑆3 is decomposed into normal and tangential components) [3]. 

  

𝜎𝑖𝑗 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] =  [

𝜎1 𝜎6 𝜎5
𝜎6 𝜎2 𝜎4
𝜎5 𝜎4 𝜎3

]   and    𝜎𝑖 =

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6]
 
 
 
 
 

 (2.2) 

The possible criterion for the classification of stresses is the form of a stress tensor. 

Taking this criterion into account, we can distinguish uniaxial, hydrostatic and deviatoric 

stresses, which correspond to simplest forms of the stress tensor.  

Uniaxial stress is when the force acts in one direction only and it is perpendicular to 

given plane, for example cross section of a sample during tensile/compression test. A 

mathematical description of this stress state is given by a tensor with one non-zero diagonal 

component and all other components are equal to zero (equation (2.3)). Depending on the 

direction of the applied force, we say that the stress is tensile (𝜎 >  0) or compressive 

(𝜎 <  0).  

In a state of hydrostatic stress, the solid body is compressed (or stretched) on all sides 

with the equal stress, i.e. the stress tensor consist of non-zero diagonal components equal 

to each other and all zero off-diagonal components (this stress causes the solid body volume 

to change due to elastic deformation, while the plastic deformation cannot occur). On 

contrary the deviatoric stress tensor is traceless and it can be transformed to the form which 

contains non-zero off-diagonal components, while the diagonal ones are equal to zero 

𝑥3 

𝑥2 

𝑥1 

Δ𝑠3 

Δ𝑠1 Δ𝑠2 

𝜎 33 
𝜎 23 

𝜎 13 

𝜎 31 

𝜎 21 
𝜎 11 

𝜎 32 

𝐹3  �⃗�  

𝐹2  

𝐹1  

𝜎 22 
𝜎 12 
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(equation (2.3)). Such a state of stress forces a change in the shape of the solid body caused 

by elastic or plastic deformation. 

 𝜎𝑖𝑗
𝑢𝑛𝑖𝑎𝑥𝑖𝑎𝑙 = [

0 0 0
0 0 0
0 0 𝜎

] ,  𝜎𝑖𝑗
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

= [

𝑝 0 0
0 𝑝 0
0 0 𝑝

] , 𝜎𝑖𝑗
𝑑𝑒𝑣𝑖𝑎𝑡𝑜𝑟𝑖𝑐 = [

0 𝑢 𝑣
𝑢 0 𝑤
𝑣 𝑤 0

] (2.3) 

Each stress tensor can be represented as a combination of hydrostatic and deviatoric 

tensors components. To do this, first the stress tensor should be presented in the system of 

principal axes (diagonalization of the tensor, described by equations  (2.4))  

 

𝜎𝑖𝑗 = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛
→            𝜎′𝑖𝑗 = [

𝑎 0 0
0 𝑏 0
0 0 𝑐

]

= [

𝑝 0 0
0 𝑝 0
0 0 𝑝

] + [
𝑞 0 0
0 𝑟 0
0 0 𝑠

]  

(2.4) 

where 𝑝 =
𝑎+𝑏+𝑐

3
,   𝑞 = 𝑎 − 𝑝,   𝑟 = 𝑏 − 𝑝,  𝑠 = 𝑐 − 𝑝 and  𝑞 + 𝑟 + 𝑝 = 0. 

Then, so obtained diagonal tensor can be presented as a sum of a hydrostatic tensor 

and an additional tensor, which, after appropriate rotations of the coordinate system, will 

change into a purely deviatoric form (equations (2.4) and (2.5)). It is worth noting that the 

rotation does not affect the hydrostatic tensor. 

[

𝑝 0 0
0 𝑝 0
0 0 𝑝

] + [
𝑞 0 0
0 𝑟 0
0 0 𝑠

]
𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠
→       [

𝑝 0 0
0 𝑝 0
0 0 𝑝

] +

[
 
 
 
 
 
 0 √−

𝑞𝑠

2
√−

𝑞𝑠

2

√−
𝑞𝑠

2
0 −𝑟

√−
𝑞𝑠

2
−𝑟 0

]
 
 
 
 
 
 

   (2.5) 

The forces acting on the material cause a change in shape and volume of the solid body, 

which can be described by a displacement gradient (expressed by a second order tensor, cf. 

(2.2)), composed of a symmetric deformation tensor and an antisymmetric rotation tensor. 

Therefore, the definition of the deformation tensor is given by the formula: 

 𝜀𝑖𝑗 =
1

2
( lim
𝛿𝑥𝑖→0

𝛿𝑤𝑗

𝛿𝑥𝑖
+ lim

𝛿𝑥𝑗→0 

𝛿𝑤𝑖
𝛿𝑥𝑗
),  (2.6) 

where:  (
𝛿𝑤𝑖

𝛿𝑥𝑖 
,
𝛿𝑤𝑖

𝛿𝑥𝑗 
,
𝛿𝑤𝑖

𝛿𝑥𝑘 
)  is a gradient of the displacement 𝑤𝑖 occurring in direction 𝑖.  
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The antisymmetric rotation tensor is defined as: 

 𝜔𝑖𝑗 =
1

2
( lim
𝛿𝑥𝑖→0

𝛿𝑤𝑗

𝛿𝑥𝑖
 − lim

𝛿𝑥𝑗→0 

𝛿𝑤𝑖
𝛿𝑥𝑗
) (2.7) 

The displacements of the square vertices for a two-dimensional example are shown 

in Fig. 2.3. 

 

 

 

 

 

 

Fig. 2.3 Illustration of deformation of the 2D body with displacements of the square 

vertices. For better visualisation, the displacements related to the line sectors 𝛿𝑥1 and 𝛿𝑥2 

are denoted by 𝛿𝑤𝑖 and 𝛿𝑣𝑖, respectively (note that in the formulas (2.6) and (2.7) all 

displacements are expressed by 𝛿𝑤𝑖). 

 

Due to the fact that the strain tensor is a symmetrical tensor of the second order, we 

can also express it by means of a strain matrix or a vector (Voigt notation) [67]: 

𝜀𝑖𝑗 = [

𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

] =  

[
 
 
 
 𝜀1

1

2
𝜀6

1

2
𝜀5

1

2
𝜀6 𝜀2

1

2
𝜀4

1

2
𝜀5

1

2
𝜀4 𝜀3 ]

 
 
 
 

    and  𝜀𝑖 =

[
 
 
 
 
 
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6]
 
 
 
 
 

=

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12]

 
 
 
 
 

 (2.8) 

As stresses and strains have already been defined, so now it is necessary to define the 

relations between them occurring in the case of elastic deformation. Considering an 

isotropic material and uniaxial stress, this relation is given by two constants called the 

Young modulus (𝐸) and Poisson ratio (𝑣). In this case the Hooke's law is given by the 

equations: 

 

𝜎11 = 𝐸 𝜀11    or  𝜀11 =
𝜎11

𝐸
   

and 𝜀22 = 𝜀33 = −𝑣𝜀11, 

(2.9) 

𝛿𝑣2 

𝛿𝑣1 

𝛿𝑤1 

𝑥2 

𝛿𝑥2 

𝑥1 
𝛿𝑥1 

𝛿𝑤2 
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In general, for the 3D case, Hooke's law is written in tensor form using the elastic 

constants 𝑐𝑖𝑗𝑘𝑙 and 𝑠𝑖𝑗𝑘𝑙: 

 𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙    and    𝜀𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙  (2.10) 

where 𝑐𝑖𝑗𝑘𝑙  and 𝑠𝑖𝑗𝑘𝑙 are the components of fourth-rank stiffness and compliance tensors, 

respectively. 

Equation (2.10) can also be written in the Voigt convention, which uses 6x6 stiffness 

and compliance matrices: 

 𝜎𝑖 = 𝑐𝑖𝑗𝜀𝑗     and     𝜀𝑖 = 𝑠𝑖𝑗𝜎𝑗 , (2.11) 

where the relations between indices used in the two conventions are given by (2.2) and(2.8). 

The relationships between the elastic constants in the four-order tensor convention and the 

Voigt convention are given below: 

 

𝑐𝑖𝑗 = 𝑐𝑚𝑛𝑘𝑙       and      𝑠𝑖𝑗 = 𝑝𝑖𝑗𝑠𝑚𝑛𝑘𝑙     

where   𝑝𝑖𝑗 =

(

  
 

1 1 1
1 1 1
1 1 1

2 2 2
2 2 2
2 2 2

2 2 2
2 2 2
2 2 2

4 4 4
4 4 4
4 4 4)

  
 

 
(2.12) 

 and the pairs of indices (mn and kl) are replaced with single indices (i and j) according to 

the rule: 11 → 1,  22 → 2, 33 → 3, 23 or 32 → 4, 13 or 31 → 5, 12 or 21 → 6. 

The symmetry of the matrices of elastic constants results from the fact that the stress 

and strain tensors are symmetrical, i.e.: 

 𝑠𝑖𝑗 = 𝑠𝑗𝑖         and          𝑐𝑖𝑗 = 𝑐𝑗𝑖 (2.13) 
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2.2. Elastic behaviour of crystals  

 

The elastic constants depend on the chemical composition of the material as well as its 

crystal structure. In general, the matrix of elastic constants may contain 21 independent 

non-zero components (this is the case of triclinic cell), however the crystal symmetries 

reduces their number. In the case of most popular metals’ crystallographic structures the 

number of independent components is equal: 5 for hexagonal close packed lattice HCP 

(2.14), 3 for face centred cubic FCC and body centred cubic BCC lattices (2.15) while only 

2 components are needed to describe properties of isotropic material (2.16). 

The matrix of elastic constants for HCP lattice has the following structure [68]: 

 
𝑎𝑖𝑗
𝐻𝐶𝑃 =

(

 
 
 
 

𝑎11 𝑎12 𝑎13
𝑎11 𝑎13

𝑎33
𝑎44

𝑎44
𝑎66)

 
 
 
 

, 
(2.14) 

where 𝑎66 = {
2(𝑎11 − 𝑎12)  for compliance matrix, i. e.  for 𝑎𝑖𝑗 = 𝑠𝑖𝑗 
1

2
(𝑎11 − 𝑎12)  for stiffness matrix, i. e. for 𝑎𝑖𝑗 = 𝑐𝑖𝑗

 

In the case of cubic lattices (FCC and BCC) we have [68]: 

 𝑎𝑖𝑗
𝑐𝑢𝑏𝑖𝑐 =

(

 
 
 

𝑎11 𝑎12 𝑎12
𝑎11 𝑎12

𝑎11
𝑎44

𝑎44
𝑎44)

 
 
 

, (2.15) 

both for compliance and stiffness matrices. 

These tensors for isotropic material have the form [68]: 

 𝑎𝑖𝑗
𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 =

(

 
 
 
 

𝑎11 𝑎12 𝑎12
𝑎11 𝑎12

𝑎11
𝑎66

𝑎66
𝑎66)

 
 
 
 

, (2.16) 

where 𝑎66 = {
2(𝑎11 − 𝑎12)  for compliance matrix, i. e. for  𝑎𝑖𝑗 = 𝑠𝑖𝑗 
1

2
(𝑎11 − 𝑎12)  for stiffness matrix, i. e. for 𝑎𝑖𝑗 = 𝑐𝑖𝑗
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2.3. Polycrystalline materials and their elastic deformation 

 

2.3.1. Orientation distribution function 

 

When measuring and modelling the mechanical properties of polycrystalline materials, 

it is important to know the orientation distribution of grain lattice. It is a material property 

that significantly affects the mechanical properties of the material, such as a different 

mechanical behaviour depending on the direction of the applied external force. Forming a 

material, such as rolling, forging, drawing or extruding, allows the directions of the 

coordinate system to be defined. For example, in rolling, the coordinate system can be 

clearly defined as shown in Fig. 2.4. 

To describe the orientation of the grain crystal lattice in relation to the sample the 

Miller indices can be used, i.e. the lattice orientation is given by the notation 

{ℎ𝑘𝑙} <  𝑢𝑣𝑤 >. In this convention the crystallographic plane parallel to the sample 

surface {ℎ𝑘𝑙} and the direction < 𝑢𝑣𝑤 > parallel to the x1 axis of the sample system are 

indicated (x1 is the direction characteristic for this process, e.g. 𝑥1 || RD - rolling direction, 

cf. Fig. 2.4) 

This notation may be used to indicate preferred texture orientations, but is not 

sufficient to describe a statistical distribution of the crystallite orientation. Therefore a more 

convenient method for description of grain orientations is the usage of Euler angles [67], 

which define rotations about the sample coordinates system (𝑥1, 𝑥2, 𝑥3) to bring it to the 

crystallite system (𝑥1
𝑐

, 𝑥2
𝑐

 , 𝑥3
𝑐),  as shown in Fig. 2.5. The system (𝑥1

𝑐
, 𝑥2
𝑐

 , 𝑥3
𝑐) is defined by 

the principal crystallographic directions: [100], [010] and [001]. The first rotation is done 

about the 𝑥3
′  axis by angle 𝜑1 and the next rotation is done  about new 𝑥1

′  axis by angle Φ. 

As a result of these rotations the 𝑥3
′′ axis coincides with  𝑥3

𝑐 axis of crystal system. The last 

rotation 𝜑2 , about 𝑥3
′′  ∥  𝑥3

𝑐 axis brings the 𝑥1
′′′ and 𝑥2

′′′  axes to the 𝑥1
𝑐 and 𝑥2

𝑐 axes, 

respectively. The so defined three rotations unambiguously define orientation of the grain 

lattice with respect to the sample. 
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Fig. 2.4 Definition of sample coordinate system defined in the case of a rolled material 

and orientation of a crystallite described by Miller indices (101)[101̅]. 

 

 

Fig. 2.5 Rotations by Euler angles in the X3-X1-X3 convention. [67] 

To define the function describing grains orientation the Euler space is introduced, in 

which three angles 𝜑1, Φ, 𝜑2 are the coordinates of a Cartesian system. Then, the so-called 

orientation distribution function (ODF) is introduced in the Euler space. It is a density 

function defining a volume fraction of the crystallites in the polycrystalline material having 

orientation within infinitesimal cube d𝜑1dΦd𝜑2 surrounding orientation 𝜑1, Φ, 𝜑2 in the 

Euler space [30].  

 
𝑑𝑉𝑔

𝑉
= 𝑓(𝑔)d𝑔 = 𝑓(𝜑1, Φ, 𝜑2)

sinΦ

8𝜋2
d𝜑1dΦd𝜑2 (2.17) 

where 𝑑𝑔 =
sinΦ

8𝜋2
𝜑1dΦd𝜑2 is an elementary volume of the orientation space. 

The dimension of the entire Euler space is determined by the range of Euler angles 

𝜑1 ∈ [0°, 360°], Φ ∈  [0°, 180°], 𝜑2 ∈ [0°, 360°]. In case of a sample with a orthorhombic 

symmetry (determined by e.g. rolling process) and cubic lattice of grains, the basic range 

is reduced to 𝜑1 ∈ [0 °, 90 °], Φ ∈ [0°, 90°], 𝜑2 ∈ [0°, 90°]; and for the same sample 

symmetry and  hexagonal lattice 𝜑1 ∈ [0°, 90°], Φ ∈ [0°, 90°], 𝜑2 ∈ [0°, 60°]. 

𝑥3′ = 𝑥3 

𝑥2 

𝑥1 𝑥1′ 

𝑥2′ 
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Φ 

𝑥2′′ 

𝑥3
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The most common way of presenting ODF is a set of several two-dimensional maps, 

which are the sections through Euler space shifted by a constant step 5o along the  𝜑1 (or 

𝜑2) axis. The values of the 𝑓(𝑔) function are presented on these maps using contour lines 

filled with shades of grey or with colours (Fig. 2.6). 

 

 

Fig. 2.6 Example of orientation distribution function (ODF) for hot rolled AZ31 

magnesium alloy after compression test up to strain 2% in rolling direction. The sections 

through Euler space displaced with a constant step of 5o along the  𝜑1 axis (𝜑1 ∈ [0°, 90°], 

𝛷 ∈ [0°, 90°], 𝜑2 ∈ [0°, 60°]). 

The orientation distribution function gives full information about the orientation 

distribution in a given material and it can be to obtained using two experimental techniques, 

i.e.  Electron Back-Scattered Diffraction (EBSD) measurement and diffraction 

measurements of pole figures. 

The measurements using EBSD technique are based on the diffraction of back 

scattered electrons on the lattice of near surface grain, resulting in a diffraction pattern in 

the form of Kikuchi lines registered on 2D detector. Using basic information about the 

crystal structure of the material, it is possible to identify the orientation of this grain from 

the Kikuchi pattern. The measurement is performed using scanning electron microscope 

and the map of orientations can be obtained with the resolution of a fraction of micrometre 

(the information for each point is available). The results are presented as the inverse pole 

figure map showing the crystallographic direction normal to the surface and visualizing the 

microstructure and size of the grains (Fig. 2.7). The important advantage of the EBSD 

measurement is that the misorientations between grains can be determined, which is very 

useful for twin studies. Moreover, the ODF function can be determined when the statistic 

of orientations for all map points is analysed. The disadvantage of this method that is that 

the measurements are performed for a very thin layer below the surface (from a few to 

several tenths of nm ) due to small penetration depth of electrons in the studied materials.  
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Fig. 2.7 Example of EBSD map for hot rolled austenitic steel.  

The second method of ODF determination is based on the diffraction measurement of 

a set of direction distribution functions 𝑃(𝛼, 𝛽){ℎ𝑘𝑙}, determined using different ℎ𝑘𝑙 

reflections. The two-dimensional 𝑃(𝛼, 𝛽){ℎ𝑘𝑙} function depends on the polar coordinates 

 and  characterizing the orientation of given direction with respect to the sample 

system (Fig. 2.8a). This orientation is represented by a point in the stereographic 

projection (Fig. 2.8b).  The  𝑃(𝛼, 𝛽){ℎ𝑘𝑙} is a density function defining a volume fraction 

of the crystallites 
𝑑𝑉{ℎ𝑘𝑙}

𝑉
 for which one of the poles of the {ℎ𝑘𝑙} type (i.e. directions 

normal to the {ℎ𝑘𝑙} planes) has the orientation within the solid angle 𝑑𝜔 : 

𝑑𝑉{ℎ𝑘𝑙}

𝑉
= 𝑃{ℎ𝑘𝑙}(𝛼, 𝛽)𝑑𝜔 (2.18) 

where: 𝑑𝜔 =
1

4𝜋
𝑠𝑖𝑛 𝛼  𝑑𝛼 𝑑𝛽 is a solid angle corresponding to infinitely small intervals 

(,+ 𝑑 ) and (, + 𝑑 ).  

The mathematical relationship between the pole figure and the orientation distribution 

function 𝑓(𝛼, 𝛽, 𝛾)  is as follows: 

 𝑃(𝛼, 𝛽){ℎ𝑘𝑙} = ∫ 𝑓(𝛼, 𝛽, 𝛾)
2𝜋

0

d𝛾 (2.19) 

where 𝛾 is a rotation angle about ℎ𝑘𝑙-pole and the 𝑓(𝛼, 𝛽, 𝛾) values should be determined 

for the Euler angles 𝜑1, Φ, 𝜑2 corresponding to the angles 𝛼, 𝛽, 𝛾 

The pole density function  𝑃(𝛼, 𝛽){ℎ𝑘𝑙} is shown as the map on stereographical 

projections plane (Fig. 2.8c). To calculate the ODF from a set of pole figures measured for 

different {ℎ𝑘𝑙} plane families appropriate algorithms were developed [30,69,70]. 
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Fig. 2.8 The principle of a stereographic projection (a and b) and pole figure (0001) 

measured for hot rolled AZ31 magnesium alloy sample (c). 

The advantage of the diffraction method is that the texture can be measured using 

different radiations. Due to high absorption in the materials the texture in the subsurface 

layer (of  a several or dozen µm) is measured using X- rays. On the contrary, the average 

texture for a large sample volume can be determined with neutrons due to their low 

absorption in many materials. 

It should be emphasized that the ODF is treated as the weighting function when the 

mean properties of polycrystalline material are calculated, as it is shown in this work. In 

the presented here methodologies for stress measurements the stereographic projection and 

pole figures are used to select the preferred grain orientations. 

 

 

2.3.2. Stresses in polycrystalline material 

 

The stress field in polycrystalline materials can be heterogeneous and anisotropic at 

the scale of grain groups or individual grains. The stress at a given point in these materials 

can be described in terms of first order stresses, second order stresses, and third order 

stresses. Each of stress types has a different extent and cause for its occurrence [71–73]. 

The first-order stresses are the overall stresses occurring for the relatively large 

volumes containing many polycrystalline grains, mainly due to external forces applied to 

the sample or internal inhomogeneity of plastic deformations resulting from mechanical or 

thermal processing [72]. This type of stress can be defined for the entire sample volume 

𝒙𝟑 

𝑵𝒉𝒌𝒍⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝒙𝟐 
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𝜶 

𝒙𝟐 
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or for a certain volume selected in the sample (for example, the volume from which the 

stress is measured by diffraction). First order stresses occur e.g. in the surface layer of a 

mechanically / thermally treated sample and the stress varies with depth leading to a balance 

of forces and moments of forces through the sample. They can also be generated due to the 

difference in thermal expansion of two different materials bonded together, such as coatings 

deposited on a substrate. The first-order stress is defined as the mean value 

(see Fig. 2.9a and Fig. 2.10a): 

 𝜎𝑖𝑗
𝐼 =

1

𝑉
∫ 𝜎𝑖𝑗(𝑟) dV𝑉

= ∑ 𝑓𝑔𝜎𝑖𝑗
𝑔𝑁

𝑔 , (2.20) 

where: 𝑉 – polycrystalline volume for which the stress is defined, 𝑔  – grain number, 

𝑁  – number of grains in the volume V, 𝑓𝑔 – grain volume fraction, 𝜎𝑖𝑗(𝑟) – local stress at 

𝑟 position, 𝜎𝑖𝑗
𝑔

 – grains stresses. 

Different stresses can arise in multiphase materials that are subjected to tensile / 

compression tests or thermal processes in different phases due to different physical 

properties. Therefore, it is convenient to distinguish between these phases and introduce 

the concept of phase stresses 𝜎𝑖𝑗
𝑝ℎ

, which can be defined analogously to the first-order 

stresses, i.e . (see Fig. 2.10b): 

 𝜎𝑖𝑗
𝑝ℎ =

1

𝑉𝑝ℎ
∫ 𝜎𝑖𝑗(𝑟) dVph𝑉𝑝ℎ

= ∑ 𝑓𝑔𝜎𝑖𝑗
𝑔𝑁𝑝ℎ

𝑔 , (2.21) 

where: 𝑉𝑝ℎ – considered phase volume, 𝑁𝑝ℎ – number of grains of belonging to ph-phase 

having volume 𝑉𝑝ℎ , 𝑓𝑔 =
𝑉𝑔

𝑉𝑝ℎ
  – grain volume fraction relatively to 𝑉𝑝ℎ. 

Stresses defined in this way for individual phases allow to introduce a relationship 

between them and the first order stress, i.e. (see Fig. 2.9 and Fig. 2.10):: 

 𝜎𝑖𝑗
𝐼 = ∑ 𝑓𝑝ℎ𝜎𝑖𝑗

𝑝ℎ
𝑝ℎ , (2.22) 

where 𝑓𝑝ℎ is the volume fraction of the 𝑝ℎ phase in the entire considered sample volume, 

and 𝜎𝑖𝑗
𝑝ℎ

 is the average stress for ph phase. 

Second order stresses are the stresses occurring between grains in the sample. They are 

caused by different orientations of the lattice in relation to the sample, which is the reason 

for the different behaviour of the crystallites [72] . When external forces are applied to the 

material, the elastic response (𝜎𝑔, 𝐸𝑅) of the grain will depend on its orientation since the 

elastic constants of a single crystal are often anisotropic. Another reason for second order 

stresses is mechanical machining. During the plastic deformation of a polycrystalline 

material, the differences between the plastic deformations of grains having different 

orientations cause their mismatch in the boundary areas. This leads to the so-called 

incompatibility stresses (𝜎𝑔, 𝐼𝐶). Second order stresses may also arise during the cooling or 

heating process due to the anisotropy of the thermal expansion coefficients of the phases or 



32 

 

crystallites, which leads to different grain contractions or stretching in different directions 

relative to the sample. The second order stresses can be defined as the difference between 

the averaged stresses for the grain and the first order stresses (for a single-phase material) 

or the stresses in a given phase (for a multi-phase material); (c.f. Fig. 2.9 and Fig. 2.10): 

 𝜎𝑖𝑗
𝐼𝐼 = 𝜎𝑖𝑗

𝑔
− 𝜎𝑖𝑗

𝐼    or    𝜎𝑖𝑗
𝐼𝐼 = 𝜎𝑖𝑗

𝑔
− 𝜎𝑖𝑗

𝑝ℎ
, (2.23) 

An important property of such defined second-order stresses is that they equilibrate in 

the entire volume of the sample, i.e. their sum is zero. 

Finally, third order stresses, called local stresses, change inside the grain. They are the 

result of the accumulation of dislocations or the presence of other structural defects. Their 

mathematical definition can be presented using the formula (see Fig. 2.9a and Fig. 2.10a): 

 𝜎𝑖𝑗
𝐼𝐼𝐼(𝑟) = 𝜎𝑖𝑗(𝑟) − 𝜎𝑖𝑗

𝑔
 (2.24) 

where 𝜎𝑖𝑗(𝑟) is the actual value of the stress at the point, and 𝜎𝑖𝑗
𝑔

 is the average value of the 

stress in the grain. This definition implies that their sums inside the grain is equal to zero. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 Scheme of stresses in polycrystalline material: a) first order stress, b) second 

order stress, c) third order stress. 

 

 

 

 

 

 

Fig. 2.10 Scheme  of stress different types of stresses in polycrystalline material: 

a) single phase and b) multiphase [65].  
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2.3.3. Macroscopic elastic constants of polycrystalline materials 

 

To calculate the first order stresses and macroscopic elastic constants the 

transformation between crystallite frame and sample frame are very useful. For example 

when shear stresses on slip or twinning systems or overall elastic constants for 

polycrystalline material  are computed. To find out these transformations the rotation 

matrices are defined as shown below for the rotations by angle Φ about axis 𝑥1 and by 𝜑 

angle about axis 𝑥3, respectively,  i.e: 

𝑅1(Φ) = [
1 0 0
0 cosΦ sinΦ
0 −sinΦ cosΦ

],     𝑅3(𝜑) = [
cos𝜑 sin 𝜑 0
− sin𝜑 cos𝜑 0
0 0 1

] (2.25) 

Thus, for subsequent rotations of the sample frame about 𝑥3 by the angle 𝜑1, about 𝑥1′ 

by the angle Φ and about 𝑥3′′ axis by the angle 𝜑2 we obtain the following rotation matrix: 

 𝑔𝑖𝑗(𝜑1, Φ, 𝜑2) = [
𝑐1𝑐2 − s1𝑠2𝐶 𝑠1𝑐2 + 𝑐1𝑠2𝐶 𝑠2𝑆
−𝑐1𝑠2 − 𝑠1𝑐2𝐶 −𝑠1𝑠2 + 𝑐1𝑐2𝐶 𝑐2𝑆

𝑠1𝑆 −𝑐1𝑆 𝐶
] (2.26) 

where 𝑠𝑖 = sin𝜑𝑖 ,  𝑐𝑖 = cos𝜑𝑖 ,  𝑆 = sinΦ ,  𝐶 = cosΦ . 

The transformations of the stress and strain tensors from sample strain to crystallite 

frame are given by: 

 𝜎𝑖𝑗
𝑛𝑒𝑤 = 𝑔𝑖𝑘𝑔𝑗𝑙𝜎𝑘𝑙

𝑜𝑙𝑑 ,  𝜀𝑖𝑗
𝑛𝑒𝑤 = 𝑔𝑖𝑘𝑔𝑗𝑙𝜀𝑘𝑙

𝑜𝑙𝑑, (2.27) 

while the single crystal elastic tensors are transformed as follows: 

 
𝑠𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑚𝑔𝑗𝑛𝑔𝑘𝑜𝑔𝑙𝑝𝑠𝑚𝑛𝑜𝑝 ,  

𝑐𝑖𝑗𝑘𝑙 = 𝑔𝑖𝑚𝑔𝑗𝑛𝑔𝑘𝑜𝑔𝑙𝑝𝑐𝑚𝑛𝑜𝑝 
(2.28) 

Having defined stresses and strains for all grains with respect to the sample coordinate 

system, macroscopic stress (𝛴𝑖𝑗) and strain (𝐸𝑖𝑗) tensors can be calculated analogously to 

equation (2.20): 

𝛴𝑖𝑗 =
1

𝑉𝑠
∫ 𝜎𝑖𝑗(𝑟) dV𝑉𝑠

= ∑ 𝑓𝑔𝜎𝑖𝑗
𝑔𝑁

𝑔 ,        𝐸𝑖𝑗 =
1

𝑉𝑠
∫ 𝜀𝑖𝑗(𝑟) dV𝑉𝑠

= ∑ 𝑓𝑔𝜀𝑖𝑗
𝑔𝑁

𝑔 , (2.29) 

where the averages are calculated over all grains (N) withing entire volume of the 

sample 𝑉𝑠 .  

 



34 

 

Different methods were used to calculate overall elastic constants of polycrystalline 

material. In general we can postulate existence of macroscopic elastic constants 𝐶𝑖𝑗𝑘𝑙 and 

𝑆𝑖𝑗𝑘𝑙 which fulfil the following relations: 

𝛴𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙  𝐸𝑘𝑙 ,     𝐸𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙 𝛴𝑘𝑙   and    𝐶𝑖𝑗𝑘𝑙 = 𝑆𝑖𝑗𝑘𝑙
−1  

(2.30) 

According to the simplest assumptions of homogenous stress (introduced by 

Reuss[74]) the effective compliance tensor 𝑆𝑖𝑗𝑘𝑙 can be calculated: 

𝜎𝑖𝑗
𝑔
= 𝛴𝑖𝑗     ⇒       𝑆𝑖𝑗𝑘𝑙

𝑅 = {∑𝑓𝑔𝑠𝑖𝑗𝑚𝑛
𝑔

𝑁

𝑔

} (2.31) 

and this definition can be easy proved: 

𝐸𝑖𝑗 =∑𝑓𝑔𝜀𝑖𝑗
𝑔

𝑁

𝑔

=∑𝑓𝑔𝑠𝑖𝑗𝑚𝑛
𝑔

𝜎𝑚𝑛
𝑔

𝑁

𝑔

=∑𝑓𝑔𝑠𝑖𝑗𝑚𝑛
𝑔

𝛴𝑚𝑛 

𝑁

𝑔

= {∑𝑓𝑔𝑠𝑖𝑗𝑚𝑛
𝑔

𝑁

𝑔

}𝛴𝑚𝑛 . 

(2.32) 

On the other hand, when homogenous strain is assumed (according to Voigt [75]) the 

effective stiffness tensor 𝐶𝑖𝑗𝑘𝑙 can be computed: 

𝜀𝑖𝑗
𝑔
= 𝐸𝑖𝑗     ⇒       𝐶𝑖𝑗𝑘𝑙

𝑉 = {∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

𝑁

𝑔

} , (2.33) 

because: 

𝛴𝑖𝑗 =∑𝑓𝑔𝜎𝑖𝑗
𝑔

𝑁

𝑔

=∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

𝜀𝑚𝑛
𝑔

𝑁

𝑔

=∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

𝐸𝑚𝑛

𝑁

𝑔

= {∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

𝑁

𝑔

}𝐸𝑚𝑛 

(2.34) 

However, for such defined macroscopic elastic constants, the reciprocal relationship 

between the macroscopic stiffness and the compliance tensor is not satisfied, i.e.: 

𝑆𝑖𝑗𝑘𝑙
𝑅 ≠ (𝐶𝑉)𝑖𝑗𝑘𝑙

−1  (2.35) 

This relationship is also not fulfilled for the Hill approach[76]: 

𝑆𝑖𝑗𝑘𝑙
𝐻 =

1

2
{𝑆𝑖𝑗𝑘𝑙
𝑅 + (𝐶𝑉)𝑖𝑗𝑘𝑙

−1 }    and   𝐶𝑖𝑗𝑘𝑙
𝐻 =

1

2
{𝐶𝑖𝑗𝑘𝑙
𝑉 + (𝑆𝑅)𝑖𝑗𝑘𝑙

−1 } (2.36) 
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To satisfy reciprocal relationship for the macroscopic stiffness and compliance tensors 

different methods were proposed, for example the use of geometric mean as  proposed by 

Morawiec [77] or the self-consistent calculations based on interaction of the grain with 

homogenous continuous medium (matrix) approximated by Eshelby [78] inclusion as 

proposed by  Kroner [79] in the case of isotropic matrix. 

In the present work the self-consistent model based on the Eshelby approach was used 

to predict elasto-plastic deformation of polycrystalline material, as described in 

subsection 3.3.3. The calculation of macroscopic mechanical properties was done 

according to Lipinski-Berveiller model [80]  enabling calculation of so-called localisation 

(concentration) tensors. These tensors 𝐴𝑖𝑗𝑘𝑙
𝑔

 and 𝐵𝑖𝑗𝑘𝑙
𝑔

 relate the macroscopic strain and 

stress tensors with those localised on the grain g: 

𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
𝐸𝑘𝑙   and   𝜎𝑖𝑗

𝑔
= 𝐵𝑖𝑗𝑘𝑙

𝑔
𝛴𝑘𝑙 (2.37) 

where 

(𝐴𝑔) 𝑖𝑗𝑘𝑙
−1 = 𝐼𝑖𝑗𝑘𝑙 − 𝑇𝑖𝑗𝑛𝑚

𝑔𝑔
(𝑐𝑚𝑛𝑘𝑙
𝑔

− 𝐶𝑚𝑛𝑘𝑙) (2.38) 

and 𝑇𝑖𝑗𝑛𝑚
𝑔𝑔

 is the interaction tensor calculated on the basis of interaction of the Eshelby-type 

ellipsoidal inclusion within anisotropic homogenous medium characterized by the stiffness 

tensor 𝐶𝑖𝑗𝑘𝑙. 

This method enables to calculate effective overall elastic tensors (and also elastoplastic 

tensors, cf. chapter 3) for textured polycrystalline material using the following formula: 

𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

=∑𝑓𝑔
𝑁

𝑔

𝑐𝑖𝑗𝑚𝑛
𝑔

𝐴 𝑚𝑛𝑘𝑙
𝑔

 (2.39) 

The formula for calculation of the 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

 tensor can be easily justified: 

𝛴𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓
𝐸𝑘𝑙 = {∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛

𝑔
𝐴 𝑚𝑛𝑘𝑙
𝑔

𝑁

𝑔

}𝐸𝑘𝑙 =∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

{𝐴 𝑚𝑛𝑘𝑙
𝑔

𝐸𝑘𝑙}

𝑁

𝑔

 

=∑𝑓𝑔𝑐𝑖𝑗𝑚𝑛
𝑔

𝜀𝑚𝑛
𝑔

𝑁

𝑔

=∑𝑓𝑔𝜎𝑖𝑗
𝑔

𝑁

𝑔

= 𝛴𝑖𝑗 

(2.40) 

The strain localisation tensor 𝐴 𝑖𝑗𝑘𝑙
𝑔

  is calculated using the self-consistent procedure 

in which  𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

→ 𝐶𝑖𝑗𝑘𝑙 is substituted into equation (2.38) in the iterative procedure until 

the difference between 𝐶𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

 in subsequent iteration steps is larger than the assumed 

criterion.  

If the convergence is achieved, the so obtained stiffness tensor 𝐶𝑖𝑗𝑘𝑙 fulfils strictly 

relation between macroscopic stress 𝛴𝑖𝑗 and strain 𝐸𝑖𝑗  tensors, therefore the 

compliance tensor is given as 𝑆𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙
−1  .  
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3. Plastic deformation 

 

3.1. Macroscopic description of plastic deformation 

 

As mentioned in chapter 2, the force applied to a solid body causes its deformation and 

creates stress. When increasing the load applied to the solid, the stress increases. The 

deformation is elastic if the body returns to its original shape after unloading and the 

deformation is proportional to the stress. The elasticity of solids is relatively simple to 

describe - the relationship between stresses and strains is described by Hooke law which in 

the case of a three-dimensional is given by the equation (2.10).  

When the stress in the solid exceeds a critical value called yield point, plastic 

deformation occurs [67]. During plastic deformation, the relationship between the 

macroscopic stress and the deformation of a solid is no longer linear and significantly 

depends on the material, the method of its processing and the type of the stress tensor. 

A characteristic feature of plastic deformation is a much greater increase in deformation 

compared to the case of elasticity (for the same increase in the applied stress) and 

permanent deformation, i.e. after unloading the solid does not return to its original 

dimensions or shape (the deformation does not return to zero value, cf.  dotted lines in 

Fig. 2.1). Usually it is difficult to define exactly the yield stress, therefore the offset yield 

point is arbitrarily defined and the value of proof stress at 0,1% or 0,2% plastic strain is 

given. However, in this work, the yield stress is defined as the stress at the point where the 

proportional range of elasticity ends and the permanent component of plastic strain occurs. 

In ductile materials, plastic deformation leads to large deformations, up to fracture of the 

material (see Fig. 2.1).  

To define the stress state for which a solid in the elastic range goes into the plastic 

range, one can use the Tresca criterion or the von Mises criterion. These criteria can be 

represented by a five-dimensional surface built in a six-dimensional space defined by the 
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components of the stress tensor. This surface is called the yield stress and it separates the 

space for which the stress state corresponds to elastic deformation (inside the surface) from 

the space where the stress state causes plastic deformation (outside the surface).   

Tresca criterion is the simplest criterion describing the yield stress. According to this 

criterion the plastic deformation begins when the maximum shear stress, i.e. half of the 

difference between the maximum and minimum principal stress components, is greater 

than 
1

2
𝜎𝑝𝑙: 

 
1

2
max(|𝜎11 − 𝜎22|, |𝜎11 − 𝜎33|, |𝜎22 − 𝜎33|) =

1

2
𝜎𝑝𝑙 (3.1) 

where 𝜎11, 𝜎22, 𝜎33 are the stress tensor components in principal axis system and 𝜎𝑝𝑙  is the 

yield stress for an uniaxial test. 

To illustrate the yield surface built according to the Tresca criterion, it can be assumed 

that one of the stress components in the principal axis system is equal to zero (e.g. 𝜎33 =

0 MPa). In such a case the yield surface is reduced to two-dimensional polygon shown in 

Fig. 3.1). For the general state of stresses, there are three non-zero stress components, and 

the plasticity surface takes the form of a hexagonal prism. 

 

Fig. 3.1 Tresca criterion for two-dimensional stress state with 𝜎11 and 𝜎22  nonzero 

stress components and 𝜎33 = 0 MPa. The yield condition is fulfilled for edge of the 

polygon. 

The second criterion describing the yield stress is the von Mises criterion. In this case, 

plastic deformation begins when the von Mises stress value exceeds the yield stress 𝜎𝑝𝑙 

defined for the uniaxial test, i.e.: 

 

𝜎𝑣𝑀 = 𝜎𝑝𝑙 

√
1

2
[(𝜎11 − 𝜎22)2 + (𝜎11 − 𝜎33)2 + (𝜎22 − 𝜎33)2] + 3(𝜎12

2 + 𝜎13
2 + 𝜎23

2 ) = 𝜎𝑝𝑙 

(3.2) 

𝜎𝑝𝑙 

𝜎11 

𝜎22 

𝜎𝑝𝑙 

−𝜎𝑝𝑙 

−𝜎𝑝𝑙 
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The advantage of the von Mises stress formula is that it is based on a full stress tensor 

and is independent of the coordinate system, so it is not necessary to convert the stress 

tensor to the principal axis system. To illustrate the yield stress condition, it can be assumed 

that one of the components of the stress tensor is zero. As shown in Fig. 3.2, the von Mises 

criterion is fulfilled for the ellipse edge.  For comparison, in this figure also the polygon 

showing the yield condition according to the Tresca criterion. It can be observed that, the 

von Mises criterion gives a smoother yield line and the elastic region is larger compared to 

that obtained for the Tresca criterion is shown. In general, when all stress components are 

present, the yield surface built according to the von Mises criterion takes the shape of an 

elliptical cylinder. 

 

Fig. 3.2 Von Mises yield surface criterion (red) compared with Tresca criterion (black) 

for yield surface. The nonzero stress tensor components are 𝜎11 and 𝜎22. 

 

 

3.2. Plastic deformation mechanisms of  single crystal 

 

During elastic deformation, the displacement of atoms does not change their relative 

arrangement in the crystal lattice. In the case of plastic deformation, the relative 

arrangement of atoms changes due to the so-called crystallographic slips, during which a 

part of the crystallite moves with respect to the rest. This slip occurs on a given crystal 

plane in a strictly defined direction. The slip plane and slip direction form the so-called slip 

system. The slips can take place on one plane or on several parallel planes adjacent to each 

other, which form so called slip band (cf. Fig. 3.3).  It should be noted that the shear band 

is relatively thin and in models it can be assumed that the slip occurs on a single plane. It 

should be emphasized that slips are significantly facilitated by dislocations movement on 

the slip planes, if the density of deformation is small. However, when the dislocation 

density increases during plastic deformation, they begin to intersect, which in turn makes 

slips difficult. 

𝜎11 

𝜎22 

−𝜎𝑝𝑙 

−𝜎𝑝𝑙 

𝜎𝑝𝑙 

𝜎𝑝𝑙 
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Fig. 3.3 Example of a slip system with a single slip plane and a slip band marked with 

grey. 

Crystallographic slip is described by the slip system which defines the slip plane (ℎ𝑘𝑙) 

and the slip direction [𝑢𝑣𝑤]. There are symmetrically equivalent slip systems in each 

crystallite, denoted by {ℎ𝑘𝑙}〈𝑢𝑣𝑤〉 (in the case of hexagonal structure the four-index 

Miller-Bravais notation is used). Slip systems are generally the close packed (most densely 

packed) planes and directions, however, when they do not allow the required deformation, 

less packed systems and twinning process are also activated (as in the case of hexagonal 

structure). Exaples of slip system for cubic and hexagonal structures are shown in Fig. 3.4 

and Fig. 3.5. The potentially active slip systems in different crystal structures are given in 

Table 3.1.  

Table 3.1 Families of slip systems available for different crystallographic structures 

(they are shown in Fig. 3.5). 

Structure Direction Plane Name 

FCC 〈11̅0〉 {111}  

BCC 

〈11̅1〉 {110} 

Pencil glide 〈111̅〉 {112} 

〈111̅〉 {123} 

HCP 

〈112̅0〉 {0001} Basal 

〈112̅0〉 {11̅00} Prismatic 

〈112̅0〉 {11̅01} Pyramidal <a> 

〈1̅21̅3〉 {11̅01} 
First order 

pyramidal <c+a> 

〈1̅21̅3〉 {12̅12} 
Second order 

pyramidal <c+a> 
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Fig. 3.4 Possible slip systems for face centred cubic and body centred cubic structures.  

 

Fig. 3.5 Possible slip systems for hexagonal closed package (HCP) structure.  

Crystallographic slips are the main causes of plastic deformation. The variety of slip 

systems allows the crystal to activate slips in different directions on different planes. During 

plastic deformation, only some of the slip systems are activated. The activation criterion 

for the slip system s in a grain 𝑔 is that the value of the resolved shear stress (RSS) 

𝜏𝑔,𝑠 = 𝜎13
𝑔,𝑠

 reaches a certain critical value 𝜏𝑐𝑟
𝑔,𝑠

  (CRSS), depending on the material and the 

slip system state (Schmid criterion): 

𝜎13
𝑔,𝑠
= 𝜏𝑔,𝑠 = 𝜏𝑐𝑟

𝑔,𝑠
 (3.3) 

where 𝜎13
𝑔,𝑠

 is defined with respect to the slip system coordinates determined by the slip 

direction vector �⃗⃗⃗� and vector normal to the plane on which the slip occurs �⃗⃗� (cf. Fig. 3.6). 

 

Fig. 3.6 Definition of a coordinate system based on a slip system: m⃗⃗⃗⃗- normalized slip 

direction vector, �⃗⃗� - normalized vector normal to the slip plane. The same definition is used 

for the twin system. 

𝑥1
𝑠෢ = �⃗⃗⃗⃗�  

𝑥3
𝑠෢ = �⃗⃗⃗� 
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In the coordinate system related to the slip system (defined in Fig. 3.6), the increment 

of the displacement gradient caused by a single slip is expressed by one independent shear 

component: 

 Δ𝛾𝑔,𝑠  =   Δ𝑒13
𝑔,𝑠

 (3.4) 

Thus, the increment of the displacement gradient Δ𝑒𝑖𝑗
𝑔,𝑠(𝑝𝑙) 

 corresponding to the 

contribution of s slip system in plastic deformation of a grain 𝑔 are given by the equation: 

 Δ𝑒𝑖𝑗
𝑔,𝑠(𝑝𝑙) 

= 𝑚𝑖
𝑔,𝑠
 𝑛𝑗
𝑔,𝑠
 Δ𝛾𝑔,𝑠 (3.5) 

where Δ𝑒𝑖𝑗
𝑔,𝑠(𝑝𝑙) 

is expressed in the sample system and 𝑚𝑖
𝑔,𝑠

 and 𝑛𝑖
𝑔,𝑠

 are the 

components of the unit vectors �⃗⃗⃗� and �⃗⃗� (cf. Fig. 3.6) defined with respect to the sample 

system. 

Having the displacement gradient tensor defined on the basis of equation (2.6) and 

(2.7), the strain Δ𝜀𝑖𝑗
𝑔,𝑠(𝑝𝑙)

 and rotation Δ𝜔𝑖𝑗
𝑔,𝑠(𝑝𝑙)

 increments for s system in 𝑔 grain can be 

found: 

 
Δ𝜀𝑖𝑗

𝑔,𝑠(𝑝𝑙)
= 𝑅𝑖𝑗

𝑔,𝑠
 Δ𝛾𝑔,𝑠, 

Δ𝜔𝑖𝑗
𝑔,𝑠(𝑝𝑙)

= 𝑄𝑖𝑗
𝑔,𝑠
Δ𝛾𝑔,𝑠, 

(3.6) 

where: 

 
𝑅𝑖𝑗
𝑔,𝑠
=
1

2
(𝑚𝑖

𝑔,𝑠
𝑛𝑗
𝑔,𝑠
+𝑚𝑗

𝑔,𝑠
𝑛𝑖
𝑔,𝑠
), 

𝑄𝑖𝑗
𝑔,𝑠
=
1

2
(𝑚𝑖

𝑠𝑛𝑗
𝑠 −𝑚𝑗

𝑠𝑛𝑖
𝑠). 

(3.7) 

and Δ𝜀𝑖𝑗
𝑔,𝑠(𝑝𝑙)

 and  Δ𝜔𝑖𝑗
𝑔,𝑠(𝑝𝑙)

 are expressed with respect to the sample coordinate system. 

Finally, to obtain the total strain and rotation increments for 𝑔 grain the contributions 

from all active slip systems s should be summed up: 

 Δ𝜀𝑖𝑗
𝑔(𝑝𝑙)

=∑Δ𝜀𝑖𝑗
𝑔,𝑠(𝑝𝑙)

𝑠

, Δ𝜔𝑖𝑗
𝑔(𝑝𝑙)

=∑Δ𝜔𝑖𝑗
𝑔,𝑠(𝑝𝑙)

𝑠

 (3.8) 

If we assume that the grain is surrounded by a non-rotating matrix the plastic rotation 

tensor Δ𝜔𝑖𝑗
𝑔(𝑝𝑙)

 is compensated by the rotation of the crystal lattice ∆𝜔𝑖𝑗
𝑔(𝑐𝑟)

 (see Fig. 3.7) 

[72], i.e.: 

 ∆𝜔𝑖𝑗
𝑔(𝑝𝑙)

= −∆𝜔𝑖𝑗
𝑔(𝑐𝑟)

 . (3.9) 

It should be emphasised that the ∆𝜔𝑖𝑗
𝑔(𝑐𝑟)

 rotation leads to formation of crystallographic 

texture.  
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Fig. 3.7 Plastic deformation of a grain during compression along the 𝐱𝟏 axis: a) 

before slip, b) after slip on one of the systems, c) and crystal rotation of the lattice to 

accommodate the grain to the non-rotating matrix.  

To calculate the resolved shear stress 𝜏𝑔,𝑠 (RSS) at the s system the following equation 

can be used: 

𝜏𝑔,𝑠 = 𝑅𝑖𝑗
𝑔,𝑠
𝜎𝑖𝑗
𝑔

 (3.10) 

where 𝜎𝑖𝑗
𝑔

 is the stress tensor at the grain 𝑔 defined with respect to the sample system. 

When the Schmid condition (3.3) is satisfied for a given slip system, i.e. 𝜏𝑔,𝑠 reaches 

critical value (CRSS – critical resolved stress 𝜏𝑐𝑟
𝑔,𝑠

) the crystal begins to slip on that system 

[67]. Along with it, the number of dislocations multiplies. At some point, there are so many 

of them that they start to block each other and make the slip difficult. It manifests itself in 

increasing the critical shear stress (𝜏𝑐𝑟) with an increase in the shear strain on a given 

system. This phenomenon is described by the so-called 𝐻𝑠𝑡 work hardening matrix relating 

increase in CRSS (∆𝜏𝑐𝑟
𝑡 ) with different slip systems active in a given crystallite: 

 ∆𝜏𝑐𝑟
𝑔,𝑡
=∑𝐻𝑡𝑠∆𝛾𝑔,𝑠

𝑠

 (3.11) 

where the index 𝑡 applies to all potentially active systems in a given grain, and the sum is 

determined over all currently active systems 𝑠.  

The 𝐻𝑡𝑠 matrix describes the hardening relation and interaction between two slip 

systems 𝑡 and 𝑠 which depends on their relative geometrical orientation. In general, 𝐻𝑡𝑠 

terms can be divided into two groups – weak hardening (ℎ𝑤) and strong hardening (ℎ𝑠) 

[81]. This allows to compose the matrix using only 2 terms -  ℎ𝑤 and 𝛼 =
ℎ𝑠

ℎ𝑤
. The simplest 

assumption of constant ℎ𝑤 and 𝛼 parameters leads to linear hardening law. The most 

common way to obtain 𝐻𝑡𝑠 matrix is by using the Voce law. To introduce this law the total 

shear strain Γ𝑔 on all active slip systems in a grain 𝑔 is calculated [82–84]: 

 Γ𝑔 =∑𝛾𝑔,𝑠

𝑠

, (3.12) 

where 𝛾𝑔,𝑠 is the total shear strain on active slip system 𝑠 in grain 𝑔. 

a) 

𝑥3 

𝑥1 

𝜀𝑖𝑗
𝑔(𝑝𝑙)

+𝜔𝑖𝑗
𝑔(𝑝𝑙)

→          

c) 

𝜔𝑖𝑗
𝑔(𝑐𝑟)

→     

b) 
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On the basis of the Γ𝑔 value, the critical stress for each slip system 𝑠 in the grain 𝑔 can 

be determined [83]: 

 
𝜏𝑐𝑟
𝑔,𝑠
= 𝜏0

𝑔,𝑠
+ (𝜏1

𝑠 + 𝜃1
𝑠Γ𝑔) (1 − 𝑒

− 
𝜃0
𝑠

𝜏1
𝑠  Γ

𝑔

), 
(3.13) 

where: 𝜏0
𝑠 is a current value of initial critical resolved shear stress (CRSS) on slip 

system 𝑠 in grain 𝑔, while 𝜏1
𝑠 , 𝜃0

𝑠 and 𝜃1
𝑠 are phenological hardening parameters for given 

slip system 𝑠 (equal for all grains) which must be found out from evaluable experimental 

results (e.g. macroscopic stress-strain plot, lattice strains, grain stresses or/and evolutions 

of CRSS during plastic deformation) compared to given crystallographic model. 

The interpretation of the adjustable parameters in Voce's law is as follows: 𝜏0
𝑔,𝑠

 is the 

initial value of CRSS for Γ𝑔 = 0,   𝜃0
𝑠 and 𝜃1

𝑠 are respectively initial and final values of the 

rate of hardening, and 𝜏0
𝑠,𝑔
+ 𝜏1

𝑠 is the intersection of the 𝜏𝑐𝑟
𝑔,𝑠

 axis with the tangent line to 

the end of the hardening curve (see Fig. 3.8). 

 

Fig. 3.8 Geometrical interpretation of Voce law. 

Usually, the hardening matrix relating different slip systems 𝐻𝑠𝑡 is calculated: 

 𝐻𝑠𝑡 =
d𝜏𝑔,𝑠

dΓ𝑔
 ℎ𝑠𝑡 , 

(3.14) 

where ℎ𝑠𝑡 is a matrix depending on geometrical relations between slip systems [81].  

In the case of HCP structure a large difference occurs between CRSS values and 

hardening parameters for different slip systems and introduction of ℎ𝑠𝑡 leads to additional 

sets of parameters which are not well defined and potentially can be fitted. This is why in 

this work the simplified method to calculate the 𝐻𝑠𝑡 values assuming ℎ𝑠𝑡 = 1 was used. 

In this case the values of self-hardening (𝐻𝑠𝑠 hardening of s system by the same system) 

the 
d𝜏𝑔𝑠

dΓ𝑔
  is directly determined from equation (3.13), while in the case of  𝑠 ≠ 𝑡, the 

arithmetic mean is calculated, i.e.: 

𝐻𝑠𝑡 =
1

2
(
d𝜏𝑔𝑠

dΓ𝑔
+
d𝜏𝑔𝑡

dΓ𝑔
). (3.15) 

𝜏𝑐𝑟
𝑔,𝑠

 

Γ𝑔 

𝜏0
𝑔,𝑠
+ 𝜏1

𝑠  

𝜏0
𝑔,𝑠

 
𝜃0   

𝜃1  
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The second most important mechanism of plastic deformation is twinning. It is a kind 

of complement to the slip systems in order to increase number of directions in which the 

displacements will take place. The twinning process itself is based on the movement of 

successive atomic layers in one direction, so that with each step more and more layers are 

shifted. As a result, a new twin-grain is created from the so called  parent-grain (see 

Fig. 3.9). Similarly as in the case of the crystallographic slip, the formation of the twin 

orientation is related to the twinning system, which is defined by the {ℎ𝑘𝑙} plane and the 

〈𝑢𝑣𝑤〉 direction vector. Unlike the slip systems in twin systems, the sign of the direction 

vector is important, i.e. the slips can occur in two opposite directions, while in the case of 

twin only one direction of twinning is possible. 

 

Fig. 3.9 Scheme of the formation of twin orientation. 

The orientation of the twin lattice with respect to the parent lattice is strictly defined. 

In general there are 4 different relation between the lattices of the parent and twin, however 

in the case of cento-symmetric crystals (as hexagonal lattice) they reduce to two 

independent relations. Therefore two types of twins can be created using two symmetry 

operations, i.e. the lattice of type 1 twin  is obtained from rotation about normal to twinning 

plane by 180º, as shown in Fig. 3.10a (the same twin orientation can be obtained as mirror 

image in twinning plane) and the lattice of the type 2 twin is obtained from the rotation by 

180º about the twinning direction, shown in Fig. 3.10b (or equally through mirror reflection 

in the plane normal to twinning direction). There is also a third type of twins, the so-called 

compound twins for which lattice orientation can be obtained by any of the above 

operations. As shown in Fig. 3.10 c and d, both rotations by 180º, i.e. about normal to 

twining plane or about twinning direction lead to the same orientation of twin lattice. 

habitus 

plane 
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Fig. 3.10 Different types of twins for orthorhombic lattice with: a) type 1 twin after 

rotation by 180º about 𝑲𝟏 || normal to twining plane {111}, b) type 2 twin after rotation by 

180º about 𝜼𝟏 || twinning direction < 11̅0 >; and compound twin obtained either through 

c) rotation by 180º  about 𝑲𝟏 - normal to twining plane || {101} or (b) rotation by 180º 

about 𝜼𝟏 - twinning direction < 101̅ >, cf. [85]. 

There well-defined orientation relationships between the crystal lattices of the parent 

and twin variants are typically known from experiment or can be determined from 

theoretical calculations [86]. The orientation of the twin can be calculated using the rotation 

represented by the following rotation [67]:  

[

𝑢𝑡
𝑣𝑡
𝑤𝑡
] = [

(2𝑡1
2 − 1) 2𝑡1𝑡2 2𝑡1𝑡3
2𝑡2𝑡1 (2𝑡2

2 − 1) 2𝑡2𝑡3
2𝑡3𝑡1 2𝑡3𝑡2 (2𝑡3

2 − 1)

] [

𝑢𝑝
𝑣𝑝
𝑤𝑝
] (3.16) 

where [

𝑢𝑡
𝑣𝑡
𝑤𝑡
] and [

𝑢𝑝
𝑣𝑝
𝑤𝑝
] are vectors expressed in the twin and the parent reference frames, 

respectively and 𝑡𝑖 are the components unit vector perpendicular to twinning plane for the 

type 1 twin or components of unit vector along twinning direction for the type 2 twin. 

The twinning systems occurring for the crystallite with the HCP structure are given in 

Table 3.2 and shown in Fig. 3.11. It should be emphasised that twins represented by these 

systems are the compound twins, therefore both rotations defined by equation  (3.16)  can 

be used to calculate the orientations of twin lattice. In this work, the rotation given by 

equation  (3.16) is used in calculation of lattice orientation for the first order tensile twins 

(𝑡𝑖 is chosen as unit vector perpendicular to twinning plane {11̅02}). 
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Table 3.2 Families of twin systems potentially active in HCP structure  

(see also Fig. 3.11) 

First order tensile twin TT1 〈1̅101〉 {11̅02} 

Second order tensile twin TT2 〈1̅21̅6〉 {12̅11} 

First order compression twin CT1 〈1̅102〉 {11̅01} 

Second order compression twin CT2 〈12̅13̅〉 {12̅12} 

 

 

Fig. 3.11 Possible twinning systems for HCP structure.  

 

The increment of the volume fraction 𝛿𝑤𝑔,𝑡 of the twin is related to the increment of 

shear strain 𝛿𝛾𝑡 occurring on the twin system t in the grain 𝑔 and it is given by the well-

known equation [16]: 

𝛿𝑤𝑔,𝑡  = 𝛿𝛾𝑔,𝑡 𝑆⁄  (3.17) 

where characteristic total shear strain 𝑆 = 0,13 [87] for tensile twins in Mg. 

 

In the same time the change in the volume of the parent 𝑝 is equal to: 

𝛿𝑤𝑔,𝑝  = −𝛿𝑤𝑔,𝑡 (3.18) 

The evolution of the grain properties can be done using the same procedures as for the 

slip systems, as describes above by the equations (3.3) - (3.13) and taking into account the 

change of the volume fraction of the twin and parent [16]. It should be however emphasised 

that the twinning process is not well understanded and more difficult to predict comparing 

to crystallographic slip phenomena. It is known, that propagation of the twins occurs easily 

under small stress, but the process of twinning requires a large stress to be activated. 

Therefore, in addition to the “continuous approximation” in which a twin is born when the 

CRSS of a twin is exceeded, preliminary or threshold assumptions concerning twin 

nucleation have also been proposed. For example in the “finite initial fraction” (FIF) 

approach the initial size of the twin “at birth” is assumed, which corresponds to the initial 
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shear strain on twin system [16]. This initial plastic deformation leads to the back-stress 

localised in the parent and twin, originated from interaction with the surrounding matrix. 

In the FIF approach significant relaxation of the load  at the “just born” twin was predicted 

by EPSC model and this result was confirmed by neutron diffraction experiment. However, 

the further evolution of the model stress at the twin is rather far from the experimental result 

[16]. 

 Another method of implementing the twinning mechanism to calculation is the 

PTR “predominant twin reorientation” scheme used especially in the viscoplastic self-

consistent VPSC models   [18,88–90]. In this method the orientation of the grain is not 

changed until the volume fraction 𝑤𝑔,𝑡 (related to the shear strain on 𝑡 system in grain 𝑔 

by equation (3.17)) reaches the threshold defined below. The volume fraction which is 

supposed to be twinned due to the activity of the t system is calculated as the sum over all 

deformation steps: 

𝑤𝑔,𝑡 = ∑ 𝛿𝑤𝑔,𝑡

𝑠𝑡𝑒𝑝𝑠

 (3.19) 

Then the volume fractions 𝐹𝑅 of twins in the polycrystalline material is determined for 

all systems 𝑡 and over all grains 𝑔 having 𝑓𝑔 the volume fractions in the sample: 

𝐹𝑅 =∑𝑓𝑔∑𝑤𝑔,𝑡

𝑡𝑔

 (3.20) 

Moreover, the fraction of the grains reoriented due to twinning is calculated:  

𝐹𝐸 = ∑ 𝑓𝑔(𝑡𝑤𝑖𝑛)

𝑔(𝑡𝑤𝑖𝑛)

 (3.21) 

Finally, the threshold value determining the creation of a twin is defined: 

𝐹𝑇 = 𝐴1 + 𝐴2
𝐹𝐸
𝐹𝑅

 (3.22) 

In the PTR method the orientation of a given grain is fully changed to the orientation 

of the twin when 𝑤𝑔,𝑡 volume fraction exceeds threshold value 𝐹𝑇 (i.e. 𝑤𝑔,𝑡 > 𝐹𝑇). This 

happens for the twin system which is the most active in the grain and exhibits the highest 

value of shear strain. The self-consistent feature of the threshold FT  defined in this way is 

that a too rapidly increasing ratio FE / FR leads to an increase in the threshold FT  and 

consequently a decrease in the number of reorienting grains. The values of constants  𝐴1  

and 𝐴2 can be adjusted in order to obtain the rate of twins increase close to experimental 

one, e.g. 𝐴1 = 𝐴2 = 0,25  was proposed in [88].   
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3.3. Crystallographic elastic-plastic self-consistent model 

 

3.3.1. Model approach 

 

When describing elastic and plastic deformation of polycrystalline material at a 

microscopic scale, one should consider the interactions occurring at this scale, e.g. 

intergranular interactions. For this purpose, various types of models are used, the common 

feature of which is the assumption of certain initial material parameters, such as the elastic 

constants of individual crystallites, crystallographic texture and certainly the initial CRSS 

values for potentially active slip and twin systems. Then in the calculations the scale 

transition model taking into account the grain interaction as well as the hardening 

parameters for slip and twin systems and rotations of the grains must be taken into account. 

A commonly used model used to predict the elastic-plastic behaviour of a material is 

the finite element method (FEM). However, this method is mainly suitable for predicting 

complex loading conditions of a material without taking into account its crystallographic 

structure. FEM calculations in which crystallites are taken into account are time consuming 

and give poor statistical information. Therefore, crystallographic models in which 

interactions between grains are approximated by e.g. Eshelby-type interactions of an 

ellipsoidal inclusion with the surrounding homogeneous matrix [78]. Certainly, the results 

of the calculations have to be experimentally verified, and the model parameters, such as 

the parameters of Voce law, are adjusted in order to obtain agreement of the model 

calculations with the experimental results.  

The first and simplest models of elastic deformation are those proposed by Voigt [75] 

and Reuss [74]. They are based on the assumption of homogeneity of strains (Voigt) or 

homogeneity of stresses over all grains of polycrystalline material (Reuss). Analogous 

assumptions, i.e. homogeneity of total strain and homogeneity of stress, were applied to 

plastic deformation by Taylor [91] and Sachs [92]. The Taylor model was also modified 

assuming relaxation of some  components of the stress or strain tensor by Van Houtte  [93] 

and Canova et al. [83]. Then, Kröner [94] introduced an idea of self-consistent modelling 

for elastic properties of a heterogeneous material, which was extended by Hill [95] for 

elastoplasticity. The elastoplastic self-consistent (EPSC) models are based on the Eshelby 

approach [78] in which the polycrystalline grains are approximated by ellipsoidal 

inclusions embedded in a homogeneous matrix, which shows the average properties of 

polycrystalline materials at a macroscopic scale.  

 



 

49 

 

To predict the elastoplastic nature of macroscopic and local deformation for one or 

two-phase polycrystalline materials, different types of modelling have been developed. For 

example the Hill idea of EPSC model was applied by Turner and Tomé [21,96] and then 

developed by e.g. [82,97–100]. These algorithms were applied to interpret results of 

diffraction experiments by [11,12,14,82]. Alternative methodology, used in this work was 

elaborated by Lipinski and Berveiller [80] and developed by [21,101–104]. The latter 

method was also used to analyse the results of diffraction experiments in order to study 

mechanical behaviour of solids at different scales [21,65,66,105–107].  

 

 

3.3.2. Micro- and macroscopic description of elastoplastic deformation 

 

The main goal of  EPSC calculation is to predict influence of the external loading such 

as applied force or temperature change on microscopic behaviour of individual grains.  

 

 

 

 

Fig. 3.12 Example of polycrystal material under applied load leading to the response 

to the macroscopic stress Σ𝑖𝑗:  macroscopic elastoplastic strain 𝐸𝑖𝑗,  microstress 𝜎𝑖𝑗
𝑔

 and 

elastoplastic microstrain 𝜀𝑖𝑗
𝑔

 appearing at grain 𝑔. 

The relationships between macroscopic strain and stress in the elastic range of loading 

is described in subsection 2.3.3 by the formula (2.30). It should be noted that the Hooke 

law relates the stress and elastic strain at the macroscopic and microscopic scale, i.e.: 

 

𝜎𝑖𝑗
𝑔
= 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑔(𝑒𝑙)
= 𝑐𝑖𝑗𝑘𝑙 (𝜀𝑘𝑙

𝑔
− 𝜀𝑘𝑙

𝑔(𝑝𝑙)
)    or   𝜀𝑖𝑗

𝑔
− 𝜀𝑖𝑗

𝑔(𝑝𝑙)
= 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙

𝑔
 

Σ𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙
(𝑒𝑙)

= 𝐶𝑖𝑗𝑘𝑙 (𝐸𝑘𝑙 − 𝐸𝑘𝑙
(𝑝𝑙))   or   𝐸𝑖𝑗 − 𝐸𝑖𝑗

(𝑝𝑙) = 𝑆𝑖𝑗𝑘𝑙Σ𝑘𝑙 

(3.23) 

where 𝑐𝑖𝑗𝑘𝑙 and 𝑠𝑖𝑗𝑘𝑙 are the microscopic stiffness and the compliance tensors, 𝜀𝑖𝑗
𝑔(𝑒𝑙)

, 𝜀𝑖𝑗
𝑔(𝑝𝑙)

 

and 𝜀𝑖𝑗
𝑔

 are the elastic, plastic and total microstrains, and 𝜎𝑘𝑙
𝑔

 is the microstress. Capital 

letters are used for analogous macroscopic quantities. 

𝜺𝒊𝒋
𝒈
, 𝝈𝒊𝒋
𝒈

 

 𝚺𝒊𝒋, 𝐄𝒊𝒋 

 

 

𝚺𝒊𝒋, 𝐄𝒊𝒋 

 

 

𝜺𝒊𝒋
𝒈
, 𝝈𝒊𝒋
𝒈

 

 

𝒈 
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It is worth noting, that plastic deformation causes an additional increase in strain, 

which is not directly related to the stress value. However, it is possible to describe the 

elastoplastic deformation by determining the increase in the strain value for a given increase 

in the stress. In this way, the relationship between the stress ∆Σ𝑖𝑗 and the strain ∆𝐸𝑖𝑗 

increments can be given using a tangent modulus tensor 𝐿𝑖𝑗𝑘𝑙, i.e.: 

∆Σ𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙∆𝐸𝑘𝑙      or       ∆𝐸𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙
−1 ∆Σ𝑘𝑙 (3.24) 

The graphical interpretation of the tangent modulus is shown in Fig. 3.13. 

 

Fig. 3.13 Relation between strain increment ∆𝐸11 and stress increment ∆Σ11 defines 

component 𝐿1111 of macroscopic tangent modulus tensor. 

The 𝐿𝑖𝑗𝑘𝑙 tensor, defined in this way generally depends not only on the value of 

macroscopic strain, but also on the rate of strain increase. However, the rate independent 

EPSC model predicts the mechanical behaviour of the sample for infinitely slow strain rate, 

therefore the tensor 𝐿𝑖𝑗𝑘𝑙 depends solely on the macroscopic sample strain. 

To calculate the macroscopic 𝐿𝑖𝑗𝑘𝑙 tensor at first the local tangent modulus tensor 𝑙𝑖𝑗𝑘𝑙
𝑔

, 

defined for a grain 𝑔, should be determined, i.e. [80,103]: 

 ∆𝜎𝑖𝑗
𝑔
= 𝑙𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔
 (3.25) 

where ∆𝜎𝑖𝑗
𝑔

 and ∆𝜀𝑘𝑙
𝑔

 are the increments of stress and strain at grain 𝑔, respectively. 

Rewriting equation (3.23) the following relation can be obtained: 

 ∆𝜎𝑖𝑗
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔(𝑒𝑙)
= 𝑐𝑖𝑗𝑘𝑙 (∆𝜀𝑘𝑙

𝑔
− ∆𝜀𝑘𝑙

𝑔(𝑝𝑙)
) (3.26) 

where g

ijklc  are the single crystal stiffnesses. 

Σ11 

𝐸11 

𝐸11 

Σ11 

 ∆𝐸11 

∆Σ11 

∆Σ11 = 𝐿1111∆𝐸11  
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By using equation (3.6) and equation (3.8) the plastic strain increment can be expressed 

by the shear strain increments ∆𝛾𝑘𝑙
𝑔,𝑠

 at different active slip systems 𝑠: 

 ∆𝜎𝑖𝑗
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔 (∆𝜀𝑘𝑙
𝑔
−∑𝑅𝑘𝑙

𝑔,𝑠
∆𝛾𝑘𝑙

𝑔,𝑠

𝑠

) (3.27) 

where summation should be done over all active system 𝑠. 

Assuming the resolve shear stress increment equal to the increment of its critical value 

and using equation (3.10) the increment of critical shear stress at the active slip system 𝑡 

can be found: 

 ∆𝜏𝑐𝑟
𝑔,𝑡
= 𝑅𝑖𝑗

𝑔,𝑡
∆𝜎𝑖𝑗

𝑔
= 𝑅𝑖𝑗

𝑡 𝑐𝑖𝑗𝑘𝑙
𝑔 (∆𝜀𝑘𝑙

𝑔
−∑𝑅𝑘𝑙

𝑔,𝑠
∆𝛾𝑘𝑙

𝑔,𝑠

𝑠

) (3.28) 

Comparing the obtained equation (3.28) with equation (3.11) it can be written: 

 ∑𝐻𝑡𝑠∆𝛾𝑘𝑙
𝑔,𝑠

𝑠

= 𝑅𝑖𝑗
𝑡 𝑐𝑖𝑗𝑘𝑙

𝑔 (∆𝜀𝑘𝑙
𝑔
−∑𝑅𝑘𝑙

𝑔,𝑠
∆𝛾𝑘𝑙

𝑔,𝑠

𝑠

) (3.29) 

After grouping the slip increment terms: 

 
∑(𝑀−1)𝑔,𝑡𝑠∆𝛾𝑘𝑙

𝑔,𝑠
 =

𝑠

∑(𝐻𝑡𝑠 + 𝑅𝑖𝑗
𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔
𝑅𝑘𝑙
𝑔,𝑠
)∆𝛾𝑘𝑙

𝑔,𝑠
 

𝑠

= 𝑅𝑖𝑗
𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔
∆𝜀𝑘𝑙

𝑔
 

(3.30) 

where (𝑀−1)𝑔,𝑡𝑠 = 𝐻𝑡𝑠 + 𝑅𝑖𝑗
𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔
𝑅𝑘𝑙
𝑔,𝑠

 

The slip increment on slip system 𝑠 is given by the formula [80,108,109]: 

 ∆𝛾𝑘𝑙
𝑔,𝑠
=∑𝑀𝑔,𝑠𝑡𝑅𝑖𝑗

𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔
∆𝜀𝑘𝑙

𝑔

𝑡

 (3.31) 

where summation is done over all active slip systems 𝑡. 

Finally, after substituting the equation (3.31) to equation (3.27) and simple 

transformations: 

 ∆𝜎𝑖𝑗
𝑔
= (𝑐𝑖𝑗𝑘𝑙

𝑔
−∑𝑐𝑖𝑗𝑚𝑛

𝑔
𝑅𝑚𝑛
𝑔,𝑠
𝑀𝑔,𝑠𝑡𝑅𝑖𝑗

𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔

𝑠,𝑡

)∆𝜀𝑘𝑙
𝑔

 (3.32) 

and comparing this equation with equation (3.25), the relation between microscopic strain 

increment and stress increment can be written using local tangent modulus tensor 𝑙𝑖𝑗𝑘𝑙
𝑔

 for 

a grain 𝑔: 
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∆𝜎𝑖𝑗
𝑔
= 𝑙𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔
 

𝑙𝑖𝑗𝑘𝑙
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔
−∑𝑐𝑖𝑗𝑚𝑛

𝑔
𝑅𝑚𝑛
𝑔,𝑠
𝑀𝑔,𝑠𝑡𝑅𝑖𝑗

𝑔,𝑡
𝑐𝑖𝑗𝑘𝑙
𝑔

𝑠,𝑡

 
(3.33) 

The relation between microscopic and macroscopic stress increment and strain 

increment as well as local and macroscopic tangent modulus tensor must be established. 

This relation is proposed by different models, such as EPSC model described below. 

 

 

3.3.3. Elastoplastic self-consistent model 

 

In the case of plastic deformation, the strain and stress localisation laws defined for 

elastic deformation (equation (2.37)) must be modified.  Due to nonlinear character of 

stress-strain relations these relation should be written for infinitesimal increments of stress 

and strain, i.e.: 

 ∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
∆𝐸𝑘𝑙        and        ∆𝜎𝑖𝑗

𝑔
= 𝐵𝑖𝑗𝑘𝑙

𝑔
∆𝛴𝑘𝑙 , (3.34) 

where 𝐴𝑖𝑗𝑘𝑙
𝑔

 and 𝐵𝑖𝑗𝑘𝑙
𝑔

 localisation tensors which depend on the sample strain.  

Then, an analogues expression to equation (2.38) can be written on the basis of tangent 

moduli defined by expressions (3.24) and (3.25): 

(𝐴𝑔) 𝑖𝑗𝑘𝑙
−1 = 𝐼𝑖𝑗𝑘𝑙 − 𝑇𝑖𝑗𝑛𝑚

𝑔𝑔
(𝑙𝑚𝑛𝑘𝑙
𝑔

− 𝐿𝑚𝑛𝑘𝑙). (3.35) 

and  

𝐵𝑖𝑗𝑘𝑙
𝑔
= 𝑙𝑖𝑗𝑜𝑝

𝑔
𝐴𝑜𝑝𝑚𝑛
𝑔

𝐿𝑚𝑛𝑘𝑙
−1 , (3.36) 

where the interaction 𝑇𝑖𝑗𝑛𝑚
𝑔𝑔

 tensor is calculated similarly as in equation (2.38) assuming the 

Eshelby-type ellipsoidal inclusion and using method of calculations developed by Lipinski 

and Berveiller [80], based on continuum mechanics theory.  

The macroscopic values of stress and strain increments can be expressed as weighted 

mean values calculated over all grains (cf. equation (2.29)): 

 ∆𝛴𝑖𝑗 = ∑ 𝑓𝑔∆𝜎𝑖𝑗
𝑔𝑁

𝑔         and          ∆𝐸𝑖𝑗 = ∑ 𝑓𝑔∆𝜀𝑖𝑗
𝑔𝑁

𝑔  (3.37) 

where 𝑓𝑔is the volume fraction of grain 𝑔. 
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The macroscopic effective tangent modulus tensor can be expressed as: 

 𝐿𝑖𝑗𝑘𝑙
𝑒𝑓𝑓
 = ∑𝑓𝑔𝑙𝑖𝑗𝑚𝑛

𝑔
𝐴𝑚𝑛𝑘𝑙
𝑔

𝑔

 (3.38) 

This formula can be proven in similar way as its counterpart in elastic range (see 

(2.40)). 

In the above equation, the tensor 𝐴𝑚𝑛𝑘𝑙
𝑔

 is used to compute 𝐿𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

, but to compute 𝐴𝑚𝑛𝑘𝑙
𝑔

 

first the tensor 𝐿𝑖𝑗𝑘𝑙 must be known. At this point, the self-consistent calculations are 

introduced in which the tangent modulus tensor 𝐿𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

 is calculated and substituted as 𝐿𝑖𝑗𝑘𝑙 

in equation (3.35), and the calculations are repeated (similarly as presented in the 

subsection 2.3.3 in the case of elasticity). This self-consistent calculations are performed 

until the change in effective macroscopic tangent modulus in subsequent iteration steps 

fulfils the following criterium: 

 
∑ (𝐿𝑖𝑗𝑘𝑙 − 𝐿𝑖𝑗𝑘𝑙

𝑒𝑓𝑓
)
2

𝑖𝑗𝑘𝑙

∑ 𝐿𝑖𝑗𝑘𝑙
2

𝑖𝑗𝑘𝑙

< 𝛿2 (3.39) 

where 𝛿 is an assumed value (in this work 𝛿 = 0,05). 

The above criterion is also used in the self-consistent procedure for calculation within 

elastic range, for which 𝐿𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙 and  𝑙𝑖𝑗𝑘𝑙
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔
.  

In this work, calculations using the EPSC model are first performed for the elastic 

deformation (i.e. when no slip or twin system is active), and then for the nonlinear elastic-

plastic deformation. In the latter case, the calculations are conducted iteratively, increasing 

the macrostress 𝛴11 (or 𝛴33) successively by an assumed step ∆𝛴11 (or ∆𝛴33) in a given 

direction (e.q. ∆Σ11 = 1 MPa, during tensile test). After each step, the strains and stresses 

at the grains, the grain orientations and the CRSS values for slip and twin systems are 

updated. The effective tensor 𝐿𝑖𝑗𝑘𝑙
𝑒𝑓𝑓

  obtained from the previous step is the starting one for 

the current step, in which the self-consistent calculations are performed until the criterion 

(3.39) is fulfilled. It should be emphasized that during the self-consistent calculations, 

tensor 𝑙𝑖𝑗𝑘𝑙
𝑔

 is determined for the set of the active slip systems which must be updated. For 

this purpose, a combination of active systems is selected that corresponds to the most 

loaded systems, i.e. those for which the RSS values most exceed the CRSS values 

(according to Schmid law). The number of active slip systems is limited to a maximum of 

5 linearly independent systems in a given grain, see [80] for details. 
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Finally, it is worth noting that the grain interactions represented by the tensor 𝑇𝑖𝑗𝑘𝑙
𝑔𝑔

 

(obtained from the self-consistent model and Eshelby approximation) do not always agree 

with the experimental results. In this case, the model can be modified as it was done e.g. in 

[21] adjusting the model results to the experimental data. The assumed in model grains 

interaction should be described by localization tensors which is between  simplest extreme 

models of elastoplastic deformations are those based on the assumptions of Taylor/Voigt 

and Sachs/Reuss: 

- the homogenous stress assumption - Sachs model [92] for plasticity and Reuss  

model (see section 4.3) for elastic deformation, i.e. 

 𝐵𝑖𝑗𝑘𝑙
𝑔
= 𝐼𝑖𝑗𝑘𝑙, (3.40) 

- the homogenous strain assumption - Taylor model [91] for plasticity and Voigt 

model (see section 4.3) for elastic deformation), i.e. 

 𝐴𝑖𝑗𝑘𝑙
𝑔

= 𝐼𝑖𝑗𝑘𝑙. (3.41) 
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4. Diffraction methods of stress analysis and their 

development 

 

4.1. Diffraction measurements of lattice strain 

 

The study of the stress state and mechanical properties of polycrystalline materials 

requires the use of experimental techniques allowing for measurements at the macroscopic 

scale but also at the microscopic scale, i.e. at the level of the polycrystalline grain. To 

measure the stresses at different scales diffraction methods are often used, because they are 

sensitive to small elastic deformations of the crystal lattice caused by local stresses. 

Methods based on X-ray diffraction as well as neutron diffraction are now widely used to 

measure the elastic strains of the lattice.  

In Fig. 4.1 example X-ray spectrum and spectrum of thermal neutrons are shown. In 

the case of the Angle-Dispersive (AD) method, the monochromatic characteristic X-rays 

are used, while the monochromatic neutron radiation is obtained with the use of a 

monochromator. The Energy-Dispersive (ED) technique uses a continuous spectrum of 

white synchrotron or neutron radiation. 



56 

 

  

 a)  b) 

Fig. 4.1 Typical X-ray spectrum (a) [110] and thermal neutrons spectrum measured  

using TOF method on EPSILON-MSD diffractometer at JINR in Dubna (b). 

 

There are two methods of generating neutron radiation that can be used to measure 

lattice strains in polycrystalline materials. The first is nuclear fission reaction in a nuclear 

reactor, the second is the proton bombardment of a target made of heavy elements (e.g. 

uranium or tungsten) leading to a spallation process in which the emission of neutrons, 

protons, alpha particles and light atoms nuclei occurs. The spectrum of neutrons obtained 

this way contains a large number of fast neutrons. In the first stage, their energy should be 

reduced to fractions of eV (so-called thermalization), which corresponds to a wavelength 

of the order of the interplanar spacing in the tested crystals/polycrystals. The second step 

in neutron beam preparation depends on the experimental method. In the case of the AD 

method, the beam is monochromatized and a triaxial spectrometer (TSA) with an 

implemented Euler cradle  is used to change the scattering angle and the orientation of the 

sample [40,111] However, in the Time of Flight (TOF) method, which is an ED-type 

technique, a white beam (with a given range of wavelength) in the form of shorts pulses 

separated by pauses is needed. When a beam from a continuously operating reactor is used, 

the pulses can be obtained with the help of the so-called chopper. In the case of pulse 

neutron reactors choppers are used to modify the temporal structure of the beam. Such a 

beam is produced by the IBR-2 pulse reactor at the Joint Institute for Nuclear Research 

(JINR) in Dubna, Russia [112]. In Fig. 4.1 the energy spectrum of thermalized neutrons 

coming from the IBR-2 reactor is compared with  the spectrum of X-ray radiation. 

 

 

 



 

57 

 

Having a radiation source, it is possible to conduct a diffraction experiment on the 

crystal and measure the lattice strain 𝜀ℎ𝑘𝑙, which is defined as: 

 𝜀ℎ𝑘𝑙 =
𝑑ℎ𝑘𝑙 − 𝑑ℎ𝑘𝑙

0

𝑑ℎ𝑘𝑙
0  (4.1) 

where the 𝑑ℎ𝑘𝑙
0  and 𝑑ℎ𝑘𝑙 are the interplanar spacing for the stress-free (i.e. strain-free) 

crystal and for the same crystal under applied stress, respectively. The interplanar spacings 

are measured using ℎ𝑘𝑙 reflection. 

In the case of AD methods the interplanar spacings  𝑑ℎ𝑘𝑙 can be determined from 

measured scattering angle 2𝜃 using the well-known Bragg law  (see Fig. 4.2): 

 𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃, (4.2) 

where: 𝜆 is the wavelength, 𝑛 is a natural number representing the order of the diffraction 

peak,  𝑑ℎ𝑘𝑙 is the interplanar spacings for the planes (ℎ𝑘𝑙). 

 

 

 

 

 

 

 

 Fig. 4.2 Diffraction of monochromatic radiation on stress-free crystal (a) and crystal 

under load (b). The increase in interplanar spacing 𝑑ℎ𝑘𝑙
0 → 𝑑ℎ𝑘𝑙 corresponds to decrease of 

the scattering angle 2𝜃0 → 2𝜃 and decrease of the length of scattering vector |Δk0⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ | → |Δk⃗⃗ ⃗⃗⃗|. 

The diffraction conditions equivalent to Bragg law can be expressed using the wave 

vectors �⃗⃗�𝑖𝑛𝑐 and �⃗⃗�𝑑𝑖𝑓 for the incident and diffracted waves (|�⃗⃗�| =
2𝜋

𝜆
) , respectively [113].  

 |𝛥𝑘⃗⃗⃗⃗⃗⃗ | = |�⃗⃗�𝑑𝑖𝑓 − �⃗⃗�𝑖𝑛𝑐| =
4𝜋 sin 𝜃

𝜆
= |𝐺ℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗| (4.3) 

where 𝐺ℎ𝑘𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ is reciprocal lattice vector and and |Δk⃗⃗ ⃗⃗⃗| is the scattering vector normal to the 

(ℎ𝑘𝑙) plane, defined in Fig. 4.2.  

It should be emphasised that the lattice strain is always measured in the direction of 

the scattering vector 𝛥𝑘⃗⃗⃗⃗⃗⃗  being normal to the diffracting plane. The vector 𝛥𝑘⃗⃗⃗⃗⃗⃗   is defined in 

Fig. 4.2, where the change in the value of the interplanar spacing and the corresponding 

change in the scattering angle are also shown.  
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In the ED method, the 2θ scattering angle is constant, and the interplanar distances can 

be determined from the measured wavelength λ satisfying Bragg law (equation (4.2)). As 

mentioned above this can be done by using the TOF neutron diffraction method. The 

principles of the TOF method are presented in Fig. 4.3. The short neutron pulse formed by 

the chopper travels along the path to the sample (𝐿0) where it is scattered and travels along 

the path (𝐿1) to the detector. The total path of the neutrons from the chopper to the detector 

(𝐿) is travelled by the neutrons at different times 𝑇, depending on their velocity 𝑣, which 

in turn depends on their momentum 𝑝. Then, according de Broglie wavelength associated 

with a moving neutron 𝜆 can be expressed through the time of flight 𝑇: 

 𝜆 =
ℎ

𝑝
=  

ℎ𝑇

𝑚𝑛𝐿
  (4.4) 

where  𝑝 = 𝑚𝑛𝑣 = 𝑚𝑛
𝐿

𝑇
 ,  ℎ - Planck constant, 𝑚𝑛 is neutron mass. 

Finally, the interplanar spacing 𝑑ℎ𝑘𝑙 can be related to time 𝑇 using Bragg law (equation 

(4.2)): 

 𝑑ℎ𝑘𝑙 =
𝑛ℎ

2𝑝 sin 𝜃
=

𝑛ℎ𝑇

2mn𝐿 sin 𝜃
  . (4.5) 

 

 

 

 

 

 

Fig. 4.3 Scheme of the TOF method. 

The formula derived above allows the measurement of interplanar distances by 

measuring the time of flight of neutrons. This is done by counting the number of neutrons 

captured by the detector over a specific time interval called a channel. Each channel has a 

constant time span Δt which, when multiplied by the channel number N, gives the travel 

time of the particle from the source, through sample to detector. In this way, the dependence 

of the number of registered neutrons on the channel number is obtained, which can be easily 

transformed into a diffractogram depending on the interplanar spacing  𝑑ℎ𝑘𝑙. 

Due to high absorption in most of the materials, the X-ray characteristic radiation 

(produced using X-ray tube) is applied to measure stress state in the near surface volume 

Neutron 
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Detector 

2θ 
𝐿1 

𝐿0 

Sample 
Chopper 
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of the sample (order of dozen µm). On the other hand, the high energy synchrotron radiation 

and neutrons penetrate the materials much deeper (up to cm), see Fig. 4.4. The latter 

techniques are convenient for stress analysis in transmission mode or inside the material. 

 

Fig. 4.4 The measurement of interplanar spacings for the grains close to the surface 

using X-ray diffraction (a) and inside the sample volume by using neutron diffraction (b). 

The diffracting grains (red) are determined by condition that scattering vector Δk⃗⃗ ⃗⃗⃗ is normal 

to the reflecting planes {ℎ𝑘𝑙} of grain 𝑔 described by vector 𝐺ℎ𝑘𝑙
𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗. 

As a result of the experiment, one obtains a diffraction peak showing the dependence 

of the scattered radiation intensity on the 2𝜃 scattering angle for the AD method or on the 

neutron flight time 𝑇 (or directly 𝑑ℎ𝑘𝑙 - spacings, see equation (4.5)) for the TOF method. 

It is worth noting that to determine the crystal structure, the entire patterns obtained from 

diffraction are analysed, e.g. by the Rietveld method. [114,115]. However, for strain 

analysis, the peak positions have to be independently and accurately determined, therefore 

the peak profiles have to be analysed separately Fig. 4.5.  

𝐺ℎ𝑘𝑙
𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 

Scattering 

vector 

Δk⃗⃗ ⃗⃗⃗ 

Incident 

beam 

Diffracted 

beam 

a) 

𝐺ℎ𝑘𝑙
𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ 

Scattering 

vector 

Δk⃗⃗ ⃗⃗⃗ 

Incident 

beam 

Diffracted 

beam 

b) 



60 

 

d
hkl

 (A)

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 2,1

In
te

n
si

ty

0

500

1000

1500

2000

2500

3000

3500

 

Fig. 4.5 Diffraction peaks for a stress-free magnesium AZ31 sample obtained using 

TOF method on EPSILON-MSD diffractometer. The pseudo-Voigt function is separately 

fitted to the experimental points. Peaks in range 1,3Å-1,4Å are fitted as a sum of three 

independent peaks. 

 

In order to determine the parameters of a diffraction peak, such as its position and half-

width, the theoretical function describing the shape of this peak should be adjusted. Often 

used functions for peak matching are Gauss, Lorentz and pseudo-Voigt functions (the latter 

is a superposition of Gauss and Lorentz functions). These functions are compared in 

Fig. 4.6 and described by the following formulas [116]: 

 

Gauss function:  𝐺(𝑥) = 𝐴𝑒
−
(𝑥−𝑥0)

2

𝐹𝑊𝐻𝑀2
log2

 ,    

Lorentz function:  𝐿(𝑥) = 𝐴
1

1+
(𝑥−𝑥0)

2

𝐹𝑊𝐻𝑀2

  and 

Pseudo-Voigt function:  𝑃𝑉(𝑥) = 𝜂𝐺(𝑥) + (1 − 𝜂)𝐿( 𝑥) 

(4.6) 

where: 𝐴 is a peak amplitude, 𝑥0 is a peak position, 𝐹𝑊𝐻𝑀 means peak full width at half 

of maximum and  𝜂 is a Gauss fraction in the pseudo-Voigt function. 
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When describing the peak shape, the pseudo-Voigt function is the most often used, 

because the Gaussian function contained in it describes the effect of intra-grain (third order) 

stresses on the peak shape, leading to the broadening of the peak in its upper part. On the 

other hand, the Lorentz function well describes the interference phenomenon in the case of 

small crystallites. So the pseudo-Voigt function describes well the effect of lattice 

deformations inside the grains as well as the grain size[117,118]. 

The peak position and the resulting mean interplanar distance are determined by fitting 

the function to the experimental peak. Then, the mean elastic strain is calculated from the 

formula: 

 < 𝜀 >{ℎ𝑘𝑙}=
< 𝑑 >{ℎ𝑘𝑙}− 𝑑ℎ𝑘𝑙

0

𝑑ℎ𝑘𝑙
0  (4.7) 

where < 𝑑 >{ℎ𝑘𝑙} is the mean spacing between planes {ℎ𝑘𝑙} for the group of diffracting 

crystallites  (the scattering vector is normal to these planes). The interplanar spacings are 

measured using ℎ𝑘𝑙 reflection. 

The average lattice strains < 𝜀 >{ℎ𝑘𝑙} measured for the groups of diffracting grains are 

the basis for determining the stresses in the polycrystalline material. 

 

Fig. 4.6 Comparison of Gauss, Lorentz and Pseudo-Voigt functions  with parameters: 

𝐴 = 1, 𝑥0 = 0, 𝐹𝑊𝐻𝑀 = 2. 
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4.2. Determination of macroscopic stresses or phase stresses 

 

The stress in the measured gauge volume  can be defined with respect to the sample 

system (denoted by 𝜎𝑖𝑗, without prime) or in the “scattering vector” coordinate system 

(denoted by 𝜎𝑖𝑗′, with prime). Both systems are defined in Fig. 4.7 and the transformation 

between them can be done using 𝑎𝑖𝑗 matrix, i.e.: 

 𝜎𝑖𝑗′ = 𝑎𝑖𝑘𝑎𝑗𝑙𝜎𝑘𝑙  and  𝜀𝑖𝑗′ = 𝑎𝑖𝑘𝑎𝑗𝑙𝜀𝑘𝑙 (4.8) 

where 𝑎𝑖𝑗 ≔ 𝑎𝑖𝑗(𝜓, 𝜑)  matrix is determined by the angles 𝜓 and 𝜑 shown in Fig. 4.7: 

 𝑎𝑖𝑗(𝜓, 𝜑) = [

cos𝜑 cos𝜓 sin𝜑 cos𝜓 − sin𝜓
−sin𝜑 cos𝜑 0
cos𝜑 sin𝜓 sin𝜑 sin𝜓 cos𝜓

] (4.9) 

 

 

 

 

 

 

 

Fig. 4.7 Rotation of the sample coordinate 𝑿 system to the scattering vector coordinate 

system 𝑿′ (where 𝑥3
′  is parallel to scattering vector 𝛥𝑘⃗⃗⃗⃗⃗⃗ ) by the angles 𝜑 and 𝜓. The axis 𝑥2

′  

lies on the surface of the sample and  𝑥1
′′ is a horizontal projection of 𝑥1

′ . 

Since one is able to measure the lattice strain by measuring the interplanar distances 

the first order stress (equation (2.20))  in single phase material or phase stress (equation 

(2.21)) in multiphase material can be determined. Hence, in order to obtain stress tensor the 

relation between this tensor and elastic lattice strains < 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙} measured along 

scattering vector, parallel to 𝑥3
′  axis and normal to planes {ℎ𝑘𝑙}, must be found, i.e. 

[43,45,71,119]: 

 < 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}= 𝑅𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑) 𝜎𝑖𝑗
′ 𝑀   or (4.10) 

 < 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}= 𝐹𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑)𝜎𝑖𝑗
𝑀 (4.11) 

where < 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙} is the mean lattice strain calculated over the selected group of 

diffracting grains, while the stress 𝜎𝑖𝑗
𝑀  is the first order stress (for single phase material, 

𝑥3 

𝑥2 

𝑥1 

𝑥2
′  

𝑥3
′ ∥  Δk⃗⃗ ⃗⃗⃗  
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i.e. 𝜎𝑖𝑗
𝑀 = 𝜎𝑖𝑗

𝐼 ) or phase stress (for multiphase material 𝜎𝑖𝑗
𝑀 = 𝜎𝑖𝑗

𝑝ℎ
); and prim is used to 

distinguish the sample system 𝑿 and scattering vector coordinate system 𝑿′. 

𝐹𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑) = 𝑅𝑚𝑛(ℎ𝑘𝑙, 𝜓, 𝜑)𝑎𝑚𝑖𝑎𝑛𝑗 (4.12) 

It should be emphasised that equation (4.11) can be significantly simplified in the case 

of the so called quasi-isotropic sample i.e. polycrystalline material with random texture, 

which is isotropic at the macroscopic scale but it can be anisotropic at the grain scale. In 

such case equation (4.11) can be rewritten with two independent X-ray elastic constants 

(XEC) 𝑠1
ℎ𝑘𝑙 and 𝑠2

ℎ𝑘𝑙, which do not depend on the direction of measurement [43,71]: 

< 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}= 𝑠1
ℎ𝑘𝑙(𝜎11

𝑀 + 𝜎22
𝑀 + 𝜎33

𝑀) 

+
1

2
𝑠2
ℎ𝑘𝑙 (𝜎11

𝑀 cos2 𝜑 + 𝜎22
𝑀 sin2𝜑 + 𝜎12

𝑀 sin 2𝜑) sin2𝜓 

+
1

2
𝑠2
ℎ𝑘𝑙𝜎33

𝑀 cos2𝜓 + 
1

2
𝑠2
ℎ𝑘𝑙(𝜎13

𝑀 cos2 𝜑 +𝜎23
𝑀 sin2𝜑) 

(4.13) 

where 𝑠1
ℎ𝑘𝑙 = 𝑅11(ℎ𝑘𝑙) = 𝑅22(ℎ𝑘𝑙) and  

1

2
𝑠2
ℎ𝑘𝑙 = (𝑅33(ℎ𝑘𝑙) − 𝑅11(ℎ𝑘𝑙)). 

When the stresses  𝜎𝑖𝑖
𝑀  are defined with respect to principal directions (i.e. 𝜎13 

𝑀 = 

𝜎12
𝑀 = 𝜎23

𝑀 = 0) the above equation can be written in the following form: 

< 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}= 𝑠1
ℎ𝑘𝑙(𝜎11

𝑀 + 𝜎22
𝑀 + 𝜎33

𝑀 ) 

+
1

2
𝑠2
ℎ𝑘𝑙  [(𝜎11

𝑀−𝜎33
𝑀) cos2 𝜑 + (𝜎22

𝑀−𝜎33
𝑀) sin2 𝜑)] sin2𝜓 +

1

2
𝑠2
ℎ𝑘𝑙𝜎33

𝑀  
(4.14) 

The above equation is linear with respect to sin2𝜓, which allows to apply linear 

regression to stress analysis. In the more general cases (i.e. using equations (4.11) and 

(4.12)) the stress tensor can be determined by diffraction measurement of the lattice strains 

for many independent directions of the scattering vector. Then the stresses tensor 

components are  determined by least square fitting procedure in which the values of 𝜎𝑖𝑗
𝑀  are 

adjusted in equations (4.11), (4.13) or (4.14) in order to fit the calculated values of 

< 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙} to the experimental ones, see e.g. [120]. However, the use of these 

equations requires the knowledge of the X-ray stress factors (XSFs), which can be directly 

measured [120–123] or calculated from the single crystal elastic constants (SECs) and the 

determined orientation distribution function (ODF), assuming an appropriate model of 

grain interaction. The most important model for calculation of XSFs are recalled below 

[45,73,124–127]. 
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4.3. Prediction of diffraction elastic constants 

 

The X-ray elastic constants are essential to calculate stress tensor using diffraction 

measurements. To calculate X-ray elastic constants 𝐹𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑), firstly 𝑅𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑) 

factors should be determined (cf. equation (4.12)). The determination of the 𝑅𝑖𝑗(ℎ𝑘𝑙, 𝜓, 𝜑) 

factors requires certain assumptions, the most popular of which are (see Fig. 4.8): 

a) Reuss model assuming homogenous stress [45,74,124,125,127], 

b) Voigt model assuming homogenous strain [45,75,126,127], 

c) Eshelby-Kröner model based on ellipsoidal inclusion in homogenous medium 

[45,73,78,79,128]. 

 

Fig. 4.8 Scheme of interactions between different grains for the mean stress 𝜎𝑖𝑗
𝑀: 

 a) Reuss model (homogenous stress), b) Voigt model (homogenous strain), 

 c) Eshelby-Kröner model (ellipsoidal inclusion). 

The Reuss model assumption (𝜎′𝑖𝑗
 𝑔
= 𝜎′𝑖𝑗

 𝑀) that the grains stress are equal to the mean 

stress (first order or phase stress) allows us to factor  the constant values 𝜎′𝑖𝑗
 𝑀 out of the 

average, defined over the diffraction grains, which leads to the following relation [72]: 

 
< 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}=< 𝜀33

′ >{ℎ𝑘𝑙}=< 𝑠33𝑖𝑗
′ 𝑔
𝜎′𝑖𝑗
 𝑔
>{ℎ𝑘𝑙} = 

< 𝑠33𝑖𝑗
′ 𝑔
𝜎′𝑖𝑗
 𝑀 >{ℎ𝑘𝑙}  =< 𝑠33𝑖𝑗

′ 𝑔
>{ℎ𝑘𝑙} 𝜎′𝑖𝑗

 𝑀    
       (4.15) 

where 𝜎′𝑖𝑗
 𝑔

 and 𝑠33𝑖𝑗
′ 𝑔

 are the grain stress tensor and grain compliance tensor expressed in 

the scattering vector system of coordinates. 
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Comparing equations (4.10) and (4.15) the values of 𝑅𝑖𝑗
𝑅(ℎ𝑘𝑙, 𝜓, 𝜑) can be calculated: 

 

𝑅𝑖𝑗
𝑅(ℎ𝑘𝑙, 𝜓, 𝜑) =< 𝑠33𝑖𝑗

′ (𝜓, 𝜑) >{ℎ𝑘𝑙} 

=
∑ ∫ 𝑠33𝑖𝑗

′ 𝑔2𝜋

0
 𝑓(𝑔) 𝑑𝛾Δ𝑘⃗⃗⃗⃗⃗⃗ ⊥{ℎ𝑘𝑙}

∑ ∫  𝑓(𝑔) 𝑑𝛾
2𝜋

0Δ𝑘⃗⃗⃗⃗⃗⃗ ⊥{ℎ𝑘𝑙}

  
(4.16) 

where summation ∑  Δ𝑘⃗⃗⃗⃗⃗⃗ ⊥{ℎ𝑘𝑙}  is carried out over all symmetrically equivalent diffracting 

plains {ℎ𝑘𝑙} being perpendicular to the scattering vector Δ𝑘⃗⃗ ⃗⃗ ⃗, 𝛾 is the rotation angle of grain 

lattice about scattering vector to obtain all orientations 𝑔 for which Δ𝑘⃗⃗ ⃗⃗ ⃗ ⊥ {ℎ𝑘𝑙} and 𝑓(𝑔) 

is the volume fraction of these orientations given by ODF.  

Second mentioned assumption used to determine the 𝑅𝑖𝑗
𝑉 (𝜓, 𝜑) factors  is based on 

Voigt model assumption 𝜀𝑖𝑗
′ 𝑔 (𝑒𝑙)

= 𝜀𝑖𝑗
′ 𝑀(𝑒𝑙)

 applied to microscopic Hook law ( 𝜎𝑖𝑗
′ 𝑔
=

𝑐𝑖𝑗𝑘𝑙
′ 𝑔
𝜀𝑘𝑙
′ 𝑔 (𝑒𝑙)

) , where 𝑐𝑖𝑗𝑘𝑙
′ 𝑔

 is the grain stiffness tensor 𝜀𝑖𝑗
′ 𝑔(𝑒𝑙)

 is the elastic strain of the grain, 

and 𝜀𝑖𝑗
′ 𝑀(𝑒𝑙)

 is the average elastic strain for the gauge volume or given phase within this 

volume, defined in the scattering vector coordinate system. In this case, the mean elastic 

strain 𝜀𝑘𝑙
𝑀(𝑒𝑙)

 can be factored out of the average calculated  over all grains in the gauge 

volume or all grains belonging to a given phase [72]. 

 
𝜎𝑖𝑗
′ 𝑀 =  [𝑐𝑖𝑗𝑘𝑙

′ 𝑔
𝜀𝑘𝑙
′ 𝑔 (𝑒𝑙)

] = [𝑐𝑖𝑗𝑘𝑙
′ 𝑔
𝜀𝑘𝑙
′ 𝑀(𝑒𝑙)

] =  [𝑐𝑖𝑗𝑘𝑙
′ 𝑔
]𝜀𝑘𝑙
′ 𝑀(𝑒𝑙)

  

and < 𝜀′(𝜓, 𝜑) >{ℎ𝑘𝑙}= 𝜀33
′ 𝑀(𝑒𝑙)

= [𝑐′ 𝑔]33𝑖𝑗
−1 𝜎𝑖𝑗

′ 𝑀 
(4.17) 

where [… ] bracket means average calculated over the whole considered volume:  

 [𝑐𝑖𝑗𝑘𝑙
′ 𝑔
] = ∫ 𝑐𝑖𝑗𝑘𝑙

′ 𝑔 (𝑔)
𝐸

𝑓(𝑔)dg, (4.18) 

where 𝐸 is the entire orientation space for which 𝑓(𝑔)  is defined and dg is an 

elementary volume in Euler space (see subsection 2.3.2). 

Comparing equations (4.10) and (4.17) the values of 𝑅𝑖𝑗
𝑉 ( 𝜓, 𝜑) can be calculated: 

 𝑅𝑖𝑗
𝑉 (𝜓, 𝜑) = [𝑐′ 𝑔]33𝑖𝑗

−1   (4.19) 

It should be emphasised that the 𝑅𝑖𝑗
𝑉 (𝜓, 𝜑) and consequently 𝐹𝑖𝑗

𝑉(𝜓, 𝜑) XSFs do not 

depend on the ℎ𝑘𝑙 reflection (i.e. {ℎ𝑘𝑙} planes) because  [𝑐𝑖𝑗𝑘𝑙
′ 𝑔
] average is calculated over 

all grains but not only diffracting grains.  
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Third assumption commonly used to determine the 𝑅𝑖𝑗
𝐸𝐾(ℎ𝑘𝑙, 𝜓, 𝜑) factors is self-

consistent Eshelby-Kröner model based on an ellipsoidal inclusion inside a continuous 

homogenous medium. In this model elastic strain components (𝜀𝑖𝑗
′ 𝑔(𝑒𝑙)

) and stress (𝜎𝑖𝑗
′ 𝑔

) for 

grain 𝑔 and mean elastic strain (𝜀𝑖𝑗
′ 𝑀(𝑒𝑙)

) and stress (𝜎𝑖𝑗
′ 𝑀) are obtained using concentration 

tensors 𝐴′ 𝑔 and 𝐵′ 𝑔 respectively: 

 𝜀𝑖𝑗
′ 𝑔(𝑒𝑙)

= 𝐴𝑖𝑗𝑘𝑙
′ 𝑔
𝜀𝑘𝑙
′ 𝑀(𝑒𝑙)

 and   𝜎𝑖𝑗
′ 𝑔
= 𝐵𝑖𝑗𝑘𝑙

′ 𝑔
𝜎𝑘𝑙
′ 𝑀 (4.20) 

where 𝐴𝑖𝑗𝑘𝑙
′ 𝑔

 and 𝐵𝑖𝑗𝑘𝑙
′ 𝑔
= 𝑐𝑖𝑗𝑜𝑝

′𝑔
𝐴𝑜𝑝𝑚𝑛
′ 𝑔

𝑆𝑚𝑛𝑘𝑙
′ 𝑒𝑓𝑓

 are concentration tensors calculated using purely 

elastic interaction in self-consistent method described in subsection 2.3.3 and section 3.3, 

𝑐𝑖𝑗𝑘𝑙
′𝑔

is the grain stiffnes tensor and  𝑆𝑖𝑗𝑘𝑙
′ 𝑒𝑓𝑓

  is the effective compliance tensor written in 

crystallite coordinate system, which can be calculated as inverted mean stiffness tensor 

𝐶𝑖𝑗𝑘𝑙
′ 𝑒𝑓𝑓

 computed from formula (2.39). It should be emphasised that the effective values 

(𝑆𝑚𝑛𝑘𝑙
′ 𝑒𝑓𝑓

and 𝐶𝑚𝑛𝑘𝑙
′ 𝑒𝑓𝑓

) characterising matrix properties in the self-consistent model are 

calculated over whole gauge volume in the case of single phase material, while for the 

multiphase material each phase is considered independently, i.e. the effective properties are 

the properties of separate phase but not of the whole material. This enables independent 

determination of the phase stresses in each phase as has been done in this work for the 

Al/SiCp composite (cf. Chapter 5). 

Combining macroscopic and microscopic Hooke law with the use of localisation 

tensors 𝐴𝑖𝑗𝑘𝑙
′ 𝑔

  and 𝐵𝑖𝑗𝑘𝑙
′ 𝑔

  one obtains the relation between the microscopic strain and the 

mean stress: 

 𝜀𝑖𝑗
′ 𝑔(𝑒𝑙)

= 𝑋𝑖𝑗𝑘𝑙
′ 𝑔
𝜎𝑘𝑙
′ 𝑀 (4.21) 

where: 𝑋𝑖𝑗𝑘𝑙
′ 𝑔
= 𝐴𝑖𝑗𝑚𝑛

′ 𝑔
𝑆𝑚𝑛𝑘𝑙
′ 𝑒𝑓𝑓

= 𝑠𝑖𝑗𝑚𝑛
′𝑔 𝐵𝑚𝑛𝑘𝑙

′ 𝑔
. 

Having the above relation the diffraction elastic constants 𝑅𝑖𝑗
𝐸𝐾(ℎ𝑘𝑙, 𝜓, 𝜑) can be 

calculated similarly to equation (4.16): 

 𝑅𝑖𝑗
𝐸𝐾(ℎ𝑘𝑙, 𝜓, 𝜑) =

∑ ∫ 𝑋33𝑖𝑗
′ 𝑔2𝜋

0
 𝑓(𝑔) 𝑑𝛾Δ𝑘⃗⃗⃗⃗⃗⃗ ⊥{ℎ𝑘𝑙}

∑ ∫  𝑓(𝑔) 𝑑𝛾
2𝜋

0Δ𝑘⃗⃗⃗⃗⃗⃗ ⊥{ℎ𝑘𝑙}

  (4.22) 

where summation is carried out exactly in the same way as in equation (4.16). 
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4.4. Crystallite Group Method (CGM) 

 

Apart from the interphase interactions, one of the main reasons for the differences 

between the grain stresses in polycrystalline materials is the difference in the orientation of 

the crystal lattice. The grain orientation effect is the greater, the stronger the 

crystallographic texture and the more anisotropic the polycrystalline grain. It should be 

emphasized that the above defined XSFs and the equations (4.10)-(4.14) are suitable when 

the first order 𝜎𝑖𝑗
𝐼  or phase stresses 𝜎𝑖𝑗

𝑝ℎ
 are determined, i.e. mean values of the stress over 

gauge volume (equation (2.17)) or given phase within this volume (equation (2.18)). 

However, using such approach the second order stresses 𝜎𝑖𝑗
𝐼𝐼 being deviations from such 

averages (equation (2.20)) cannot be determined. It can be done in two ways. The first one 

is to analyse the additional contribution of stresses 𝜎𝑖𝑗
𝐼𝐼 into equations (4.10)-(4.14) causing 

disagreement between fitted and measured lattice strains. In this case the interpretation 

must be based on crystallographic model predicting such disagreements for given mode of 

deformation. The disadvantages of this approach is its limitation to samples subjected to 

strictly defined types of deformation, e.g. cold rolling or uniaxial tests. The methodology 

of determination of the plastic incompatibilities 𝜎𝑖𝑗
𝐼𝐼 stresses, based on the equations (4.10)-

(4.14) with additional term interpreted by EPSC model was developed by Baczmanski et 

al. [24,29,73,129–131]. Another method for determination of the 𝜎𝑖𝑗
𝐼𝐼 stresses or rather the 

stresses for groups of grains (crystallites) 𝜎𝑖𝑗
𝐶𝑅 having similar lattice orientations is based 

on direct measurement based on the crystallite group method (CGM), used in this work. 

This approach was proposed for texture materials for which the preferred orientations are 

defined [40,42–46]. Alternatively, the grain stresses can be determined for specific grains 

using synchrotron radiation [22]. 

In order to determine the stresses for crystallite groups having selected orientations 

(CGM method) the diffraction measurements, especially with neutron or synchrotron 

radiations can be used. Due to the fact that diffraction allows for independent measurement 

of the interplanar spacings for selected {ℎ𝑘𝑙} planes it is possible to find out such poles 

𝑃(𝜓, 𝜙){ℎ𝑘𝑙} on pole figure (defined by the 𝜓 and 𝜙 angles and ℎ𝑘𝑙 reflection in Fig. 4.9) 

for which the measured lattice strains are mostly affected by the grains having given 

orientation of the crystallite lattice.  
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Fig. 4.9 Selected pole 𝑃(𝜓, 𝜙){ℎ𝑘𝑙} in pole figure for which the lattice strain is 

measured in CGM (cf. Fig. 2.8 and note that due to literature conventions the 𝛼 and 𝛽 letters 

used in the case of texture characterisation were changes to 𝜓 and 𝜑 used in the stress 

measurement methodology). 

When the lattice strains are measured for a set of poles corresponding to given lattice 

orientation the stress tensor 𝜎𝑖𝑗
𝐶𝑅 for a group of grains having approximately this orientation 

can be determined. This can be done using the least squares procedure in which the lattice 

strains are adjusted to the measured values according to the formula: 

 < 𝜀(𝜑,𝜓) >ℎ𝑘𝑙= 𝑎3𝑘𝑎3𝑙𝑠𝑘𝑙𝑖𝑗𝜎𝑖𝑗
𝐶𝑅 (4.23) 

where: 𝑠𝑘𝑙𝑖𝑗 are the single crystal elastic constants (SECs) and 𝑎𝑖𝑗  transformation matrix 

is defined in equations (4.8) and (4.9). 

In order to unequivocally determine the stresses for a given orientation, the selected 

reflections must mostly come from that orientation, which means that a given orientation 

should be the one preferred for a given crystallographic texture. As shown in chapter 6, for 

a simple texture, it is also possible to estimate stresses for particular non-preferred 

orientations. However, when choosing reflections for orientation corresponding to weak 

texture intensity a special attention should be paid to exclude reflections coming from the 

strong preferred orientations, to avoid their significant contribution to the selected poles. 

It should be emphasized that in the case of CGM the single crystal elastic constants are 

usually used in the relation (4.23), however in this work the 𝐹𝑖𝑗
𝑅(ℎ𝑘𝑙, 𝜑, 𝜓) calculated 

according to Reuss model were applied in stress analysis, i.e.: 

< 𝜀(ℎ𝑘𝑙, 𝜑, 𝜓) >ℎ𝑘𝑙= 𝐹𝑖𝑗
𝑅(ℎ𝑘𝑙, 𝜑, 𝜓) 𝜎𝑖𝑗

𝐶𝑅 (4.24) 
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In such a case instead of single grain the elastic properties are calculated for a group 

of grains selected by diffraction and crystallographic texture, assuming that for this group 

the stress is the same for each grain in this group. This assumption is valid for groups 

consisting of grain orientations being close to the preferred texture orientations [45]. It is 

worth to noting, that the crystallites of magnesium  exhibit low elastic anisotropy, therefore 

the choice of different types of 𝐹𝑖𝑗(ℎ𝑘𝑙, 𝜑, 𝜓) factors (or use the SECs) does not change 

scientifically the obtained results.  

In order to effectively search for the orientation of crystallites, a simple program was 

written, thanks to which it is possible to calculate the position and show the poles defined 

in Fig. 4.9. The program allows to draw: 

- poles for selected crystallite having given orientation (by setting Eulerian angles or 

rotating around axes of sample coordinate system), 

- lines showing reflections of preferred orientations for sample with fibre 

texture (0001), 

- positions of scattering vector stereographic projection for detectors used during 

neutron measurements. 

As an example, the poles for the orientation for which  [0001] ∥  RD 

and [12̅ 10] ∥   𝑇D) of a crystallite with the HCP structure and  
𝑐

𝑎
= 1,624 [132] are 

presented in Fig. 4.10. It shows that the coloured points representing reflections from the 

preferred orientations of the (0001) fibre texture contain the poles corresponding to the 

crystallite with the initial orientation. Furthermore, it is clearly seen that the preferred 

orientations correspond to the original orientation rotated by any angle about the c-axis of 

the unit cell being parallel to normal direction ND. 

Fig. 4.11 shows an example orientation tilted from the initial one through rotation 

about an axis 𝒙𝟏 by angle of 43°. One can see here that, for example, the reflections 01̅3  

and  11̅3 of the tilted orientation are close to the yellow line representing the positions of 

the reflections from the {1013} family of preferred orientation (see Fig. 4.10). Due to the 

significant share of the preferred orientations in these reflections, they should be excluded 

from the analysis carried out for the tilted orientation, showing a lower intensity of the 

texture. Such analysis should be performed for all not preferred orientations. 
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Fig. 4.10 An example of the initial orientation of a crystallite with HCP structure and 
𝑐

𝑎
= 1,624  [132] (corresponding to Mg structure). The coloured points represent 

reflections from the preferred orientations in the (0001) fibre texture. 

 

Fig. 4.11 An example of an orientation of a crystallite with HCP structure and 
𝑐

𝑎
=  1,624 [132](corresponding to Mg structure) rotated in relation to the initial orientation 

by Euler angles 𝜙1 = 0°, Φ = 43°, 𝜙2 = 0°. The coloured points represent reflections 

from the preferred orientations in the (0001) fibre texture. 
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4.5. Implementation of the stress analysis methods on the used 

equipment 

 

In order to determine stresses using the above described methods the relative lattice 

strains (with respect to the stress free powder or initial sample) or simply the interplanar 

spacings in the case of surface measurements (with assumption of 𝜎33
𝐼 = 0) should be 

measured in different directions. These directions are determined by the scattering vector 

with respect to the sample system coordinates 𝑿, as defined in Fig. 4.7. The 𝑿 system can 

be constructed in any way, however, it is most convenient for both the calculation and 

further description of stresses to choose a right-handed system so that its axes are parallel 

to the main directions determined by the sample treatment (e.g. rolling) or determined by 

the applied load. One of the possible constructions of such a system (used in this work) is 

the choice  the 𝒙𝟑 axis parallel to the direction of the applied force.  

The orientations of the scattering are changed in different ways depending on the 

experimental setup used for measurements. The stress analysis performed in this work was 

done on the basis of measurements carried out using two experimental techniques:  

- angle dispersive (AD) method  with the monochromatic neutron radiation with 

wavelength λ   1,1580 Å on a TKSN 400 (HK9) diffractometer in the Nuclear 

Physics Institute in Řež (Czech Republic), 

- energy dispersive (ED) method with polychromatic neutron radiation (TOF 

method) on EPSILON-MSD and FSD diffractometers at the Frank Laboratory of 

Neutron Physics in Joint Institute for Nuclear Research in Dubna (Russia).  

The measurements on TKSN 400 (HK9) diffractometer were done previously [40] and 

the analysis of the results was significantly developed and used in this work. The lattice 

strains were measured for different poles which orientations (positions in pole figure) were 

changed using Eulerian cradle (cf. Fig. 4.12), while the ℎ𝑘𝑙 reflections were chosen by 

setting appropriate 2θ angle. The rotation angles 𝜓 and 𝜑 and sample system coordinates 

𝑿 are defined in Fig. 4.12b (cf. also Fig. 4.7). Additionally, a tensile rig was mounted in 

the Eulerian cradle in order to apply load to the sample during in situ diffraction 

measurements. 
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 a)  b) 

Fig. 4.12 The picture of Eulerian cradle used on TKSN 400 (HK9) diffractometer (a). 

Sketch of Eulerian cradle (b) used to change the orientation of the sample with respect to 

the scattering vector Δk⃗⃗ ⃗⃗⃗ by changing angles  𝜓 and 𝜑, while reflection  ℎ𝑘𝑙 is chosen by 

setting scattering angle 2𝜃 (where 𝑿’ is a laboratory system and for sample system: 𝒙𝟏 ∥

TD, 𝒙𝟐 ∥ ND, 𝒙𝟑 ∥ RD).  

The main experiments performed in the frame of this work were conducted on  

EPSILON-MSD diffractometer. The secondary optics of this diffractometer consists of 3 

groups of detector banks (named 𝐿1-𝐿9, cf. Fig. 4.13), arranged so that each of them is 

perpendicular to the incident neutron beam, i.e. 2𝜃 = 90° for each detector. The 

advantage of such an arrangement of detectors (𝐿𝑖) is that the scattering vector Δ𝑘⃗⃗ ⃗⃗ ⃗𝑖 =

( �⃗⃗�𝑖 − �⃗⃗�𝑖𝑛𝑐) for each of them has a different direction with respect to the sample (see 

Fig. 4.14). Therefore the lattice strains can be measured in 9 different directions 

simultanously which have to be determined using the convention defined in Fig. 4.7, 

i.e. the 𝜓𝑖 and 𝜑𝑖 have to be found for each 𝑖-th detector. 

 

 Fig. 4.13 Picture of EPSILON-MSD diffractometer. 
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Fig. 4.14 Schematic diagram of detector banks at the EPSILON-MSD diffractometer 

showing in figure (a) the directions of the diffracted beams (directions of wave vectors �⃗⃗�𝑖). 

Two example scattering vectors 𝛥𝑘2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and 𝛥𝑘8⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , shown in figure (b), are placed on the planes 

containing the incident wave vector  �⃗⃗�𝑖𝑛𝑐  and diffracted wave vectors 𝑘2⃗⃗⃗⃗⃗ and 𝑘8⃗⃗⃗⃗⃗, 

respectively. The same constructions can be drawn for all other detectors for which 2𝜃 =

90°. 

To determine the angles 𝜓 and 𝜑 the sample system 𝑿 can be defined through unite 

vectors 𝑥3̂ =
∆𝑘2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|∆𝑘2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
 ,  𝑥1̂ = −

∆𝑘8⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

|∆𝑘8⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |
, 𝑥2̂ = 𝑥3̂ × 𝑥1̂  (cf. Fig. 4.14 and Fig. 4.15). Therefore 

the direction 𝑥3 of the sample system is parallel to the scattering vector (∆𝑘2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) of the 

detector 𝐿2, direction 𝑥1 is opposite to the scattering vector (−∆𝑘8⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) of detector 𝐿8 and 

direction 𝑥2 points to the detector 𝐿5, but it is not parallel to any scattering vector.  

If we know the transformation matrix (4.9) between sample system 𝑿 and scattering 

vector system 𝑿′ the angles 𝜑 and 𝜓 (defined in Fig. 4.7) can be determined from: 

 
cos𝜓 = 𝑎33⟹𝜓 = arccos 𝑎33 

tg 𝜑 =
𝑎32
𝑎31

⟹ 𝜑 = atan2(𝑎32, 𝑎31) 
(4.25) 

where function atan2(𝑦, 𝑥) defined for domain [0,2𝜋) takes form: 

 

𝒌𝟐⃗⃗ ⃗⃗⃗ 

 

𝒌𝟖⃗⃗ ⃗⃗⃗ 

 

 �⃗⃗⃗�𝒊𝒏𝒄 

 𝚫𝒌𝟐⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 Neutron Beam 

 𝚫𝒌𝟖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

 𝑳𝟐  𝑳𝟖 

 𝑳𝟒  𝑳𝟓 
 𝑳𝟔 

 𝑳𝟑  𝑳𝟕 
 𝒌𝟒⃗⃗ ⃗⃗⃗  𝒌𝟓⃗⃗ ⃗⃗⃗ 

 𝒌𝟔⃗⃗ ⃗⃗⃗ 

 𝒌𝟕⃗⃗ ⃗⃗⃗ 

 𝑳𝟐 

 𝒌𝟑⃗⃗ ⃗⃗⃗ 

 𝑳𝟖  𝒌𝟖⃗⃗ ⃗⃗⃗ 

 

 𝒌𝟐⃗⃗ ⃗⃗⃗ 

 𝑳𝟏  𝑳𝟗 
 𝒌𝟗⃗⃗ ⃗⃗⃗  𝒌𝟏⃗⃗ ⃗⃗⃗  Sample 

 𝒌𝟖⃗⃗ ⃗⃗⃗ 

 𝒌𝟐⃗⃗ ⃗⃗⃗ 

a) Front view  b) Top view 
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atan2 (𝑥, 𝑦) =

{
 
 
 
 

 
 
 
 𝑎𝑟𝑐𝑡𝑔 (

𝑦

𝑥
) + 𝜋                             𝑖𝑓 𝑥 < 0

𝑎𝑟𝑐𝑡𝑔 (
𝑦

𝑥
)                  𝑖𝑓 𝑥 > 0 𝑎𝑛𝑑 𝑦 ≥ 0

𝑎𝑟𝑐𝑡𝑔 (
𝑦

𝑥
) + 2𝜋      𝑖𝑓 𝑥 > 0 𝑎𝑛𝑑 𝑦 < 0

𝜋

2
                                  𝑖𝑓 𝑦 > 0 𝑎𝑛𝑑 𝑥 = 0

3𝜋

2
                               𝑖𝑓 𝑦 < 0 𝑎𝑛𝑑 𝑥 = 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑                            𝑖𝑓 𝑥 = 𝑦 = 0

 . (4.26) 

This allows us to calculate the angles 𝜑 and 𝜓 for any orientations of the scattering 

vector particularly for these orientations which are seen by the detectors 𝐿1 - 𝐿8 at 

EPSILON-MSD. To do this, let us define intermediate laboratory system 𝑿𝒍𝒂𝒃  by 

rotation of the sample system 𝑿  about axis 𝑥2 by angle 𝛼 (see Fig. 4.15). The 

orientations of the scattering vectors with respect to laboratory system 𝑿𝒍𝒂𝒃 can be easily 

found, i.e., they are given by angles: 

 
𝜓𝑙𝑎𝑏 = 𝛼,  

𝜑𝑙𝑎𝑏,𝑖 = 𝜔𝑖 
(4.27) 

where 𝛼 = 𝜃 = 45° and 𝝎𝒊 is angle defining position of the i-th detector by rotation 

around 𝒙𝟑
𝒍𝒂𝒃

 parallel to the incident neutron beam, see Fig. 4.15 (the angles 𝝎𝒊 are given 

in Table 4.1). Therefore the transformation matrix from 𝑿𝒍𝒂𝒃 system to 𝑿′ is given by: 

𝑅𝑘𝑙
𝑙𝑎𝑏,𝑖 = [

cos𝜔𝑖 cos 𝛼 sin𝜔𝑖 cos 𝛼 − sin 𝛼
− sin𝜔𝑖 cos𝜔𝑖 0
cos𝜔𝑖 sin 𝛼 sin𝜔𝑖 sin 𝛼 cos 𝛼

] (4.28) 

 

 

 

 

 

 

 

 

Fig. 4.15 Orientation of the laboratory system 𝑿𝒍𝒂𝒃 with respect to the sample 

coordinate system 𝑿.  
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The transformation from the sample coordinate system 𝑿 to the laboratory system 

𝑿𝒍𝒂𝒃 can be determined (see Fig. 4.15): 

 𝑅𝑚𝑛
𝛼 = [

cos 𝛼 0 sin 𝛼
0 1 0

− sin 𝛼 0 cos 𝛼
] . (4.29) 

Therefore, taking into account both transformations (4.28) and (4.29) the 

transformation from  the sample coordinate system 𝑿 to the scattering vector system 𝑿′ 

can be found: 

 

𝑅𝑘𝑙
𝑖 = 𝑅𝑘𝑚

𝑙𝑎𝑏,𝑖𝑅𝑚𝑙
𝛼 = 

[

cos2𝛼 cos𝜔𝑖 + sin2𝛼 sin𝜔𝑖 cos 𝛼 cos 𝛼 sin 𝛼 (sin 𝛼 cos𝜔𝑖 − 1)

−cos 𝛼 sin𝜔𝑖 cos𝜔𝑖 −sin𝛼 sin𝜔𝑖

sin 𝛼 cos 𝛼 (cos𝜔𝑖 − 1) sin𝜔𝑖 sin 𝛼 cos2𝛼 + sin2𝛼 cos𝜔𝑖
] 

(4.30) 

Thus the formulas for the angles describing scattering vector orientations with respect 

to the sample coordinate system 𝑿 can be written for 𝑖-th detector: 

 
𝜓𝑖 = arc cos 𝑅33

𝑖 = arc cos(cos2 𝛼 + sin2 𝛼 cos𝜔𝑖)  

𝜑𝑖 = atan2 (𝑅31
𝑖 , 𝑅32

𝑖 ) = atan2 (sin 𝛼 cos 𝛼 (cos𝜔𝑖 − 1), sin𝜔𝑖 sin 𝛼) 
(4.31) 

These formulas were used to calculate the 𝜑𝑖 and 𝜓𝑖  angles for the sample placed in 

the EPSILON-MSD diffractometer in such a way that the direction of the applied load is 

parallel to the scattering vector Δ𝑘⃗⃗ ⃗⃗ ⃗2, which means that the angle 𝛼  is equal to 45° 

(Fig. 4.15). The calculated values of 𝜑𝑖 and 𝜓𝑖  angles are presented in Table 4.1 and the 

corresponding poles 𝑃(𝜓𝑖 , 𝜑𝑖)
{ℎ𝑘𝑙}

  are drawn in the pole figure in Fig. 4.16. The 

advantage of TOF method is that the whole spectrum enabling to measure different ℎ𝑘𝑙 

reflections is measured for each orientation 𝜑𝑖 and 𝜓𝑖. 

Table 4.1 Orientations of the scattering vector for 9 diffractometers with respect to 

laboratory system 𝑿𝒍𝒂𝒃 and to sample system X. 

Detector  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7 𝐿8 𝐿9 

L
ab

o
ra

to
ry

 

sy
st

em
 𝑿
𝒍𝒂
𝒃
 

𝜔𝑖 339° 0° 21° 69° 90° 111° 159° 180° 201° 

𝛼 45° 

S
am

p
le

 

sy
st

em
 X

 𝜓𝑖   14,81° 0,00° 14,81° 47,22° 60,00° 71,28° 88,10° 90,00° 88,10° 

𝜑𝑖 262,53° 90,00° 97,46° 115,92° 125,26° 135,81° 165,31° 180,00° 194,69° 
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It is worth noting that the TOF method with 9 detectors allows for the simultaneous 

collection of a lot of information on the lattice strains, which can be used to determine the 

components of the stress tensor and their anisotropy, as well as to select grain groups using 

CGM for textured polycrystalline materials. This is a significant progress in research on 

the determination of the CRSS values and the phenomenon of stress partitioning between 

grains / phases. Such direct analysis is not possible without additional model prediction, 

when lattice strains are measured in only two directions, as is usually done on other 

instruments in the case of in situ measurements using the TOF method. 

 

 

Fig. 4.16 Poles 𝑃(𝜓𝑖 , 𝜑𝑖)
{ℎ𝑘𝑙}

 corresponding to orientations of the scattering vector for 

9 detectors 𝐿1 − 𝐿9 defined with respect to sample coordinate system X (for each 

orientation different ℎ𝑘𝑙 reflections are available using TOF method). 
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4.6. Uncertainty analysis 

 

Many factors influence the shape of the diffraction peak. In the AD method, the 

incident beam is never perfectly monochromatic, which affects the wavelength uncertainty 

in the Bragg law. Another factor influencing the uncertainty of the determined position and 

shape of the diffraction peak is the divergence of the radiation beam, which affects the 

uncertainty of the diffraction angle. During diffraction measurements, the lattice strain 

uncertainty related to the diffraction angle increases with the decrease of the diffraction 

angle, which is especially important in the case of X-ray diffraction [43,71].  

In the case of using monochromatic X-ray radiation, the uncertainty of the determined 

interplanar spacing is influenced by setting the sample in the right position, collimation of 

the radiation beam and the value of the scattering value angle [43,71]. It should be 

emphasized that for neutron measurements, the position of the sample has a much smaller 

impact on the accuracy of the measurement (compared to the X-ray method), because the 

gauge volume for which the lattice strains are determined is usually inside the sample and 

its position is determined by the slits or collimators forming the beam [133]. The source of 

measurement uncertainty (mainly systematic) may be phenomena such as extinction and 

absorption of the neutron beam. In the case of AD neutron measurements conducted inside 

the sample, the cuboid-shaped reference volume obtained for 2θ   90 ° is the optimal. For 

this shape, the smallest changes in the gauge volume occur during a 2θ scan.  

The neutron diffraction measurements presented in this work were done during in situ 

tensile, compression tests or during thermal treatment. In these cases the measurements of 

lattice strains were performed relatively to the interplanar spacings measured for the initial 

sample (except for deformation measured for twins which are born during deformation). 

From these data  the change in the stress/strain with respect to the initial sample are 

determined. The advantage of this method is that the possible systematic errors are 

cancelled when the relative lattice strains are calculated. The only exception is the case of 

twins which appear during deformation and the grains with twin orientations are practically 

not present in the initial sample because of significant crystallographic texture. Therefore, 

the initial values of interplanar spacings for some of reflections from twin orientations must 

be extrapolated from other interplanar spacings measured in the undeformed sample. The 

method of extrapolation proposed by Clausen et al. [16]  was applied in this work and the 

possible systematic uncertainty was estimated. This uncertainty is in the order of statistical 

errors and is discussed in section 6.3 and section 7.1, where the error corridor was drawn 

(cf. Fig. 7.6e, f) in order to compare systematic and statistic uncertainties. In the other 

presented results the systematic and statistic errors were added to show maximal error bar 

when the experimental results are compared with model (cf. Fig. 7.6a-d). 
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It should be noted that the uncertainties of the measured stresses cannot be calculated 

directly, especially for CGM in which the groups of grains can interfere leading to 

inconsistent results when the stress tensor is calculated using the least square procedure. 

This is the main cause of errors in the results presented in this paper, but the analysis should 

also take into account the statistical uncertainty related to the determined peak position, 

especially for low peak intensity. Since the stress uncertainties cannot be calculated 

directly, the most reasonable method of analysis is based on estimation of the convergence 

between the experimental lattice strains and those fitted by the least squares procedure [43].  

In the work, the components of stress tensor were determined using the STRESS  

program [73,120,127,134], in which the least squares method is used to determine the 

stresses from the measured lattice strains on the basis of equation (4.11) or (4.24). In 

calculations the General Linear Least Squares (GLLS) procedure [135] is used and the 

fitting is based on minimisation of merit function: 

 𝜒2 =
1

𝑁 −𝑀
∑(

〈𝑎(𝜑𝑛, 𝜓𝑛)〉{ℎ𝑘𝑙}
𝑒𝑥𝑝 − 〈𝑎(𝜑𝑛, 𝜓𝑛)〉{ℎ𝑘𝑙}

𝑐𝑎𝑙

𝛿𝑛
)

2𝑁

𝑛=1

 (4.32) 

where the experimental and fitted lattice strains in the 𝑛-th measurement are denoted 

by 〈𝜀′(𝜓𝑛, 𝜑𝑛)〉{ℎ𝑘𝑙}
𝑒𝑥𝑝

 and 〈𝜀′(𝜓𝑛, 𝜑𝑛)〉{ℎ𝑘𝑙}
𝑐𝑎𝑙 , 𝛿𝑛 is the uncertainty of measured lattice strain 

determined from uncertainty of peak position, the sum is calculated for N measurements, 

and M is the number of determined components of the stress tensor (i.e. number of fitting 

parameters). 

As the result the stress components 𝜎𝑖𝑗
𝑀 or 𝜎𝑖𝑗

𝐶𝑅    and their uncertainties are calculated 

from the residuals 〈𝑎(𝜑𝑛, 𝜓𝑛)〉{ℎ𝑘𝑙}
𝑒𝑥𝑝 − 〈𝑎(𝜑𝑛, 𝜓𝑛)〉{ℎ𝑘𝑙}

𝑐𝑎𝑙  which contribution is weighted by 

inverted strain uncertainties 1/𝛿𝑛. In the GLLS procedure the uncertainties of the adjusted 

stresses 𝜎𝑖𝑗  are computed from equation 𝛿𝜎𝑖𝑗 = √𝑉𝑎𝑟(𝜎𝑖𝑗) ∗ 𝜒2 , where 𝑉𝑎𝑟 means 

variance and such uncertainties correspond to the assumption of a “good fit” for which 

𝜒2 = 1. Thus, the presented stress uncertainties originate from the disagreement between 

theoretical and experimental lattice strains but also the statistical error for particular 

measurements is taken into account. 
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5. Evolution of phase stresses in Al/SiCp composite 

 

5.1.  State of art  and previous studies  

 

In this part of the thesis the stress evolution in metal constituents of matrix composite 

(MMC) during heat treatment and mechanical loading are studied. To do this the stress 

partitioning between Al matrix and SiC-particle reinforcement in Al/SiCp is investigated. 

The theoretical study is carried out using the developed EPSC model considering 

generation and relaxation of the thermal origin stresses. The model results are compared 

with lattice strains determined using TOF diffraction measurements, carried out in situ 

during thermal treatment followed by compression test. The unquestionable advantage of 

the diffraction technique is that the measurements can be done independently in Al matrix 

and SiCp reinforcement. This allowed the study of the stresses in both composite 

components during elastoplastic deformation [1,64], temperature variation [136], thermal 

and mechanical treatments [137,138] and damage process [2,139]. It was found that phase 

stresses of opposite signs are generated in the Al-matric and SiCp reinforcement during 

cooling of the composite [137]. The so called thermal stresses arise due to difference in 

thermal expansion/contraction of the constituents and they can be relaxed by elastoplastic 

deformation [4,63] or thermo-mechanical process [5].  

It should be noted that the MMC are the materials which exhibit better mechanical 

properties compared to the Al and SiC constituents. The stiffness, strength as well as wear 

resistance of the composite is superior compared to Al alloy [140,141]. The key question 

is: what is the cause of this improvement in mechanical properties? Generally, two main 

reasons for enhancing the MMC are considered: 

- the matrix is hardened due to pining of dislocations on small reinforcement 

particles, which depends on the size and distribution of the particles [142], 
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- the load is transferred from the metal matrix to elastically deformed reinforcement, 

leading to higher strengths of composite comparing to the metal alloy [65]. 

The problem of stress partitioning between matrix and reinforcement was investigated 

using both the model prediction and the diffraction measurements. Among them the FEM 

method was used to find out the so called ‘exact solution’ for the macroscopic behaviour 

of the Al/SiCp composite, which was then compared with self-consistent calculations and 

Mori-Tanaka model [143–145]. The latter models were based on the Eshelby type 

approximation of the ellipsoidal inclusion embedded in the homogeneous medium [78]. It 

was found that the self-consistent model gives too stiff response [146] which can be 

improved assuming isotropic tangent modulus in calculation [144,147,148]. On the other 

hand, the EPSC model used for the two-phase material (i.e. Al/SiCp) was successfully 

verified by comparing the model results with lattice strains in Al and SiC components 

measured in situ with neutron diffraction during sample bending [64]. The agreement of 

the experimental and model results confirmed that the interaction between Al matrix and 

SiC particles was correctly calculated (for Al/SiCp composite containing 17% volume 

fraction of SiC particles with diameter of  3 𝜇𝑚 and Al2124 alloy matrix).  

The results of previous studies of the Al/SiCp composite carried out with the 

participation of the author of this dissertation are briefly summarized in this section as an 

introduction to the main research conducted in this thesis. Recently the Al/SiCp (17,8% 

volume fraction of SiC particles with mean diameter of 0,7 𝜇𝑚 and Al2124 alloy matrix) 

composite used in this work was studied comparing the EPSC calculations with mechanical 

tensile test [65,66,149]. The full characterisation of this material is given in section 5.2 As 

shown in Fig. 5.1 a good agreement of the macroscopic stress-strain curve for Al/SiCp 

composite was obtained in the case of the anisotropic EPSC model. In calculations the same 

properties as obtained for the Al2124 alloy without reinforcement were assumed (cf. the 

measured and predicted curves for Al2124 alloy). Both Al2124 alloy and Al/SiCp 

composite were subjected to the same treatment T6, cf. next section and [65]. 
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Fig. 5.1 Comparison of experimental tensile tests, obtained for the unreinforced 

Al2124 alloy and the Al/SiCp composite, with EPSC model [65,66,149]. 

The study, concerning phase stresses (𝜎𝑖𝑗
𝑝ℎ defined in subsection 2.3.2) in the Al 

matrix and SiCp reinforcement, was performed using TOF neutron diffraction on 

EPSILON-MDS diffractometer (cf. section 4.5) [65]. The results show that the stress in 

both constituents significantly changed due to plastic deformation, suggesting relaxation of 

the initial mean phase stresses created previously by thermal treatment (this result agree 

with other papers concerning Al/SiCp [4,5,63]). It was found that thermal stresses arise 

between the phases in the cooled sample due to the difference in thermal expansion 

coefficient (CTE) of components such as Al matrix and SiCp reinforcement (see Table 5.3). 

As a result, the equilibrium between the stresses in the components leads to a zero 

macroscopic stress calculated as the average over the whole volume of the sample. 

In another experiment, the TOF measurements were conducted in situ and the lattice 

strains along the applied tensile load were measured and compared with EPSC model 

prediction (EPSILON-MDS diffractometer) [65]. Two thermal treatments (T1 and T6) 

were applied before experiment to the initial (non-deformed) samples. In both cases the 

initial phase stresses (𝜎𝑖𝑗
𝑝ℎ

) having thermal origin were assumed and their relaxation was 

noticed by comparing the evolutions of lattice strains measured by diffraction with those 

predicted by the model (the model prediction did not take into account the phase stress 

relaxation), cf. Fig. 5.2. 

The effect of thermal stresses relaxation is seen as the increase in lattice strains in the 

SiCp reinforcement and simultaneous decrease in the strains in Al matrix, which was not 

predicted by the EPSC model starting from the state with initial thermal stress (dashed lines 

in Fig. 5.2). After this relaxation the experimental lattice strains are in agreement with 

model prediction in which zero initial stresses were assumed (continues lines in Fig. 5.2).  
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In both studied samples smaller lattice strains were found in the stiffer SiCp 

reinforcement compared to the more compliant Al matrix (cf. Table 5.3). Also it was found, 

that T1 treatment leads to smaller value of the yield stress for the Al matrix compared to 

the T6 treatment. This was explained through precipitation hardening of the Al matrix due 

to the artificial aging applied during T6 treatment which leads to harder matrix comparing 

to this obtained after T1 treatment [65]. 
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Fig. 5.2 Comparison of the predicted and measured arithmetic means of the lattice 

strains in the Al matrix (for reflections: 200, 111, 220, 311) and in SiCp reinforcement (for 

reflections: 006/102, 108/110, 202/116) after heat treatments T6 (a) and T1 (b). In 

calculations the initial thermal origin stresses are used as the input data (dashed lines) or 

zero values of the initial stresses are introduced (continuous lines).  Between the vertical 

dashed lines the phase stresses relax [65]. 

Then in situ diffraction experiment during thermal treatments was performed on the 

FSD diffractometer (cf. section 4.5 )using the TOF neutron diffraction by Kot et al. [66]. 

The latter results were previously analysed in the MSc thesis of the author of this 

dissertation [150]. The Al/SiCp composite, Al2124 alloy and SiC powder were 

independently subjected to heating followed by cooling using the mirror furnace with 

infrared radiation. Lattice strain caused by thermal expansion in Al2124 alloy (without 
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reinforcement) and a SiC powder versus temperature are shown in Fig. 5.3a, and compared 

with the lattice strains in both components of the Al/SiCp composite in Fig. 5.3b.  

The total lattice strain 〈𝜀〉{ℎ𝑘𝑙}
𝑇  measured for planes {ℎ𝑘𝑙} at temperature T are defined 

by the equation: 

 〈𝜀〉{ℎ𝑘𝑙}
𝑇 =

〈𝑑〉{ℎ𝑘𝑙}
T − 〈𝑑〉{ℎ𝑘𝑙}

0

〈𝑑〉{ℎ𝑘𝑙}
0  (5.1) 

where 〈𝑑〉{ℎ𝑘𝑙}
T  and 〈𝑑〉{ℎ𝑘𝑙}

0  are the measured interplanar spacings at temperature T and at 

room temperature, respectively. 

The influence of the elastic interaction between the composite constituents (Al matrix 

and SiCp reinforcement) on the lattice strains obtained from neutron diffraction can be seen 

in Fig. 5.3b. For the Al matrix, the total lattice stain grows slower with the temperature 

compared to the Al2124 alloy without reinforcement, while the opposite effect occurs in 

SiCp. The obtained results suggest that in addition to thermal expansion in the tested 

composite, the experimental lattice strains are influenced by the elastic interaction between 

the phases.  
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Fig. 5.3 (a) Lattice strain in a sample of Al2124 alloy (without reinforcement) and a 

SiC powder sample versus temperature. (b) Comparison of the lattice strain for individual 

phases in the composite (solid lines adjusted to the experimental data) with the straight 

lines adjusted to the strains in the Al2124 alloy without reinforcement and the SiC powder 

(dashed lines, also shown in figure a) [66]. 
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The elastic lattice strains in the composite components 〈𝜀〉{ℎ𝑘𝑙}
𝐴𝑙,𝑒𝑙𝑎𝑠𝑡

 and 〈𝜀〉{ℎ𝑘𝑙}
𝑆𝑖𝐶,𝑒𝑙𝑎𝑠𝑡

 

related to interphase stresses in the composite (excluding thermal expansion) are defined 

through:  

〈𝜀〉{ℎ𝑘𝑙}
𝐴𝑙,𝑒𝑙𝑎𝑠𝑡 =

〈𝑑〉{ℎ𝑘𝑙}
Al _comp.

−〈𝑑〉{ℎ𝑘𝑙}
Al _alloy

〈𝑑〉
{ℎ𝑘𝑙}
Al _alloy    and   〈𝜀〉{ℎ𝑘𝑙}

𝑆𝑖𝐶,𝑒𝑙𝑎𝑠𝑡 =
〈𝑑〉{ℎ𝑘𝑙}

SiC _comp.
−〈𝑑〉{ℎ𝑘𝑙}

SiC _powd.

〈𝑑〉
{ℎ𝑘𝑙}
SiC _powd.  (5.2) 

where 〈𝑑〉{ℎ𝑘𝑙}
Al _comp.

 and 〈𝑑〉{ℎ𝑘𝑙}
SiC _comp.

 interplanar spacings are determined in the composite 

for Al matrix and in the SiCp reinforcement, while 〈𝑑〉{ℎ𝑘𝑙}
Al _alloy

 and 〈𝑑〉{ℎ𝑘𝑙}
SiC _powd.

 

are measured in the unreinforced Al2142 alloy and in the SiC powder.  

For both components of composite, the elastic lattice strains were determined at 

different temperatures and from these strains the corresponding average phase stresses 

(hydrostatic stresses 𝜎𝐻
𝐴𝑙  and 𝜎𝐻

𝑆𝑖𝐶) in Al matrix and in the SiCp reinforcement were 

computed from equations: 

 𝜎𝐻
𝐴𝑙 = 3𝐾𝐴𝑙〈𝜀〉𝑚𝑒𝑎𝑛

𝐴𝑙,𝑒𝑙𝑎𝑠𝑡
   and   𝜎𝐻

𝑆𝑖𝐶 = 3𝐾𝑆𝑖𝐶〈𝜀〉𝑚𝑒𝑎𝑛
𝑆𝑖𝐶,𝑒𝑙𝑎𝑠𝑡

 (5.3) 

where the bulk moduli 𝐾𝐴𝑙 and 𝐾𝑆𝑖𝐶  were computed from temperature dependent  Young 

moduli and Poisson ratios taken from [151] and [152], respectively  
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Fig. 5.4 Temperature dependence of mean hydrostatic stresses in Al matrix and SiCp 

reinforcement. Comparison of the experimental results with thermo-mechanical self-

consistent model (TMSC) [153,154], see also section 5.3 and [66]. 

The obtained results confirmed generation of the phase stresses during sample heating 

and cooling. As expected comparing the CTE for composite components (cf. Table 5.3) the 

compressive hydrostatic stress was created in SiCp reinforcement and the tensile mean 

stress was generated in Al matrix, as the effect of relative volume change. 
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Summarizing the results of the previous measurements the following conclusions 

concerning studied in this thesis Al/SiCp composite can be drawn: 

- different lattice strains/stresses were observed in Al matrix and SiCp reinforcement 

during tensile test, 

- transfer of the stress from soft/compliance Al matrix to hard/stiff SiCp 

reinforcement leads to the strengthening of Al/SiCp composite, which is correctly 

predicted by the EPSC model, 

- different values of the CTE factor for Al matrix and SiCp reinforcement leads to 

generation of the phase stresses, 

- relaxation of thermal origin phase stresses in plastically deformed Al/SiCp 

composite is observed. 

This is the starting point for the research carried out in this thesis, in which not only 

the evolutions of lattice strains are measured, but also the stresses for the cooled composite 

subjected to the compression test are determined. The evolution of theses stresses are 

compared with developed self-consistent model allowing possible explanation of the 

observed stress evolutions.  

 

 

5.2. Characterisation of the material 

 

Material used in this work was produced by powder metallurgy method called BP 

process (applied by Materion company, former name BP Metal Composites) in which the 

Al2124 (the composition is given in Table 5.1) and SiC powders are blended and 

compacted into an aluminium can. The volume fraction of SiC particles in the studied 

composite is 17,8%. The mixture is then subjected to vacuum degassing at 500°C. Finally 

the powder is pressed isostatically under a pressure of 100 MPa and a temperature of 500°C 

[155]. The so obtained material has undergone the T6 thermal treatment which consists of 

solution treatment at 491°C for 6h, water quenching and artificial aging for 4 hour at 191°C. 

This process is usually used to improve the mechanical strength of the material due to 

precipitation hardening of the Al2124 matrix. The fast cooling after solution heat treatment 

(at 491°C) leads to supersaturated by alloying elements solid state solution, from which the 

dispersed particles (Cu-Al-Mg) precipitate during aging treatment (at 191°C) [65,66,156]. 
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The microstructure of the Al/SiCp obtained using scanning electron microscope (SEM) 

is shown in Fig. 5.5. In this figure the particles of SiC separated from the Al2124 matrix 

during surface preparation are seen. The mean size of the SiC particles is equal to 0,7 µm 

Table 5.1 The composition of Al2124 alloy (wt. %) 

Cu Mg Mn Fe Zn Si Ti Cr Al 

4,18 1,46 0,52 0,3 0,25 0,2 0,15 0,1 balance 

 

 

Fig. 5.5 The SEM image obtained for the Al/SiCp composite, showing the SiC 

particles after removing of the Al2124 alloy.  

The analysis of the crystal structure showed, that the hexagonal polytype 6H is 80% 

by volume of the powder used in the production of the composite [149]. The Al2124 alloy 

has a FCC crystallographic structure. In Fig. 5.6 the TOF diffraction patterns obtained 

separately for the SiC powder and Al2124 alloy (subjected to T6 treatment), as well for the 

composite at room temperature and at temperature of 300 ºC are presented. The most 

pronounced diffraction peaks potentially useful in the stress analysis are indexed (some of 

them however must be eliminated due to overlapping, i.e. SiC 109 and Al 220). It is worth 

noting that most of the SiC-peaks are composed from two undistinguishable reflections ℎ𝑘𝑙 

having nearly the same positions, therefore they are treated as single peaks in the stress 

analysis. Moreover the positions of the peaks corresponding to 6H polytype are very close 

to those of 3C polytype, cf. Table 5.2. It means that different polytypes of SiC contribute 

into the analysed peaks but certainly the influence is of 6H polytype is dominating due to 

its volume fraction of about 80%.  
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Table 5.2 Chosen reflections of Al2124 alloy (𝑎 = 4,0550Å), SiC 3C polytype 

(𝑎 =  4,3581Å) and 6H polytype (𝑎 = 3,081Å and 𝑐 = 15,1248 Å). The reflections used 

in stress analysis are underlined [149]. 

Al2124 
SiC 

Cubic 3C polytype Hexagonal 6H polytype 

ℎ𝑘𝑙 d [Å] ℎ𝑘𝑙 d [Å] ℎ𝑘𝑙 d [Å] 

111 2,3412 111 2,5162 
006 2,5208 

102 2,5162 

200 2,0275 200 2,1790 104 2,1801 

220 1,4337 220 1,5408 
108 1,5426 

110 1,5405 

311 1,2226 
311 1,3140 

116 1,3145 

222 1,1706 202 1,3138 
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Fig. 5.6 The TOF diffraction patterns of:  (a) Al2124 – alloy after T6 treatment (red 

line) and SiC powder (black line), (b) Al/SiCp composite at room temperature and (c) the 

same composite at temperature of 300 ºC. The measurements were done using the FSD 

diffractometer. 
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As shown in Fig. 5.6b and Fig. 5.6c the peaks corresponding to SiC 109 and Al 220 

reflections overlaps at room temperatures, while they are separated at 300 ºC, i.e. these 

peaks must be excluded from analysis. The reflections used to determine stresses in both 

constituents of Al/SiCp composite are underlined in Table 5.2.  

The elastic and thermal properties of both constituents of  Al/SiCp composite are given 

in Table 5.1 The single crystal elastic constants (SECs) of 6H-SiC polytype are presented. 

It should be emphasised that the SECs of 6H-SiC and 3C-SiC polytypes are similar. It was  

also checked that the stress determination as well as modelling of elastoplastic deformation 

performed with assumption of 6H-SiC or 3C-SiC polytype (with corresponding reflections 

shown in Table 5.2 and SECs presented in Table 5.3 give almost the same results [149,150]. 

This means that further analysis and stress modelling can be performed with the assumption 

that only polytype 6H-SiC is present in the powder (and in the composite), while the content 

of other polytypes does not lead to different results.  

Table 5.3 Single crystal elastic constants (SEC) and coefficient of thermal expansion 

(CTE) of 6H-SiC [66,152] and Al2124 alloy [151,157]. 

Material 

Young 

modulus 

(GPa) 

Single crystal elastic constants at room 

temperature (GPa) 

Mean CTE (K-1) 

for the range: 

22 ºC – 500ºC 𝑐11 𝑐33 𝑐44 𝑐12 𝑐13 

6H-SiC 460 501 553 163 111 52 3,3 10-6 

Al 68 105, 8 28,3 28,3 60,4 60,4 27,5 10-6 

 

To characterise crystallographic texture of the studied material the pole figures were 

independently measured for Al2124 matrix and SiCp reinforcement using Cu radiation on 

X-Pert Panalytical X-ray diffractometer. As shown Fig. 5.7 the Al2124 matrix exhibits 

weak texture and almost random texture is observed for SiCp reinforcement.  
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a) 

b) 

Fig. 5.7 Pole figures measured individually for the Al2124 matrix and SiCp 

reinforcement [149]. 

Finally, it should be emphasised that the model calculations (EPSC model) already 

compared with tensile mechanical tests and diffraction measurements performed during 

tensile tests [65,66,149] allowed to determine the parameters of Voce law (equation (3.13)) 

for the Al2124 - alloy subjected to the T6 thermal treatment. The critical resolved shear 

stress (τ0) and linear hardening parameter (𝐻 =  𝜃0  =  𝜃1) for the slip system 〈11̅0〉{111} 

are the same for the Al2124 alloy without reinforcement and for the composite matrix build 

of the same alloy, cf. Table 5.4.   

Table 5.4 Critical resolved shear stress  τ0 (CRSS) and 𝐻 (hardening parameter) 

for the 〈11̅0〉{111} slip systems in Al2124 alloy [149].  

Material 
τ0 - CRSS 

(MPa) 

𝐻 =  𝜃0  =  𝜃1 

(MPa) 

Al2124 – alloy (T6) 120 50 

Al/SiCp – composite (T6) 120 50 
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5.3. Development of self-consistent model 

 

In this section the formulation of the self-consistent model enabling prediction both 

thermal and elasto-plastic deformations is presented and developed. The idea of the model 

is based on the work of Corvasce et al. [153,154].  

If, during elastoplastic deformation, temperature changes the increment of total 

deformation ∆𝜀𝑖𝑗
𝑔

 for a grain 𝑔 can be described by equation: 

 ∆𝜀𝑖𝑗
𝑔
= ∆𝜀𝑖𝑗

𝑔(𝑒𝑙)
+ ∆𝜀𝑘𝑙

𝑔(𝑝𝑙)
+ ∆𝜀𝑖𝑗

𝑔(𝑡ℎ)
 (5.4) 

where ∆𝜀𝑖𝑗
𝑔(𝑒𝑙)

, ∆𝜀𝑘𝑙
𝑔(𝑝𝑙)

 and  ∆𝜀𝑖𝑗
𝑔(𝑡ℎ)

 are the increments of elastic, plastic and thermal 

deformations, respectively.  

Taking into account the thermal dilatation does not change the grain stress (for free 

grain which is not embedded into the matrix), the constitutive equation for a grain can be 

written (cf. equation (3.26)) : 

 ∆𝜎𝑖𝑗
𝑔
= 𝑙𝑖𝑗𝑘𝑙

𝑔
(∆𝜀𝑘𝑙

𝑔
− ∆𝜀𝑘𝑙

𝑔(𝑡ℎ)
) = 𝑙𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔
−𝑚𝑖𝑗

𝑔
 ∆𝜃 (5.5) 

where  𝑚𝑖𝑗
𝑔

 =  𝑙𝑖𝑗𝑘𝑙
𝑔
 𝛼𝑘𝑙
𝑔

 ,  𝛼𝑘𝑙
𝑔

 is the CTE tensor, ∆𝜃 is temperature increment and tangent 

modulus   𝑙𝑖𝑗𝑘𝑙
𝑔

 is defined in equation (3.25). 

The increment of a grain deformation ∆𝜀𝑖𝑗
𝑔

 can be related to the increment of the 

macroscopic sample strain ΔΕ𝑘𝑙  and temperature change ∆𝜃 (cf. equation (3.26) 

 ∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
ΔΕ𝑘𝑙 + 𝑎𝑖𝑗

𝑔
∆𝜃 (5.6) 

where 𝑎𝑖𝑗
𝑔
= −𝐴𝑖𝑗𝑘𝑙

𝑔
𝑇𝑘𝑙𝑛𝑚
𝑔𝑔

(𝑚𝑚𝑛
𝑔
−𝑀𝑚𝑛) and 𝑀𝑖𝑗 = ∑ 𝑓𝑔(𝑙𝑖𝑗𝑘𝑙

𝑔
𝑎𝑘𝑙
𝑔
−𝑚𝑖𝑗

𝑔
)𝑔 , while 𝐴𝑖𝑗𝑘𝑙

𝑔
 is 

defined by equation (3.35) using interaction tensor 𝑇𝑘𝑙𝑛𝑚
𝑔𝑔

. 

Equation (5.6) can be rewritten in more useful form which can be used to perform 

interaction of macrostress ΔΣ𝑚𝑛 (e.g. during mechanical loading) and temperature ∆𝜃: 

 ∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
𝐿𝑘𝑙𝑚𝑛
−1 ΔΣ𝑚𝑛 + 𝑎𝑖𝑗

𝑔
∆𝜃       (5.7) 

where macroscopic tangent modulus 𝐿𝑖𝑗𝑘𝑙 can be computed using equation (3.38). 

The above equations are the basis of various thermo-mechanical or mechanical models. 

In this work three model versions given by equation (5.8) are used. The first one is the 

EPSC model (given by equations (5.8) and detailly described in subsection 3.3.3 ) in which 
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the temperature does not change, i.e. ∆𝜃 = 0. The second one, i.e. thermo-mechanical self-

consistent (TMSC defined by equations (5.8) and described by Corvasce et al. [153,154]) 

model is used to determine the phase stresses in the composite generated during 

temperature change due to difference in CTE between matrix and reinforcement. In this 

case elastic deformation was assumed for both components, i.e.  𝑙𝑖𝑗𝑘𝑙
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔
 and 𝐿𝑖𝑗𝑘𝑙 =

𝐶𝑖𝑗𝑘𝑙. The TSCM model was successfully used in the works summarised in the previous 

section (cf. Fig. 5.4). 

 {

∆𝜎𝑖𝑗
𝑔
= 𝑙𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔

∆Σ𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙∆E𝑘𝑙

∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
∆E𝑘𝑙

  {

∆𝜎𝑖𝑗
𝑔
= 𝑐𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙

𝑔
−𝑚𝑖𝑗

𝑔
∆𝜃

∆Σ𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙∆E𝑘𝑙 −𝑀𝑖𝑗∆𝜃

∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
∆E𝑘𝑙 + 𝑎𝑖𝑗

𝑔
∆𝜃

  {

∆𝜎𝑖𝑗
𝑔
= 𝑙𝑖𝑗𝑘𝑙

𝑔
∆𝜀𝑘𝑙
𝑔
− ∆𝑚𝑖𝑗

𝑔
𝜃

∆Σ𝑖𝑗 = 𝐿𝑖𝑗𝑘𝑙∆E𝑘𝑙 − ∆𝑀𝑖𝑗𝜃  

∆𝜀𝑖𝑗
𝑔
= 𝐴𝑖𝑗𝑘𝑙

𝑔
∆E𝑘𝑙 + ∆𝑎𝑖𝑗

𝑔
𝜃

 (5.8) 

 a) EPSC b) TMSC c) DTMSC 

Finally, the third model version is proposed in this work in order to predict the variation 

in the residual phase stresses due to change in grains and matrix properties from the elastic 

to elastoplastic behaviour (i.e. 𝑐𝑖𝑗𝑘𝑙
𝑔
→ 𝑙𝑖𝑗𝑘𝑙

𝑔
  and 𝐶𝑖𝑗𝑘𝑙 → 𝐿𝑖𝑗𝑘𝑙). This change is additionally 

added to constitutive equations, as written in the formulas (5.8). The so defined developed 

thermo-mechanical self-consistent (DTMSC) model assumes elastoplastic properties of the 

composite in which the evolution of strains and stresses imposed by total temperature 

change of 𝜃 is considered. 

In this work the self-consistent calculations were done using three versions of the 

model and in all cases the same input file consisting of 2000 spherical grains was used. The 

grains are divided between two phases, i.e. 356 (volume fraction of 17,8 %) of them are 

assigned to SiC particles and 1644 (volume fraction of 82,2 %) represent Al matrix. The 

elastic properties of the grains were defined using appropriate single crystal elastic 

constants given in Table 5.3 for both constituents of the composite. Due to insignificant 

crystallographic texture in both components (cf. Fig. 5.7) random lattice orientations were 

generated for all grains. It should be emphasized that during the deformation only the 

Al2124 matrix undergoes plastic deformation, while for SiC particles exclusively elastic 

deformation occurs. Therefore the  potentially active < 11̅0 >  {111} slip systems were 

assumed in the aluminium alloy crystallites (FCC crystal structure). 
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5.4. Lattice strains measurements during in situ compression test 

 

Previous investigation performed on the Al/SiCp composite by author of this 

dissertation (in the frame of his MSc thesis) showed that important interphase stresses are 

generated between Al2124 matrix and SiCp reinforcement during sample colling from 

temperature 500 ºC to room temperature [66]. As reported in neutron diffraction studies 

effect of relaxation of this stresses was observed in the samples for which the lattice strains 

were measured before and after plastic deformation [4,5,65]. However, a systematic study 

of the evolution of the stress tensor in both composite components during sample 

deformation has not yet been performed. This is the aim of this work in which the 

advantages of the EPSILON-MSD diffractometer were used to follow the evolution of 

stress tensor components in the Al2124 matrix and SiCp reinforcement during compression 

test. Then the types and origins of this stresses as well as the reasons of their evolution are 

discusses on the basis of the thermomechanical models [66]. 

As mentioned above, the relative lattice spacings were determined during compression 

test by applying given loads to the cylindrical sample with diameter of 13,5 mm and length 

of 27 mm. Fig. 5.8 shows the values of macroscopic stress and strain for which the 

interplanar spacings were measured. It is worth noting that the diffraction measurements 

were performed at constant sample strains after stabilisation of the macrostress, which in 

the case of plastic deformation decreases in some extend during a few minutes up to about 

half hour after each step of sample loading (the relaxation time depends on the material and 

total sample strain).   
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Fig. 5.8 Dependence of the macroscopic compressive stress (calculated from the load 

applied to the sample – grey symbols) versus macroscopic strain for the sample states for 

which the lattice strains were determined compared with the predictions obtained using 

EPSC and DTMSC model (the overlapping black and red lines). The macroscopic stress 

calculated from diffraction experiment is also shown (red symbols). 
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For each step of sample strain corresponding to chosen applied load, the interplanar 

spacings were measured using the TOF technique for different orientations of the scattering 

vector with respect to the sample. It was done thanks to the advantages of the EPSILON-

MDS diffractometer equipped with nine detector systems collecting neutron beam 

diffracted in different directions (cf. section 4.5). At each orientation of the scattering vector 

marked by L1-L9 in Fig. 5.9 the TOF diffraction pattern shown in Fig. 5.10 was measured 

and the selected intense diffraction peaks were used to determine the relative lattice strains 

calculated according to formulas: 

 〈𝜀〉{ℎ𝑘𝑙}
𝐴𝑙 =

〈𝑑〉{ℎ𝑘𝑙}
Al,Σ  −〈𝑑〉{ℎ𝑘𝑙}

Al,Σ=0

〈𝑑〉{ℎ𝑘𝑙}
Al,Σ=0      and      〈𝜀〉{ℎ𝑘𝑙}

𝑆𝑖𝐶 =
〈𝑑〉{ℎ𝑘𝑙}

SiC,Σ−〈𝑑〉{ℎ𝑘𝑙}
SiC,Σ=0

〈𝑑〉{ℎ𝑘𝑙}
SiC,Σ=0  (5.9) 

where 〈𝑑〉{ℎ𝑘𝑙}
Al,Σ

 and 〈𝑑〉{ℎ𝑘𝑙}
SiC,Σ

 spacings are determined in the composite for Al matrix and 

in the SiCp reinforcement under the load causing macroscopic stress Σ, while 〈𝑑〉{ℎ𝑘𝑙}
Al,Σ=0

 and 

〈𝑑〉{ℎ𝑘𝑙}
SiC,Σ=0

 are measured in both constituents but for the initial sample without external load.  

  

Fig. 5.9 Orientations of the scattering vector with respect to the sample coordinate 

system marked in pole figures and ℎ𝑘𝑙 reflections of Al matrix and SiCp reinforcement 

chosen for stress analysis. The load is applied along 𝑥3 axis. 
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Fig. 5.10 TOF-diffraction pattern measured in both constituents of the Al/SiCp 

composite. The indices of the reflections used in analysis are given. 

 

The ℎ𝑘𝑙 reflections selected for stress analysis are marked in Fig. 5.10 and Fig. 5.9. 

The load was applied along the 𝑥3 axis and a wide incident beam (width of 10 mm) was 

used in order for an acceptable counting statistic. Each data acquisition for a given load 

took about 22 h. The diffraction peaks were fitted using pseudo-Voigt function in order to 

find out their positions. The influence of small peaks observed at the peak tail (e.g. SiC 

202/116) was minimized by simultaneous fitting of superposition of two pseudo-Voigt 

functions. The peaks being superposition of the reflections from two constituents were 

excluded from analysis (e.g. Al 220 and SiC 109). 

It is worth noting that the sets of lattice strains measured for each load in different 

directions and separately for Al2124 and SiC enabled determination of principal phase 

stresses (𝜎𝑖𝑖
𝑝ℎ  defined in subsection 2.3.2) for both constituents individually. The relative 

lattice strains (calculated according (5.9)) are plotted in Fig. 5.11 versus 𝑠𝑖𝑛2𝜓 for three 

example loads (𝜓 is defined in Fig. 4.9). In this figure the experimental points measured 

for available reflections are shown together with lines obtained from stress analysis. The 

𝜎𝑖𝑖
𝑝ℎ  values were adjusted in the least square fitting procedure in order to fit the theoretical 

lines to the experimental points, simultaneously for all ℎ𝑘𝑙 reflection in given composite 

constituent (Al2124 or SiC). In stress analysis the Eshelby-Kröner model was used to 

calculate the X-ray stress factors (for details see section 4.3) from single crystal elastic 
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constants given in Table 5.3, assuming a quasi-isotropic sample with random distribution 

of grains orientations for both constituents. It is worth noting that a very good fitting of the 

lines to theoretical points was obtained and the lines are almost linear. This means that the 

stress state almost exhibits cylindrical (rotational) symmetry about the direction of the 

applied load  (i.e. 𝜎11
𝑝ℎ  ≈ 𝜎22

𝑝ℎ  ) and therefore the strains do not depend significantly on the 

value of 𝜑 angle (defined in Fig. 4.9). 
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Fig. 5.11 Example 〈𝜀〉{ℎ𝑘𝑙}
𝑝ℎ

 versus relative lattice strains versus 𝑠𝑖𝑛2𝜓 determined in 

Al2124 and SiC for three applied loads. Note, that the values of the 𝜓 angles for L1-L9 

detector systems are given in Table 4.1, while the values of 𝜑 angle is not shown and they 

are different for each presented point. 

The values of the 𝜎𝑖𝑖
𝑝ℎ

 were determined from fitting procedure for each applied load 

and after sample unloading. These results are discussed and compared with self-consistent 

model in next section. 
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5.5. Phase stress evolution during compression test 

 

The phase stresses for the sample subjected to T6 treatment were determined from 

measured lattice strains. The lattice strains were calculated, as the relative difference 

between interplanar spacings in the constituents of composite and the corresponding 

interplanar spacings in the separate constituents, subjected to the same thermal treatment 

(cf. equation (5.3)). It was found that  the mean compressive hydrostatic stress 𝜎11
𝑆𝑖𝐶 ≈

 𝜎22
𝑆𝑖𝐶 ≈ 𝜎33

𝑆𝑖𝐶 ≈ -614 ± 115 MPa and balancing tensile mean stress  𝜎11
𝐴𝑙 ≈ 𝜎22

𝐴𝑙 ≈  𝜎33
𝐴𝑙 ≈ 

122 ± 18 MPa were generated during cooling of the composite for the sample after T6 

treatment. It should be noted that the rule of mixture written for both phases of the 

composite should lead to equilibrium of the phase stresses (i.e. the macrostress should be 

equal to zero for the initial non-loaded sample): 

 𝑓𝜎𝑖𝑖
𝑆𝑖𝐶 + (1 − 𝑓)𝜎𝑖𝑖

𝐴𝑙 ≈ 0 (5.10) 

where 𝑓 = 0,178 is the volume fraction of SiC  and  𝑖=1,2,3). 

The values of the stresses obtained from experiment nearly fulfil equation (5.10), i.e. 

the macrostress calculated from this equation is equal to -9 MPa. In order to ensure 

equilibrium conditions the thermal origin stresses were slightly modified (within the 

uncertainty range) and the values 𝜎11
𝑆𝑖𝐶 = 𝜎22

𝑆𝑖𝐶 = 𝜎33
𝑆𝑖𝐶 = -615 MPa and tensile hydrostatic 

stress  𝜎11
𝐴𝑙 = 𝜎22

𝐴𝑙 = 𝜎33
𝐴𝑙 = 132 MPa were assumed as the initial stress state before 

compression test. These starting values are denoted as stage 1 in Fig. 5.12 and Fig. 5.15.  

The changes in principal stresses in both constituents during compassion test were 

determined from equation (5.10) and there are shown in Fig. 5.12 versus applied stress 

|Σ33| as the stages 1-2. The  macroscopic first order principal stresses 𝜎𝑖𝑖
𝐼  calculated from 

the rule of mixture:  

 𝜎𝑖𝑖
𝐼 = 𝑓𝜎𝑖𝑖

𝑆𝑖𝐶 + (1 − 𝑓)𝜎𝑖𝑖
𝐴𝑙 (5.11) 

are approximately equal to the macrostress state:  𝜎33
𝐼 ≈ Σ33, 𝜎22

𝐼 ≈ 𝜎33
𝐼 ≈ 0, where Σ33 is 

the true stress calculated as the load divided by the current cross section of the sample 

(compare red and grey symbols in Fig. 5.8). This means that the macrostress determined 

from diffraction agree with the applied stress Σ33.  

Finally the sample was unloaded and the corresponding evolutions of the stresses in 

both constituents are shown in Fig. 5.12 (see stages 2→3). 

Analysing the evolution of experimentally determined phase stresses (𝜎33
𝐴𝑙  and 𝜎33

𝑆𝑖𝐶) 

in the direction parallel to the applied load (cf. Fig. 5.12) it can be concluded that these 

stresses change linearly in both constituents of composite up to |Σ33| ≈ 310-320 MPa. In 
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this range of sample loading the stresses perpendicular to the load (𝜎11
𝐴𝑙 , 𝜎22

𝐴𝑙 , 𝜎11
𝑆𝑖𝐶  and  𝜎22

𝑆𝑖𝐶) 

do not change significantly. Such range of compression test corresponds to elastic sample 

deformation confirmed by linear dependence of macroscopic stress Σ33  versus sample stain 

E33 (cf. Fig. 5.8). Then, over  |Σ33| ≈ 310-320 MPa significantly nonlinear behaviour of 

phase stresses (𝜎𝑖𝑖
𝐴𝑙  and 𝜎𝑖𝑖

𝑆𝑖𝐶) occurs during elastoplastic deformation. Finally after sample 

unloading the phase stresses do not return to the values determined for the initial sample 

(i.e. the stress stages 1 and 3 are significantly different).  

In Fig. 5.12 the experimental data are compared with the results of prediction 

performed by EPSC model starting from initial stresses (stage 1) assigned to the grains in 

the input file. In calculations the CRSS and H parameter of linear hardening given Table 5.4 

were assumed for the slip system < 11̅0 >  {111} in the grains of  Al2124 matrix. An 

excellent agreement between stresses localised in both phases (𝜎𝑖𝑖
𝐴𝑙  and 𝜎𝑖𝑖

𝑆𝑖𝐶) was obtained 

for the range of elastic deformation occurring in Al2124-matrix and SiCp reinforcement, 

i.e. up to |Σ33| ≈ 310-320 MPa, however over this threshold a significant departure of the 

theoretical lines from experimental points is observed. What is more, as shown in Fig. 5.8, 

a very good agreement between experiment and model prediction was found for the 

macroscopic stress, and in this case the accordance is observed for full range of 

deformation.  

The above results show that the disagreement between model and experiment is 

observed for the phase stresses (𝜎𝑖𝑖
𝐴𝑙  and 𝜎𝑖𝑖

𝑆𝑖𝐶) in the plastic range of deformation 

(plasticity occurs for Al2124 alloy only). However, the model inconsistency is eliminated 

when calculating macroscopic stresses using the rule of mixture defined by equation (5.11) 

due to the self-equilibration of the thermally generated phase stresses.  The further analysis 

should take into account the nature of phase stresses that arise both in the initial and 

deformed material. Therefore, the von Mises phase stresses (𝜎𝑣𝑜𝑛 𝑀𝑖𝑠𝑒𝑠
𝐴𝑙  and 𝜎𝑣𝑜𝑛 𝑀𝑖𝑠𝑒𝑠

𝑆𝑖𝐶  

shown in Fig. 5.13) and hydrostatic mean phase stresses (𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
𝐴𝑙  and 𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝑆𝑖𝐶  

shown in Fig. 5.14) are determined from the principal phase stresses and compared with 

model calculation. All these values represent semi-macroscopic behaviour of the 

considered constituents within composite. In Fig. 5.13 the evolution of the von Mises phase 

stresses versus the macroscopic stress is presented both for experimental data and model 

prediction. It is shown that the von Mises phase stresses predicted by the EPSC model 

perfectly agree with the experimental data for both the Al2124 matrix and the SiCp 

reinforcement, i.e. the evolution of phase stresses responsible for elastic and plastic 

deformation is correctly predicted by the model.  
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 a) b) 

Fig. 5.12 Evolution of phase stresses in Al2124 matrix (a) and SiCp reinforcement (b) 

versus compressive stress |Σ33| applied along x3 axis during compression (stages 1-2) and 

unloading (stages 2-3). Experimental results are compared with EPSC prediction.  

It is worth noting that the evolution of the phase von Mises stresses well illustrates 

partitioning of the load between matrix and reinforcement (cf. Fig. 5.13). During elastic 

deformation (up to |Σ33| ≈ 310-320 MPa) larger stress is concentrated at the reinforcement 

due to much stiffer elastic behaviour of SiC comparing to Al2124 alloy (cf. Young modulus 

given for both components in Table 5.3). Moreover, this difference increases significantly 

faster during plastic deformation of Al2124 matrix (over |Σ33| ≈ 310-320 MPa) and elastic 
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behaviour of SiCp reinforcement. Note that over |Σ33| ≈ 310 MPa the plot of 𝜎𝑖𝑖
𝐴𝑙  versus  

|Σ33| starts to saturate, while the plot of 𝜎𝑖𝑖
𝑆𝑖𝐶  versus  |Σ33| grows faster. The transfer of the 

load from the more compliant and softer Al2124 matrix to stiff SiCp reinforcement causses 

well-known composite strengthening effect. 
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Fig. 5.13 Von Mises stresses in Al2124 matrix and SiCp reinforcement versus 

compressive stress |Σ33| applied along x3 axis (stages 1-2). Experimental results are 

compared with EPSC and DTMSC prediction.  

In the next step of analysis the evolution of the mean hydrostatic phase stresses are 

compared with EPSC model (𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
𝐴𝑙  and 𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝑆𝑖𝐶  in Fig. 5.14 a).  At first stages 

0-1 the hydrostatic stresses (𝜎𝑖𝑖
𝑆𝑖𝐶 ≈ -615 MPa and 𝜎𝑖𝑖

𝐴𝑙 ≈ 132 MPa) generated due to 

sample cooling are shown (approximately such stresses were measured in the sample after 

T6 thermal treatment  [149]). The prediction of these stresses was done with TMSC model 

(see equation (5.8 b) for total temperature decrease 𝜃 = 𝑇 − 𝑇0 = −283 𝐾, where 𝑇 is the 

room temperature and 𝑇0 is the temperature in which the phases stresses compensate. Then 

the evolution of the phase stresses during compression (elastic and elastoplastic 

deformation, stages 1-2) and elastic unloading (stages 2-3) are compared with EPSC model. 

A significant disagreement between theoretical and experimental results is observed. In 

model calculations the mean hydrostatic stresses in both constituents change linearly versus 

applied stress |Σ33| during compression test and unloading. After loading and unloading 

mean hydrostatic stresses returned to the initial values for both constituents of the 

composite, i.e. plastic deformation did not change the mean hydrostatic stress in the SiC 

particles and Al2124 alloy matrix. On the contrary, in the case of experiment data the 

nonlinear evolution of the phases stresses occurred during plastic deformation, and after 

sample unloading almost complete relaxation of the mean hydrostatic phase stresses was 

observed. It can be concluded that the EPSC model starting from the hydrostatic state of 
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stresses assumed for spherical inclusions in both components of the composite cannot 

predict the effect of thermal stresses relaxation.  
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 a) b) 

Fig. 5.14 Comparison of the EPSC (a) and DTMSC (b) models with measured mean 

hydrostatic stresses in Al2124 matrix and SiCp reinforcement. Stages 0-1 show stresses 

generation during cooling, stages 1-2 correspond to compression test and stages 2-3 

represent unloading. 

It should be however emphasized that the mean hydrostatic stress in the Al2124 matrix 

determined from diffraction and used as the input for TMSC or EPSC model does not 

correspond to the real stress state that occurs in the composite. The stresses measured by 

diffraction and calculated by the self-consistent models are the average values for many 

grains in given phase and their spatial variation within the matrix is not taken into account. 

In real composite the stress in the Al2124 matrix is strongly heterogeneous especially 

around reinforcement particles [51]. To overcame the above problem the modified DTMSC 

model was developed and applied in this work. In this model  the initial hydrostatic stresses 

produced during cooling are assigned to all grains in the Al2124 matrix, but then the 

correction of these stresses is performed in each interaction step (cf. using the temperature 

dependent term in equation (5.8 c) with 𝜃 = −283 𝐾). This correction allows to calculate 

the thermal origin phase stresses generated for current state of the material using Eshelby 

approach, instead of prediction of initial hydrostatic stresses evolution leading to false 

result. It the DTMSC model the average thermal origin phase stresses are calculated for the 

homogenous medium described by current tangent moduli tensors 𝑙𝑖𝑗𝑘𝑙 and 𝐿𝑖𝑗𝑘𝑙 .  
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Fig. 5.15 Evolution of phase stresses in Al2124 matrix (a) and SiCp reinforcement (b) 

versus compressive stress |Σ33| applied along x3 axis during cooling (stages 0-1), 

compression (stages 1-2) and unloading (stages 2-3). Experimental results are compared 

with DTMSC prediction.  

In Fig. 5.14b the experimental mean hydrostatic phase stresses were compared with 

the predictions of the DTMSC model and a very good agreement was found between the 

experiment and model prediction. The nonlinear evolution of the stresses  

𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐
𝐴𝑙  and 𝜎ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝑆𝑖𝐶  during plastic deformation leading to relaxation of these 

stresses after unloading is well predicted by the DTMSC model. As shown in Fig. 5.13 and 

Fig. 5.8, also the von Mises phase stresses 𝜎𝑣𝑜𝑛 𝑀𝑖𝑠𝑒𝑠
𝐴𝑙  and 𝜎𝑣𝑜𝑛 𝑀𝑖𝑠𝑒𝑠

𝑆𝑖𝐶  and the macroscopic 

stress are correctly predicted by the DTMSC model, in this cases the results of DTMSC 



102 

 

and EPSC models are almost identical. It means that the modification introduced into 

DTMSC model influence only the thermal origin stresses and the other results are the same 

as in the case of EPSC model. Finally the principal phase stresses are compared with model 

calculation (𝜎𝑖𝑖
𝐴𝑙  and 𝜎𝑖𝑖

𝑆𝑖𝐶  in Fig. 5.15). It was found that the DTMSC model, which takes 

into account the relaxation of the thermal stresses, predicts the evolution of phase stresses 

during plastic deformation much better compared to the EPSC model. It is worth noting 

that after unloading the residual phases stresses remain in the sample. However, according 

to model results these stresses should have mostly deviatoric character. It was found that 

tensile stress 𝜎33
𝐴𝑙  and compressive stress 𝜎33

𝑆𝑖𝐶  are generated in the direction of sample 

compression, while compressive stresses 𝜎11
𝐴𝑙 , 𝜎22

𝐴𝑙  and tensile stresses 𝜎11
𝑆𝑖𝐶 , 𝜎22

𝑆𝑖𝐶  were 

created in the directions perpendicular to the applied load,  cf. stage 3 in Fig. 5.15. As 

showed in this figure the model result is confirmed by the experimental data obtained for 

Al2124 matrix and at least qualitatively for the SiC particles. As already discussed, the 

thermal phase stresses relaxed after plastic deformation and unloading of the sample, cf. 

stage 3 in Fig. 5.14 b.  

The states of the residual phase stresses having different origins are illustrated in 

Fig. 5.16. In the case of sample colling the change of volume fraction causes generation of 

mean hydrostatic phase stresses, while in the case of plastic deformation (e.g. in 

compression mode) the mismatch of the grains shape leads to deviatoric type of phase 

stresses. 

 

Fig. 5.16 Residual phase stresses generated due to cooling and plastic compression 

of Al/SiCp composite.  
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5.6. Summary  

 

This part of the work concerns determination of phase stress evolution in both 

constituents of Al/SiCp composite during thermal treatment and elastoplastic compression 

test. The experimental study was performed using TOF neutron diffraction method which 

enables lattice strains measurement independently in different phases. Thanks to the 

advantages of EPSILON-EDS TOF diffractometer the measurements were done 

simultaneously in 9 directions and the principal components of stress tensor were 

determined for different loads applied to the sample. Moreover the EPSC model was 

developed in order to study different types of the stresses during cooling, compression and 

unloading.  

It was found, that thermal origin phase stresses are generated in Al/SiCp composite 

during sample cooling from high temperature due to difference in CTE of Al and SiC. The 

average values of these stresses show hydrostatic nature in each phase, however significant 

stress heterogeneities  in the Al2124 matrix are expected around particles of SiC. The 

experimental values of compressive stress in SiCp and tensile stress in Al2124 matrix are 

correctly predicted by the TMSC model assuming elastic behaviour of both composite 

components. The thermal origin phase stresses are self-equilibrated leading to a zero state 

of macroscopic stresses for an unloaded sample. 

During purely elastic deformation of the composite, the stresses evolve linearly in both 

components and the stiff SiCp reinforcement is more loaded compared to the more 

elastically compliant Al2124 matrix. This stress partitioning between phases, leading to 

strengthening of the composite, is well predicted by the EPSC model. However, when the 

plastic deformation begins in the Al2124 matrix, the EPSC prediction of phase stresses is 

incorrect if the hydrostatic stresses are assigned to all grains belonging to both phases. 

Analysing the experimental data, it was found that during the plastic deformation of 

the Al2124 matrix, the phase stresses of thermal origin relax and they are replaced by 

residual stresses resulting from grain shape mismatch. This process was predicted by the 

DTMSC model in which thermal expansion of the both constituents were performed for the 

current state of the material subjected to plastic deformation. When this correction was 

applied to the EPSC model, thermal stresses relaxation was well predicted, leading to a 

correct simulation of the stress distribution between phases and residual stress after 

unloading of the sample. It was found that significantly higher von Mises stress is localized 

in the elastic SiCp reinforcement, comparing to the plastic Al2124 matrix. This means that 

the reinforcement partially relieves the matrix, taking greater load and thus causes 

mechanical strengthening of the composite. It is worth noting that such a load partitioning 
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leads to a reduction of the von Mises stress at the matrix to the current value of yield stress 

of the Al2124 alloy (determined by work hardening of the of the Al2124). 

Finally, it should be emphasized that the thermal stress relaxation process may be more 

complex than that predicted by the DTMSC model. This is due to possible discontinuities 

in the material resulting from the damage process taking place at the interface between the 

Al2124 matrix and the SiC particles. This may be an additional cause of phase stress 

relaxation, which is not included in the self-consistent models used in this work. Despite 

difficulties in full interpretation of the mechanisms of thermal stresses relaxation, an 

important achievement of this work is the experimental determination of mean phase stress 

tensors in both composite components during thermal treatment and mechanical loading. 

This allowed to describe and discuss the evolution of phase stresses having different nature 

and origin. 
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6. Diffraction study of grain stresses and activation of twin 

and slip systems in AZ31 magnesium alloy 

 

6.1. State of art – introduction 

 

Magnesium exhibits strongly anisotropic plastic properties, which are governed by slip 

and twinning modes with very different critical activation stresses. The slip systems, on 

which deformation is controlled by movement of dislocations, are the given in Table 3.1 

and shown in Fig. 3.5. Their activation can be observed under different loading conditions 

[158].  Twinning can be also activated in magnesium. The twin systems are classified into 

two groups, depending on imposing of tensile or compressive strain along <c> axis (see 

Table 3.2, Fig. 3.11).  

In numerous works concerning magnesium alloys, the CRSS for basic deformation 

modes were determined by fitting experimental data of mechanical tests (tension, 

compression) and/or lattice strains measured in situ using diffraction to theoretical 

deformation models (e.g., [13–15,17–19,22,23,158–164]). However, the estimated values 

of CRSS are often scattered in wide ranges. After elimination of extreme results these 

values are as follows: for basal slip systems 2-50 MPa, for prismatic systems 45-120 MPa, 

for pyramidal systems 40-160 MPa and for tension twins 15- 50 MPa (Suppl. Material in 

[23]). The value of 200 MPa for compression twins can be added to this revue [26]. 

Generally, it can be emphasised that CRSS of the deformation modes of magnesium alloys 

can be ordered from low to high values, as follows: basal slip, tensile twinning, prismatic 

slip, pyramidal slip, and compression twinning. 

Accordingly, two easy deformation modes are basal slip and tensile twinning. 

However, the basal slip is predominant only for advantageous crystal orientations, when 

loading force is deviated from crystal <c> axis. It was also observed that the basal slip 

systems, having the lowest CRSS, show a non-negligible latent hardening. Therefore, also 
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other slip or twin systems must be activated to allow plastic deformation of the sample to 

occur. It was found that also the so called slip-induced twinning appears, which is mainly 

governed by the geometrical compatibility parameter [165]; this mechanism activates the 

tension twins. Another interesting result is presented in [163], where the visco-plastic 

model was developed. Different factors can influence the deformation pattern in 

magnesium and magnesium alloys. Besides temperature, it is also ageing [166]. It was 

found that in the initial range of deformation the aging promotes twinning over slip but the 

presence of precipitates leads to thinner twins. Upon unloading a further forward twinning 

as well as de-twinning are observed.  

It should be noted that much of the data, discussed above, was obtained using 

deformation models (mostly visco-plastic model, based on Eshelby type interaction) to 

estimate CRSS values from different mechanical tests. However, in a real sample the 

interactions between grains can have more complex character, and they can be described 

by a spectrum of models between Sachs, Hill and Taylor/Lin [24]. Another problem 

concerns important number of parameters used in the models, which must be fitted with 

experimental data. Some progress in this aspect was proposed in [26], where a model with 

strongly reduced number of parameters was used. 

Generally, the determined CRSS values basing on model assumptions are in rather 

wide ranges, as summarized in [23].  The results obtained from deformation models are not 

always. Moreover, only the initial values of CRSS are determined and its further variation 

is based on phenomenological laws (in most cases Voce law). In this aspect new arising 

methods of direct determination of CRSS from experimental data, are noteworthy. In order 

to directly determine CRSS from experiments, various techniques are used to measure the 

stresses in individual grains or groups of grains [22,42–44,46] and in individual phases of 

polycrystalline materials [107,130,167].  In [22] the resolved shear stresses (RSS) in 

titanium were directly determined using high energy X-ray diffraction microscopy. 

However, the study was done for individual grains and a some spread appeared in the 

obtained CRSS values. The first direct determination of RSS in AZ31 magnesium alloy for 

different slip systems was performed in [40]; in situ measurements for four selected crystal 

orientations were done. This kind of experiments seem to be very promising. 

Another approach to the study of deformation mechanisms in magnesium was 

proposed using simulations based on molecular dynamics (MD) method [168,169]. The 

calculations developed using MD are directly comparable to experimental results on very 

small samples. Obviously, most of deformation experiments on magnesium are mechanical 

tests on macroscopic samples. It should be noted that a series of interesting observations 

were done performing compression tests on micro- and nanopillar magnesium samples 

[170–172]. In the case of compression along <c> axis of micropillar samples pyramidal 

slip was observed and next due to a misalignment of loading force a massive basal slip was 
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observed. Another behaviour was observed in nanopillar samples: a compression twinning 

was observed, followed by basal slip inside a formed twin. On the other hand, when tension 

strain was imposed along <c> axis - tensile twinning was activated [171]. Next, when 

crystal <c> axis was strongly tilted from the loading direction the basal slip was 

predominant. And finally, tension twinning was dominating when compressive stress was 

applied perpendicularly to the <c> axis [172]. The calculations done using MD confirm 

most of the above experimental results. 

Another useful technique for testing the micromechanical properties of materials is 

acoustic emission [173–178]. This phenomenon occurs during sample deformation and 

may come from various sources that are difficult to distinguish. One of the first and most 

popular methods based on acoustic emission is the so-called hit-based method, which 

consists in setting parameters such as the amplitude or duration of the event for the recorded 

signal. A characteristic feature of the acoustic emission is the difference in the sound wave 

coming from different sources, which allows the spectral analysis to identify these sources. 

An example of a technique that uses this dependency is called adaptive sequential k-means 

(ASK). This method was used to test the magnesium alloy and allowed to demonstrate 

significant activity of the primary and twin systems during mechanical tests carried out in 

different directions for a sample with a significant texture [175,176]. It is worth noting that 

acoustic emission is a method complementary to diffraction studies, especially neutron 

diffraction. The combination of these methods allows to describe the mechanisms of plastic 

deformation and to study the dynamics of these processes. 

The above discussion shows that activation of deformation modes in magnesium can 

depend on many factors, therefore the CRSS values estimated by fitting of experimental 

results with deformation models are not unique. The new method proposed in the present 

work is based on direct determination of CRSS from diffraction in situ experiments, 

without using deformation models. Such determined CRSS will constitute an important 

basic data.  

Another important goal of this work is to determine experimentally the stresses 

localized at grains with different orientations in order to explain the huge difference in 

mechanical stress-strain plots obtained for different loading tests performed for strongly 

textured sample (cf. Fig. 6.4), shown in Fig. 6.6. Moreover, the measured partitioning of 

the load between the grains will allow us to verify the intergranular interactions in the 

elastoplastic self-consistent (EPSC) model. The verified and modified model will be used 

to determine the work hardening occurring on different slip systems. Finally, the role of 

twinning process in softening followed by strengthening of the sample subjected to 

compression test in rolling direction - RD (Fig. 6.6) will be explained. 
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6.2. Material characterization and experiments  

 

The studied material was the hot rolled magnesium alloy AZ31. The chemical 

composition of this alloy is presented in Table 6.1. The alloy orientation map and texture, 

determined by EBSD technique, are presented in Fig. 6.1, where a strong basal texture 

component is visible. The average grain size of the alloy is 12,2μm with a standard 

deviation of 7,9μm. 

In order to measure the stress components using neutron diffraction, three loading 

experiments were performed - tensile in rolling direction (later called RDT) [40], 

compression in normal direction (NDC) and compression in rolling direction (RDC). 

Example diffractogram of the initial undeformed material and the sample loaded with a 

stress of 𝛴𝑅𝐷  =  247 MPa in the rolling direction, obtained on an EPSILON - MSD 

diffractometer, are shown in Fig. 6.2. The appearance of a twin orientation can be noticed 

by significant increase in 002 reflection and changes in intensities of other peaks. 

Table 6.1 Chemical composition of AZ31 magnesium alloy 

Element Al Zn Mn Cu Mg 

Composition (wt., %) 2,5-3,5 0,7-1,3 0,2-1,0 0,05 94,15-96,55 

 

 

 

 

 

 

Fig. 6.1  EBSD orientation map (a)  and  (0001) pole figure for the initial undeformed 

sample (b). 
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Fig. 6.2 Comparison of the diffractograms from L2 detector for the initial undeformed 

magnesium AZ31 sample and the sample under compressive load (𝛴𝑅𝐷  =  247 MPa ) in 

rolling direction (RD). A change in texture is visible, especially in the 002 reflection, 

resulting from the appearance of a tensile twin orientation. 

The first experiment (RDT) was carried out on a TKSN 400 (HK9) diffractometer at 

the Nuclear Physics Institute in Rěz (Czech Republic) using angle dispersive (AD) method 

(see section 4.5). To do measurements for the selected orientations: A, B, C and D (see 

Fig. 6.3 and Fig. 6.4) unique sets of poles were chosen, which are presented in Table A2.1 

(Appendix 2). The sample used in this experiment was in the bar shape with a length of 

2 cm and a 4 mm square cross-section. The results of this experiment have already been 

published [40] and in this work the data from this experiment are analysed and compared 

with next experiments (NDC and RDC). 

 

Fig. 6.3 Visualisation of orientations examined during experiments. 
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Fig. 6.4 Experimental ODF obtained from EBSD measurements for the initial 

undeformed sample. 

The next two experiments (NDC and RDC) were performed on the EPSILON-MSD 

diffractometer at the Joint Institute for Nuclear Research (JINR) in Dubna (Russia), using 

the time-of-flight method (see section 4.5). Samples measured during in situ experiments 

had cylindrical shape and their initial dimensions were 24,04 mm length and 13,9 mm 

diameter in NDC experiment and 27,4 mm length and 13,9 mm diameter in RDC 

experiment. Measurements were made with an incoming beam width of 10 mm, and each 

data acquisition for a given load took about 10 hours. To avoid potential systematic errors 

the relative lattice strains were determined (cf. equation (6.1)). 

The measurement geometry using nine detectors is presented in section 4.5. The 

compressing stress rig allowed the sample to be rotated by any angle about its axis, which 

allowed to increase the number of measured orientations. One turn of 90° was done during 

the RDC experiment and the measurement was performed before and after rotation 

increasing number of measurement directions. A conjunction of detector’s geometry with  

symmetry of the samples (due to crystallographic texture) enabled measurements for many 

poles, which allowed to analyse many orientations after the experiment. In the NDC 

experiment the orientations measured are A, B, D, F and G, while in the RDC experiment 

- A, B, D, F and G'. These orientations are marked on the orientation distribution function 

(ODF, see Fig. 6.4) and their visualisation is showed in Fig. 6.3. Poles used for 

measurements of lattice strains in these experiments are listed in Table A2.1 (Appendix 2). 

Examples of orientations used in NDC and RDC experiments are also presented in pole 

figures (see Fig. 6.5), where the positions of scattering vector corresponding to the 
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detectors and their symmetrical positions are marked, considering the symmetries resulting 

from crystallographic texture of the sample (the load is in the centre of each pole figure). 

  

  

Fig. 6.5 Poles used for stress determination for different grain orientations and 

experiments performed on EPSILON-MSD instrument. Points L1-L9 (red stars) are the 

orientations of scattering vector for nine detector’s before sample rotation, points  1’- 9’ 

(purple “x”) are the scattering vector orientations after rotation about cylinder axis by 90º 

and (blue “x”) equivalent orientations find out using sample symmetries (due to 

crystallographic texture). The orientation of the applied load is always in the centre of pole 

figure. 

Ex situ experiments (before neutron diffraction) were done first, using the same stress 

rig and the same conditions as during in situ neutron measurements to precisely plan the 

increments of measuring steps. In order to perform in situ neutron diffraction 

measurements, the force was increased until the predetermined stress (during elastic 

deformation) or strain (during plastic deformation) value, after which the stress rig was 
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stopped to maintain a constant sample strain. The diffraction measurements were 

performed for the so applied increments of the load, but above the yield point it was 

necessary to wait for stabilisation of the decreasing exponentially macroscopic stress. 

Therefore in the plastic deformation range the measurements were started about 30 min 

after each increment of the applied load. Macroscopic stress-strain curves obtained for each 

of the experiments after partial relaxation of macrostress (states for which the diffraction 

measurements were started) are presented in Fig. 6.6. It is worth noting that there is a large 

difference in the macroscopic stress response of the sample to a given macroscopic strain, 

depending on the nature (compressive or tensile) and direction (along RD or ND) of the 

applied load. As shown in Fig. 6.6, during the RDC experiment the extent of a plateau 

occurred during which the twins were created, while the strengthening of the sample is 

much more significant when the load is applied along ND direction comparing to RD 

direction. These differences in macroscopic behaviour of the sample should be explained 

by mechanisms of plastic deformation at the scale of polycrystalline grains. 

 

Fig. 6.6 The results of three different tests carried out for the tested AZ31 alloy. The 

presented stress values were determined for the imposed macrostrains after the initial 

relaxation of the macro-stresses. Diffraction measurements were performed at these points. 
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6.3. Direct determining of grain stresses and CRSS values 

 

6.3.1. Determination of stresses for given orientations 

 

The important goal of this work is to determine experimentally the stresses for selected 

groups of crystallites, both those which are very numerous due to crystallographic texture, 

but also those which are very few and do not play a significant role during the deformation 

process. The stress evolution for a given grain orientation was determined using crystallite 

group method (see section 4.4), i.e. from the set of lattice strains measured during 

tensile/compression test for appropriate ℎ𝑘𝑙 reflections and orientations of the scattering 

vector, which are closest to the poles corresponding to the tested grain (Table A2.1 in 

Appendix 2) were chosen.  

The lattice strains were calculated from the formula: 

 < 𝜀(ℎ𝑘𝑙, 𝜑, 𝜓) >ℎ𝑘𝑙=
< 𝑑 >ℎ𝑘𝑙−< 𝑑 >ℎ𝑘𝑙

0

< 𝑑 >ℎ𝑘𝑙
0  (6.1) 

where < 𝑑 >ℎ𝑘𝑙 and < 𝑑 >ℎ𝑘𝑙
0  are the interplanar spacings measured for the sample under 

applied load and the initial non-loaded sample, respectively. 

In the case of determining the lattice strain during twin formation, the initial value of 

< 𝑑 >ℎ𝑘𝑙
0  could not be obtained directly from the measurement, because the twin 

orientation are not present in the initial sample (notice the absence of peak 002 for the initial 

sample in Fig. 6.2). To determine the missing < 𝑑 >ℎ𝑘𝑙
0   values the available interplanar 

spacings from two detectors were compared and the < 𝑑 >ℎ𝑘𝑙
0  values for missing 

reflections were determined from interpolation (this concerns especially missing 002 and 

004 reflections in L2 detector).  For details see Appendix 1. This approach was previously 

proposed by Clausen et al. in [16]. 

Having measured lattice strains for sets of poles corresponding to given grain 

orientations the components of stress tensor were calculated using the crystal group method 

(CGM) described in section 4.4 The 𝐹𝑖𝑗
𝑅(ℎ𝑘𝑙, 𝜑, 𝜓) factors used in equation (4.24) were 

calculated from single crystal elastic constants: 𝑐11 = 59,3 GPa,  𝑐33 = 61,5 GPa, 

 𝑐44 = 16,4 GPa, 𝑐12 =  25,7 GPa, 𝑐13 = 21,4 GPa  taking into account [157]. 

The first analysed experiment is the tensile test performed in the rolling direction (RD). 

In Fig. 6.7 the grain stresses for orientations A, B, C and D (defined in Fig. 6.3 and Fig. 6.4) 

versus the macroscopic stress corresponding to the applied load are shown. The sets of 

strains used for stress determination are shown in [40]. Because of the sample and crystals 

symmetry only the non-zero principal stresses 𝜎𝑖𝑖
𝐴 and 𝜎𝑖𝑖

𝐵 were chosen for the A and B 

orientations. In the case of orientation C the  non-zero 𝜎23
𝐶  component is also shown. This 
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shear stress can be different from zero because the crystallite axis <c>  is tilted from the 𝑋3
𝑆 

sample axis (normal to the surface of the sample, ND) toward the direction 𝑋2
𝑆 (RD) along 

which the tensile force was applied. Therefore, these axes of the stress tensor defined with 

respect to the sample system may not coincide with the principal stress axes. Finally in the 

case of D orientation only the 𝜎33
𝐷  was determined because the strains were measured only 

in two directions. In Fig. 6.7 also the results of EPSC model are shown however, they will 

be discussed in the section 7.1. 

Analysing the experimentally determined components of stress tensor it can be noticed 

that in the beginning of compression test (Σ𝑅𝐷 smaller than about 70-90 MPa) the grain 

stresses are practically equal to the applied load, i.e. 𝜎33
𝐴,𝐵,𝐶,𝐷 = Σ𝑅𝐷 and other stress 

component are equal to zero (see Fig. 6.7). This means that, due to a low elastic anisotropy 

of crystallites equal stresses are localized at all grains having different lattice orientations. 

However, when plastic deformation begins (Σ𝑅𝐷 between 70-90 MPa), the partitioning of 

stresses between grains changes. A higher compressive stress in the loading direction is 

localized at grains having orientation A and B (with <c> axis parallel to ND), i.e. 

𝜎33
𝐴,𝐵 >  Σ𝑅𝐷 (Fig. 6.7). Simultaneously, the value of 𝜎11

𝐴,𝐵
 remains almost equal to zero, 

while a small compressive stress 𝜎22
𝐴,𝐵 < 0 is generated. The deviation of the grain stress 

components from the macroscopic values increases with increasing applied load. The 

opposite behaviour is demonstrated by the tilted grains with orientations C and D, for which 

the tensile stress in the direction of the load decreases comparing to the macroscopic value 

(𝜎33
𝐶,𝐷 < Σ𝑅𝐷). This means that the plastic deformation occurred for the grains D and C 

causing transfer of part of the load to other grains which remain elastic. Representatives of 

the still elastically deformed grains are those with the A and B orientations. For such grains 

the stress is greater than the macroscopic stress Σ𝑅𝐷. The interaction between grains in the 

direction perpendicular to the load is more complex than in the loading direction and it 

could be explained by model. 

 Then, it can be noticed that for Σ𝑅𝐷 > 125 MPa the trend of the plots obtained for the 

orientations A and B again changes, i.e. the deviation of the grain stresses from the 

macroscopic values stabilizes and does not increase anymore. It can be interpreted as the 

beginning of plastic deformation for the grains A and B. At the same time, the change in 

the behaviour of stresses also takes place for the grains C and D, i.e. greater stress is 

transferred to these grains in response to the plastic deformation of the grains having 

orientations such as the A and B. It should be emphasised that the Σ𝑅𝐷 thresholds, where 

the trends of plots change, cannot be directly used in Schmid low to determine RSS values 

on activated slip systems because of intergranular stresses. Therefore in this work 

calculations of the RSS will be based on the stress tensor components determined for 

selected orientations using neutron diffraction. 
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Fig. 6.7 Evolution of the grain stresses for orientations A, B, C and D versus 

macrostress 𝛴𝑅𝐷 during tensile test performed along RD compared with model using 

threshold assumption. The evolution of macroscopic stress 𝛴𝑅𝐷 is drawn with a pink line. 

 In the second and the third experiments the sample was compressed respectively in 

the ND and RD directions, and TOF method was used. The sets of reflection used in these 

experiments are shown in Fig. 6.5 and in Table A2.1 (Appendix 2).  

Due to sample and crystal symmetries, in analysis of the data obtained in NDC 

experiment (compression in ND) only the non-zero principal stresses 𝜎𝑖𝑖
𝐴 were determined 

for the orientation A, while in the case of orientations D, F and G additionally non-zero 

𝜎23
𝐷,𝐹,𝐺

 component was determined. Similarly, as in the previous experiment, this shear 

stress can be different from zero because the crystallite axis <c> is tilted from the 𝑋3
𝑆 (ND) 

sample axis (along which the compressive force was applied) towards the direction 𝑋2
𝑆 

(RD).  The results of stress components evolution during NDC experiment are presented in 

Fig. 6.8 for orientations A, D, F and G (the result for orientation B was almost identical 

with this for orientation A, due to texture and crystal symmetry). Also, in Fig. 6.8 the results 

of EPSC model are shown to analyse them in section 7.1. 
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Similarly, as in the previous experiment it can be noticed that the in the beginning of 

the test (for |Σ𝑁𝐷| less than about 70-90 MPa) the grain stresses are practically equal to the 

applied load, i.e.  𝜎33
𝐴,𝐵 = Σ𝑁𝐷 and the other stress components are equal to zero 

(cf. Fig. 6.8). This confirms that, the crystallites exhibit low crystal anisotropy leading to 

the same localised stress for every grains having different lattice orientations. However, 

when plastic deformation starts (at about |Σ𝑁𝐷| ≈  70 – 90 MPa), a greater compressive 

stress in the loading direction is localized at the grains having orientation A and B (|𝜎33
𝐴,𝐵| >

|Σ𝑁𝐷|), and simultaneously nonzero tensile stress tensor components 𝜎11
𝐴,𝐵 ≈ 𝜎22

𝐴,𝐵 > 0 are 

generated at the transverse directions. The deviation of the grain stress components from 

the macroscopic values increases with increasing load. The opposite behaviour is 

demonstrated by the “tilted grains” with orientations D, F and G, for which the compressive 

stress in the direction of the load decreases comparing to the macroscopic value (|𝜎33
𝐷,𝐹,𝐺| <

|Σ𝑁𝐷|). Also, for these grains the nonzero stresses are generated in the directions 

perpendicular to the load, but their behaviour is complex. Similarly, as in the previous 

experiment, transfer of the stress from plastically deformed grains (e.g. D, F and G 

orientations) to the elastically deformed ones (e.g. orientations A and B) occurred. Then, it 

can be noticed that for |Σ𝑁𝐷| > 180 MPa the trend of the plots obtained for the orientations 

A and B again changes, and the deviation of the grain stresses from the macroscopic values 

does not increase. This means the beginning of plastic deformation for the grains A and B. 

The changes in the behaviours of stresses localized at grains D, F and G  are not significant 

for |Σ𝑁𝐷| > 180 MPa.  



 

117 

 

Orientation A

 |S
ND

| (MPa)

G
ra

in
 s

tr
es

se
s 

 
ij

 (
M

P
a)

-400

-300

-200

-100

0

100


ND

 - macro.

 mod.

 exp.

 exp.

 exp.

Orientation F

 |S
ND

| (MPa)


ND

 - macro.

 exp.

 exp.

 exp.

 exp.

 mod. 

 mod. 

 mod.

 mod.

Orientation G

 |
ND

| (MPa)
0 50 100 150 200 250 300

G
ra

in
 s

tr
es

se
s 

 
ij

 (
M

P
a)

-400

-300

-200

-100

0


ND

 - macro.

 exp.

 exp.

 exp.

 exp.

 mod.

 mod.

 mod.

 mod.

Orientation D

 |
ND

| (MPa)
0 50 100 150 200 250 300


ND

 - macro.

 exp.

 exp.

 exp.

 exp.

 mod.

 mod.

 mod.

 mod. 

 mod.

 mod.

 mod.

 

Fig. 6.8 Evolution of the grain stresses for orientations A, D, F and G versus 

macrostress |𝛴𝑁𝐷| during compression test performed along ND compared with model 

using threshold assumption. The evolution of macroscopic stress |𝛴𝑁𝐷| is drawn with a 

pink line. 

In the third experiment (RDC), a compressive load in the direction of RD was applied, 

and in this case the twinning process took place at about |Σ𝑅𝐷| ≈ 90 MPa for a significant 

number of grain orientations. Before twinning insignificant deviations of the stresses from 

the macroscopic stress were observed for the studied orientations A, B and G’ (cf. Fig. 6.9). 

During twinning occurring at approximately constant load, the twins (orientation T) are 

formed mostly from crystallites having B orientation, which completely disappeared. The 

new twins, when they born exhibit compressive stress |𝜎33
𝑇 | slightly smaller than the 

macrostress |Σ𝑅𝐷|, but the stress |𝜎33
𝑇 |  arises during increasing of the load and quickly 

exceeds the value |Σ𝑅𝐷|. Then the deviation of the |𝜎33
𝑇 | from |Σ𝑅𝐷| value increases until 

the |Σ𝑅𝐷| reaches about 150 MPa, where the deviation stabilises. The transverse stresses 

|𝜎11
𝑇 | and |𝜎22

𝑇 | are tensile, they start from zero value and progressively arise until |Σ𝑅𝐷| ≈ 

150 MPa. This behaviour is characteristic for the elastically deformed grains (up to |Σ𝑅𝐷| ≈ 

150 MPa) in the plastically deformed material, i.e. elastic grains accumulate greater stresses 

as compared to macrostress. The A-oriented grains also transform into twins, but due to the 

lower Schmid coefficient (see next section) this transition is much slower and some of them 

remain in the sample much longer compared to the B-oriented grains. The stress |𝜎33
𝐴 | for 

the A-grains is higher than the macroscopic stress |Σ𝑅𝐷| at the beginning, but with 

increasing load, the stress |𝜎33
𝐴 | approaches the macroscopic stress value, while the stresses 
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in the direction perpendicular to the load are small and tensile or they are close to zero. The 

behaviour of the G’-oriented grains is similar to that which was observed in the previous 

experiment (compression in ND direction), i.e. the stress in the load direction |𝜎33
G’| arises 

slower than the macrostress |Σ𝑅𝐷| when plastic deformation begins. The behaviour of the 

transverse stresses and shear stress, for this grain orientation, are caused by interaction 

between grains, therefore their evolutions should be explained by the model. 
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Fig. 6.9 Evolution of the grain stresses for orientations A, B, T and G’ versus 

macrostress |Σ𝑅𝐷| during compression test performed along RD compared with model 

using threshold assumption. The grains having B orientation are transformed to twins (T-

orientation) at approximately |Σ𝑅𝐷| = 90 MPa. The evolution of macroscopic stress |Σ𝑅𝐷| 

is drawn with a dotted line. 
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6.3.2. Determination of CRSS for slip and twin systems 

 

Having determined evolution of the 𝜎𝑖𝑗
𝐶𝑅  stresses during three different modes of 

deformation the resolved shear stresses (RSS) for different slip systems can be calculated. 

Then analysing the behaviour of chosen RSS for specific grain orientations during three 

different tests the CRSS values for these systems can be found. To do this, the following 

rules for finding an active slip system were applied: 

- a potentially active slip system is the one for which RSS is the maximum among all 

symmetrically equivalent slip systems – this system is activated when its RSS reaches the 

CRSS value, 

- when the system is activated the RSS on this system starts to grow slower or does 

not change significantly – the RSS value for the system which is activated is considered a 

CRSS value,  

- if the evolution of RSS on more than one system indicates their activation at the 

same sample load, another test should be analysed to select the really activated system, 

- the slip systems for which the Schmid factor calculated for the uniaxial macroscopic 

stress is equal to zero, are excluded and treated as inactive, i.e. it is assumed that 

intergranular stresses are too low to activate the slips by themselves (however, the values 

of intergranular stresses are taken into account in the calculation of RSS and CRSS from 

the measured tensor 𝜎𝑖𝑗
𝐶𝑅). 

Using the above rules, the analysis of the measurement results was carried out 

considering the potential possibility of activating the slip and twinning systems during the 

three conducted experiments. 

In the case of tensile test performed in RD, the basal slip system cannot be activated in 

the grains having A and B orientations, because the load applied to the sample is parallel 

to the basal plane, leading to zero value of Schmid factor for macrostress Σ𝑅𝐷. The RSS on 

tensile twinning system is negative therefore twinning cannot occur. The other slip systems 

can be active for such grain orientations. On the other hand, the basal system and all other 

systems can be activated for C orientation.  

During compression test in ND, the only potentially active system for the orientation 

A and B are the pyramidal <c+a> systems for which the Schmid factor is not equal to zero.  

The tensile twinning system is inactive because of negative RSS value. The other systems 

are not activated due to zero value of the Schmid factor when uniaxial Σ𝑁𝐷 stress is 

perpendicular to the slip plane (as for basal system), parallel to the slip plane (as for 

prismatic system) or perpendicular to slip direction (as for basal, prismatic and 
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pyramidal <a> systems). For the D, F and G orientations, all slip systems including the 

basal system, can be active. 

In the compression test along RD, the RSS on tensile twinning system is positive and 

significant for the orientations A and B. This is a chance to find out the value of CRSS for 

twinning process. The RSS evolution for G’ orientations are also considered and, in this 

case, all slip systems can be active. Moreover, for the tensile twins (T-orientation) the 

Schmid factor calculated for the Σ𝑅𝐷 stress is close to zero for the basal, prismatic, 

pyramidal <a> systems, while for tensile twin system RSS is negative. Therefore, only the 

pyramidal <c+a> systems can be activated in the grains having orientation T. It should be 

emphasised, that only the first order tensile twinning systems were considered in this work, 

because only this type of twinning is significant in the analysed samples and deformation 

modes, as was observed in EBSD and texture measurements, discussed in section 7.3.  

Considering the above remarks at first the evolution of the maximum RSS (among all 

symmetrically equivalent systems) for the basal system in the tilted orientations were 

analysed. The tilted orientations are those for which the <c> axes is not perpendicular to 

one of the directions RD, TD or ND and Schmid factor is not zero for basal system. A 

common feature of such orientations is that the basal system can be activated, while for the 

A, B and T orientations it is inactive due to zero value of Schmid factor. It was found that 

the grain stress for the tilted orientations is always lower than the macroscopic value, i.e. 

these grains are softer than e.g., A, B and T orientations (cf. Fig. 6.7-Fig. 6.9). The 

conclusion is that CRSS and work hardening are the lowest for the basal system compared 

to other systems. The evolution of the maximum RSS for basal system was shown in 

Fig. 6.10 for the tilted orientations F and G during the compression test in ND. It is clearly 

visible that after the linear increase in the maximum RSS during elastic deformation, the 

value of RSS stabilizes and does not change for a certain range of deformation (or even 

slightly decreases). The CRSS is equal to the RSS value where the trend of the plot has 

radically changed, and it is determined as the average of the points closest to the trend 

change. The uncertainty of CRSS is estimated based on experimental uncertainty of these 

points. In the case of the compression test performed along the ND, the mean CRSS value 

for the base system is 28 MPa (calculated for the D and F orientations) and this value was 

used in further analysis (see Table 6.1). In the other two experiments, the CRSS values are 

more difficult to determine, and they are ambiguous, but they confirm the value determined 

from the compression test performed in ND, as shown in section 7.2. 
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Fig. 6.10 Evolution of the RSS for basal system (activated in grains having orientations 

D and F) versus sample strain |𝐄𝑵𝑫| during compression test performed along ND. 

Determined CRSS values and their uncertainties are marked with horizontal lines.  

Also, the values of CRSS for pyramidal systems <c+a> can be determined from the 

compression test in ND. In this case the evolution of maximum RSS on these systems in 

the grains with orientations A and B were considered. For such orientations only pyramidal 

systems <c+a> exhibit nonzero Schmid factors. As shown in Fig. 6.11a-d, a linear 

dependence of the maximum RSS versus  |Σ𝑁𝐷|  during elastic deformation of the sample 

occurred. Then the RSS increases faster due to the load transfer to those grains from the 

grains with tilted orientations in which the basal system is activated. Eventually, the upward 

trend in RSS value suddenly slows down and stabilizes, which means activation of 

pyramidal <c+a> systems (cf. Fig. 6.11 a-d). Therefore, the intersection of the regression 

lines fitted below and above the trend change can be identified as the point at which the 

RSS value equals to the CRSS value. Also, the uncertainty of the CRSS value obtained in 

this way can be estimated by considering the maximum difference between the 

intersections of the extreme lines corresponding to the uncertainty range for both fitted 

lines.  The values of CRSS with their uncertainties for the first and the second order the 

pyramidal <c+a> systems activated in grains A and B during NDC experiment are given in 

Table 6.2. It is worth noting, that we cannot distinguish which of the two systems (first or 

second order) is activated, it is also possible that they are activated together. 

Similar analysis of the pyramidal <c+a> systems activation can be performed 

considering the twin grains (T-oriented) during RCD test. Except for intergranular stresses, 

the stress state of the T-oriented grains in the RDC test is similar to the A and B-oriented 

grains in the NDC test, i.e. the load is parallel to the <c> axis. Based on the analysis of the 

maximum RSS values on the <c+a> systems, it was found that the CRSS values are 

different for the T-oriented grains (Fig. 6.11e, f), compared to the A and B-oriented grains 

(Fig. 6.11a-d), i.e. twins show a higher CRSS value than the grains in the initial 
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(undeformed) sample (Table 6.2). It should be emphasized that due to the small number of 

experimental points and their significant uncertainty, the uncertainty of the CRSS value for 

twins cannot be accurately estimated. Therefore, a measure of this uncertainty is defined 

by the points that are closest to the point where the curve changes its trend (see Fig. 6.11e, f 

and Table 6.2). 
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Fig. 6.11 Evolution of the RSS for the pyramidal <c+a> systems in the grains with A 

and B versus sample stress |Σ𝑁𝐷| during compression test performed along ND (a-d). 

Corresponding results, but for T-oriented grains (twins) are shown versus sample stress 

|Σ𝑅𝐷| during compression test performed along RD (e, f). The intersection points identified 

as CRSS values are indicated by arrows. 
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 The values of CRSS for pyramidal system <a> and prismatic system can be 

determined analysing the behaviour of RSS in the grains A and B during tensile test in RD. 

In the previous work (cf. [40]), it was found that from the RDT experiment it is possible to 

estimate the CRSS for the base system, however in the case of non-planar systems it could 

be concluded that they are activated for RSS in the range 62-85 MPa. It was not been 

possible to determine which system among the pyramidal <a>, prismatic and 

pyramidal <c+a> systems is responsible for the initiation of plastic deformation for A and 

B - oriented grains, because they all show non-zero values of RSS for the load applied along 

RD. The NDC experiment then demonstrated that the determined CRSS values for 

pyramidal <c+a> systems are significantly higher than RSS value on these systems during 

RDT testing (compare Table 6.2 and Fig. 6.11). Therefore, pyramidal <c+a> systems 

cannot be activated, and activation of pyramidal <a> and/or prismatic systems must be 

responsible for changing the trend of RSS vs.  |ERD| dependence during RDT test. The 

beginning of the change in the curve trend enabled to determine CRSS value which is equal 

to RSS at this point. The uncertainty of CRSS was determined on the basis of experimental 

uncertainties of the closes measurement points. The so determined CRSS values for 

pyramidal <a> system and prismatic system are given in Table 6.2 and shown in Fig. 6.12. 

As expected, these values are smaller when compared to CRSS values for the 

pyramidal <c+a> systems. For this reason, the macroscopic stress-strain curve is 

significantly lower in the RDT test compared to the NDC test. It is impossible to distinguish 

which of the systems or both systems: pyramid <a> and prismatic are activated, but it is 

worth noting that both systems have the same slip direction <a>. 
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c) d)  
Fig. 6.12 Evolution of the RSS for prismatic system and pyramidal <a> system 

(activated in grains having orientations A and B) versus sample strain |E𝑅𝐷| during tensile 

test performed along RD. Determined CRSS values and their uncertainties are marked with 

horizontal lines.  

Finally the CRSS for the twinning system can be determined from the RSS evolution 

occurring during compression along RD. In this case, the orientation B is taken into account 

because the Schmid factor for the twinning system in this orientation is the highest among 

all the other orientations considered. As shown in Fig. 6.13, the maximum RSS value for 

the twin system increases linearly and saturates suddenly until the plot finally ends as the 

B-grains disappear. The CRSS value and its uncertainty for the tensile twin system can be 

easily determined as the average of three points for the horizontal part of the graph 

(Fig. 6.13). 
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Fig. 6.13 Evolution of the RSS for tensile twin system (activated in grains having 

orientations B) versus sample strain |E𝑅𝐷| during compression test performed along RD. 

Determined CRSS value and its uncertainty is marked with horizontal lines.   

The values of CRSS determined in this work are given in Table 6.2 and compared with 

these obtained in [40]. As shown in this table the previously determined CRSS are close to 

the values obtained in this work excluding the values obtained for pyramidal <c+a> 

systems. Previously it was found that CRSS for all systems, excluding the basal system, are 

between 62-85 MPa, while in this work it was shown that the pyramidal <c+a> systems 

exhibit CRSS higher than 100 MPa. In the new analysis, taking into account compression 

tests in ND and RD, the CRSS for all slip systems and tensile twinning system were 

determined. However, as mentioned above it is not possible to find out which system 

pyramidal <a> or prismatic or both together are active, and the same concerns the first and 

second order pyramidal <c+a> systems.   
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Table 6.2 CRSS values determined from experiment and parameters of Voce law 

used in the modified EPSC model. 

 
Publication 

[40] 
Present work 

Slip system 

CRSS from 

experiment 

0 (MPa) 

CRSS from 

experiment 

0 (MPa) 

Parameters of Voce 

law used in 

modified EPSC 

model (in chapter 7) 

(MPa) 

Basal B:  {0001}〈112̅0〉 

(initial sample) 
35 28,0 (3,1) 

0=28, 1→0 

0→0, 1→0 

Prismatic P: {11̅00}〈112̅0〉 

(initial sample) 

62-85 

67,7 (7,9) 
0=68, 1=20 

0=180, 1=50 

Pyramidal <a>: 

{11̅01}〈112̅0〉 

(initial sample) 

59,7 (6,9) 
0=60, 1=20 

0=180, 1=50 

First order pyramidal <c+a> : 

{11̅01}〈1̅21̅3〉 

(initial sample) 

104,4 (5,6) 
0=104, 1=110 

0=1000, 1=80 

Second order pyramidal <c+a>: 

{12̅12}〈1̅21̅3〉 

(initial sample) 

116,6 (3,5) 
0=114, 1=110 

0=1000, 1=80 

First order 

tensile twin: 

{11̅02}〈1̅101〉 

(initial sample) 

Continuous 

approach 

- 49,1 (2,5) 

0=45 

0=2000 

Threshold 

approach 

𝛾𝑡ℎ𝑟𝑒𝑠
𝑇 = 0,0325 

(𝑤𝑇=0,25) 

0=47 

0=750 

First order pyramidal <c+a>: 

{11̅01}〈1̅21̅3〉 

(in the twin) 

- 

130 

(between 108 

and 145 ) 

0=134, 1=110 

0=1000, 1=80 

Second order pyramidal <c+a>: 

{12̅12}〈1̅21̅3〉 

(in the twin) 

- 

144 

(between 120 

and 161) 

0=144, 1=110 

0=1000, 1=80 
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6.4. Summary 

 

The most important goal of the work presented in this chapter is to introduce the 

crystallite group method to the in situ study of the textured materials subjected to the 

mechanical loading. This method was especially convenient to analyse the stress state for 

groups of grains having particular orientations. For the first time, the stress tensor 

components were determined for selected grain orientations directly from the lattice strain 

measured in situ during three different test. Knowing the grain stress the load partitioning 

at the scale of grains was described. It was found that for individual modes of sample 

deformation, the orientations can be divided into soft, intermediate, hard and those in which 

the twinning phenomenon occurs. The soft are these grains in which the basal slip system 

can be activated, in intermediate grains the prismatic or pyramidal <a> systems are active, 

while in for the hard orientations only the pyramidal <c+a> systems are potentially active. 

Hard grains bear the highest loads, and soft grains and those in which the twinning process 

occurs are the least loaded. 

It was found that the load partitioning plays a key role in macroscopic deformation and 

explains significant difference between macroscopic stress-strain curves for different 

deformation modes. In the case of compression test in ND, plastic deformation in hard 

grains requires activation of the pyramidal <c+a> systems, which leads to much higher 

macroscopic stress compared to tensile test in RD, where the prismatic and/or 

pyramidal <a> systems are activated. Significant influence of twinning phenomenon on the 

macroscopic behaviour of the sample was observed during compression test in RD. In the 

beginning of deformation, the twinning leads to perfect plasticity for which the load on all 

grains is similar and the sample deformation occurs for almost constant stress, while the 

significant sample strengthening was found when the volume fraction of twins increased. 

The orientations of the twins are very hard because the deformation of this grains require 

activation of the pyramidal <c+a> systems. 

 

A very important achievement of this work is that the CRSS values and their 

uncertainties were determined directly from experiment, without help of model as in the 

previous works [15,16,23,26,158,162–166]. This has been done analysing the evolution of 

the RSS on the slip systems and twin system for particular orientations.  
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7. Plastic deformation of AZ31 alloy study using EPSC model 

and experimental data  

 

7.1. Model calculations of the stress partitioning compared 

to experiment 

 

The CRSS for the slip systems and tensile twinning system were determined directly 

from experiment, as described in the previous sections. However, the other parameters of 

the Voce law (equation (3.13)) cannot be found out without help of crystallographic model. 

Therefore, the experimental CRSS values (or values close to them within the uncertainty 

range) were used as input data for the EPSC calculations, while the hardening parameters 

of Voce law were adjusted in order to fit the model lattice strains to the experimental ones 

(measured in the direction of the applied load) and macroscopic stress-strain curves, 

simultaneously. 

It should be emphasised that the same set of parameters of Voce law was applied for 

the three tests analysed in this work (Table 6.2). It was found that to fit the model values to 

the experimental ones the interaction of grains represented by interaction tensor 𝑇𝑔𝑔 

(equation (3.35)) should be multiplied by the factor 𝛼 = 1,2, i.e.: 

𝑇𝑖𝑗𝑘𝑙
𝑔𝑔,𝛼

=  𝛼 𝑇𝑖𝑗𝑘𝑙
𝑔𝑔

 (7.1) 

where 𝑇𝑖𝑗𝑘𝑙
𝑔𝑔,𝛼

 is the modified tensor used to calculate the localisation tensor 𝐴𝑖𝑗𝑘𝑙 (cf. 

equation (3.35)) and the 𝑇𝑖𝑗𝑘𝑙
𝑔𝑔

 tensor is calculated for the Eshelby spherical inclusion 

embedded into homogeneous medium characterised by macroscopic tangent modulus 

tensor 𝐿𝑖𝑗𝑘𝑙. 

This means that the differences in the strains between grains are enlarged in 

comparison to these calculated for the spherical Eshelby inclusion by factor 𝛼, i.e. in some 

assumption: 
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𝐴𝑔   =   (𝐼  −  𝛼 𝑇𝑔𝑔 𝛥𝑙𝑔)−1 ≈ (𝐼  +  𝛼 𝑇𝑔𝑔 𝛥𝑙𝑔) (7.2) 

Therefore, the interactions between grains in the modified model are shifted from those 

obtained by the self-consistent model towards the Sachs approach (assumption of 

homogeneous stresses and free strains). It should be emphasised, that the above assumption 

is necessary to modify the properties of the grains interaction in order to fit the model to 

experiment because the original EPSC model does not predict correctly processes occurring 

during elastoplastic deformation of the studied textured Mg alloy. 

In the used modified EPSC model the twinning process is predicted continuously and 

starts when the RSS on the twin plane reaches the CRSS value. It was assumed that single 

twin orientation is created in the parent for this twin system for which the Schmid factor is 

maximum. 

The twinning phenomena can be included into the model in various ways. In this work, 

twinning is predicted using two different approaches: 

- "Continuous assumption” means that when RSS reaches the CRSS value, a twin 

grain is formed with the stress state and CRSS the same as the parent grain shows, but with 

a new crystal lattice orientation, calculated using equation (3.16). The twin grain then grows 

with increasing shear strain on the twin system reducing the parent grain volume as 

described by equations (3.17) and (3.18). 

- In the case of "threshold assumption”, when the RSS reaches the CRSS value, the 

twin system is activated, but no twin is formed yet. The parent grain is subjected to 

deformation in the same way as in the case of crystallographic slips, i.e. the state of stresses 

for the parent grain and CRSS on its slip systems changes. Twin grain is formed after 

exceeding the assumed shear strain value on the twinning system (𝛾𝑡ℎ𝑟𝑒𝑠
𝑇 ) and then the grain 

orientation changes. The volume of twin grain is proportional to the total shear strain on 

the twinning system (equations (3.17)), counted from the moment of twin system 

activation. 

The assumption introduced for the parent grains is that 𝑙𝑖𝑗𝑘𝑙 → 0. This means that 

during twinning, which is approximated by a crystallographic slip on the twin system, the 

parent grain is perfectly plastic. In this case, the grain adjusts completely to the surrounding 

matrix without causing mismatch stresses, i.e. the stress for the grain is equal to the uniaxial 

macroscopic stress (as in the Sachs model). The self-hardening for the twin system is equal 

to zero, while the twin slip causes the linear hardening of other systems in the parent grain 

(hardening is described by one parameter of Voce law, i.e. 𝜃0 given in Table 6.2) 

The comparison of the model prediction with the experimental results obtained for 

three different tests are shown in Fig. 7.1-Fig. 7.3. It is well seen that both the elastic lattice 

strains measured in the direction of applied load and the macroscopic stress-strain curves 
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are well predicted by the modified EPSC model in which the Voce parameters given in 

Table 6.2 are used. In Fig. 7.1-Fig. 7.3 two types of the macroscopic stress-strain curves 

are shown: the upper line corresponds to the stress during incising sample load and the 

lower line shows the macrostress after relaxation at constant strain. It should be emphasized 

that the results of the diffraction measurement of lattice deformations correspond to the 

sample load at the level of the lower curve at which they were carried out. Also, the model 

of elastic-plastic deformation should be adjusted to the lower curve. 

Some disagreement between predicted and experimental lattice strains is observed in 

the case of tensile test in RD (Fig. 7.1), i.e. the qualitative agreement occur, but the 

difference between lattice strains measured using different ℎ𝑘𝑙 reflection is greater than the 

model values. This means that the shift to the Sachs model is possibly greater that it was 

assumed in the modified model with 𝛼 = 1,2 (this was also suggested in the paper [40]). 

In the case of compression test in ND (Fig. 7.2) a very good agreement between 

experimental and predicted lattice strains as well as for the macroscopic stress-strain curve 

was found. 

The above-described assumptions (continuous and threshold) were used to predict 

twinning process. For both approaches, the model results were well adjusted to the 

experimental results but with different values of the work hardening parameter 0 and 

slightly different CRSS values (τ0), which are 1-3 MPa lower than the experimental one. It 

was found that in the case of 002 reflection, which represents lattice strains in the twins, 

better agreement between model and experiment was found for the threshold assumption. 
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Fig. 7.1 Lattice strains measured in the direction of applied load and macroscopic 

stress-strain plot compared with model calculation (threshold assumption) for the tensile 

test in RD. 
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Fig. 7.2 Lattice strains measured in the direction of applied load and macroscopic 

stress-strain plot compared with model calculation (threshold assumption) for the 

compression test in ND. 
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Fig. 7.3 Lattice strains measured in the direction of applied load and macroscopic 

stress-strain plot compared with model calculation for the compression test in RD  with 

continuous assumption (a, b) and threshold assumption (c, d). 
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When the model parameters are established, the stress evolution for different grains 

can be calculated and compared with the experimental results. Such comparison is shown 

in Fig. 6.7-Fig. 6.9 where the threshold assumption was used in twinning prediction. The 

results of the compression test in RD direction are shown in Appendix 3 (Fig. A3.1). It was 

found that the choice of the type of assumption for twinning prediction is insignificant in 

the case of tensile test in RD and compression test in ND, because the volume fraction of 

the twins is negligible (see section 7.3). However, in the case of the compression test in 

RD, a better agreement between the model and the experimental stress localised at the twin 

grain was found for the threshold assumption (cf. Fig. 6.9).  

In general, a very good agreement of the experimental and model components of the 

grain stress tensor was found for the three tests and different grain orientations. A 

significant disagreement was found only for the stress 𝜎33
𝐶  (C orientation) during tensile 

test in RD and for 𝜎33
𝐴  (A orientation) during compression test in RD. It should be 

emphasized that in the above comparison, the experimental data were determined for grain 

groups (using CGM), while the model results were calculated for a given (single) crystal 

lattice orientation. Thus, the agreement between the experiment and the model prediction, 

obtained in most cases, means that the stress tensors determined by the CGM method well 

represent the grain stress for a given lattice orientation.  

To discuss the partitioning of the load between grains, the evolution of the grain 

stresses in the direction of loading together with the macroscopic stress are shown in 

Fig. 7.4- Fig. 7.6 (the absolute values of stresses and sample strain are shown). The 

evolutions of these stresses in function of the macroscopic stress |Σ𝑁𝐷|  (or |Σ𝑅𝐷|) and strain 

|E𝑁𝐷|  (or |E𝑅𝐷|) are presented. As shown in Fig. 7.4 during tensile test along RD, the grains 

having orientations A and B (let’s call them “intermediate grains”) are more loaded than 

the grains with orientations C and D (“soft grains”). This is certainly because the basal 

system, with the lowest value of CRSS can only be activated for soft grains having the <c> 

axis deviated from the ND direction. The yield stress for the intermediate grains depends 

on the CRSS of the prismatic and/or pyramidal <a>  systems, which are higher than CRSS 

for the basal system but lower that for pyramidal <c+a> systems. It was found that the value 

of macroscopic stress is between the stresses localized at intermediate and soft grains. As 

shown in Fig. 7.4, the macroscopic curve obtained from the model is well fitted to the 

experimental data, and the qualitative agreement between the experiment and the model 

was obtained for orientation A and the arithmetic mean for orientations C and D. As 

mentioned above, the quantitative discrepancy indicates that the difference between the 

loading of hard and soft grains is greater in the real sample compared to the calculations of 

the modified EPSC model.  
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Fig. 7.4 Partitioning of the macroscopic stress 𝛴33 = 𝛴𝑅𝐷 between soft (mean for C 

and D) and intermediate (A, B) grains during tensile test in RD. Model prediction are 

compared with experimental results. 

The load partitioning between grains during compression along ND is presented in 

Fig. 7.5. In this test, the highest load is localised at “hard grains” having orientations A and 

B. For these grains plastic deformation occurs as a result of slips on pyramidal 

systems <c+a>, for which CRSS is the highest of all slip systems (Table 6.2). Therefore, 

the stress localised at hard grains as well as macroscopic stress for the sample are greater 

in the case of compression in ND compared to tensile in RD (cf. Fig. 7.4 and Fig. 7.5). Due 

to the large difference between the loading of the grains, the yield points for soft grains 

(mean for D, F, G orientations) and hard grains (mean A and B) are clearly visible in 

Fig. 7.5, as changes in the curve trends at | Σ𝑁𝐷 | ≈70 MPa (|E𝑁𝐷|  ≈ 0,0015) and | Σ𝑁𝐷 | 

≈170 MPa  (|E𝑁𝐷|  ≈  0,008), respectively. 
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Fig. 7.5 Partitioning of the macroscopic stress 𝛴𝑁𝐷 = 𝛴𝑁𝐷 between soft (mean D, F 

and G) and hard (mean A, B) grains during compression test in ND. Model prediction are 

compared with experimental results. 
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The load partitioning between grains having different orientations during compression 

test in RD direction is more complex due to the twinning phenomenon. As shown in Fig. 7.6 

all grains are almost equally loaded up to the stress at which the twinning is activated at 

about |Σ𝑅𝐷|  ≈ 90 MPa. The basal system in the soft grain with orientation G’ is also 

activated about this load. As expected the stress |𝜎33
G’|  for this grain is the lowest compared 

to all other grains. The B-oriented grains transform to twins (T-oriented) and during this 

transition the macroscopic stress |Σ𝑅𝐷| practically remains constants, cf. Fig. 7.6b, d. This 

is why in the model perfect plasticity of parent grains (B and A – oriented) was assumed, 

which leads to very small increase of macroscopic stress up to |E𝑅𝐷|  ≈ 0,03 

(cf. Fig. 7.6b, d) as seen in the experimental macroscopic curve. The created twins (T-

oriented) exhibit a smaller stress |𝜎33
T’ | compared to other grains, due to back stress 

generated during twinning (arrow in Fig. 7.6b, d). It should be however emphasised that 

the effect of back stress is much smaller than reported in [16]. Because in this version of 

the model the back stress is not taken into account (the twin grain initially has the same 

stress state as the parent) the model overestimates the stress for T-oriented grain compared 

to experimental result at the beginning of twinning process. However, it is worth noting 

that in the case of threshold assumption (cf. Fig. 7.6a, b) the stress localised at the twin 

grain is much lower than in the case of continuous assumption (cf. Fig. 7.6c, d), because of 

relaxation of the stresses in the parent grain occurring before the twin is created at the 

threshold. For the greater load the model stress at the twin |𝜎33
𝑇 | approaches the 

experimental value, and at the end of the test the agreement between experiment and model 

is very good, and again better accordance was found in the case of the threshold  

assumption. In the case of A-oriented grains the stress calculated by the model is lower 

than the experimental one, but the tendency of the experimental and model plots agree 

qualitatively. These grains also transform into twins but stay longer in the sample, i.e. over 

|Σ𝑅𝐷| =  200 MPa. It should be emphasised, that interesting interplay between the grain 

stresses occurs giving the macroscopic sample stress, which is an average over all grain 

stresses. The macroscopic plot obtained by the model is perfectly fitted to the experimental 

points, and the stress distribution between grains of different orientations is also well 

predicted by the model  (at last qualitatively in the case of orientation A).  

In Fig. 7.6e, f the grain stresses|𝜎33
𝐵 | and |𝜎33

𝑇 | are shown together with the 

macroscopic stress. It is worth noting that the |𝜎33
𝐵 | stress remains constant over the plateau 

range. i.e. no change in intergranular stress appears in the parent grains during the twinning 

process and the localized stress remains constant. Due to the lack of initial T-oriented grains 

in the undeformed sample (< 𝑑 >ℎ𝑘𝑙
0  value was estimated by interpolation as shown in 

Appendix 1), it is important to verify that the stresses localized at the twin grains are 

correctly determined. Therefore, in Fig. 7.6e, f two components of the |𝜎33
𝑇 | stress 

uncertainty are shown by error bars (statistical uncertainty) and uncertainty corridor 
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(possible systematic error). The systematic error in the case of twins can be caused by the 

uncertainty of the value < 𝑑 >ℎ𝑘𝑙
0  which is estimated on the basis of interpolation in 

Appendix 1. This error is important in the performed stress analysis because it influences 

all lattice strains calculated from equation (6.1). As shown in Fig. 7.6e, f both systematic 

and statistic uncertainties of the stress |𝜎33
𝑇 | are not significant. It is worth noting that, the 

new T-oriented grains significantly affect the macroscopic behaviour of the sample. As 

shown in Fig. 7.6e, f the shape of the plot |Σ𝑅𝐷| versus |E𝑅𝐷| is enforced by the |𝜎33
𝑇 | stress 

evolution, and high macrostress value at the end of the test is due to the high stress localised 

at twins. As shown in section 7.3, the volume fraction of twins is very significant at the end 

of the test. Thus, the twins exhibiting a high yield stress, can be considered as the 

reinforcing phase for the studied sample. As discussed above, in the case of grains with T 

orientation, only the pyramidal <c+a> systems with the highest CRSS can be activated, 

because the applied stress is nearly parallel to the axis <c>.  

In conclusion, it can be emphasized that the role of different grain orientation in the 

mechanical behaviour of the tested sample was explained both experimentally and with a 

modified EPSC model. This can be summarized as follows: 

- In all tests carried out, the lowest load is always found at  tilted soft grains in which 

the basal system is activated. These grains soften the sample and reduce macrostresses. 

- The significant difference between the macroscopic stress-strain curves obtained 

during the tensile test in RD and compression test in ND is due to the difference in CRSS 

between slip systems activated in the intermediate and hard grains having preferred A and 

B orientations. The CRSS for pyramidal <a> and prismatic systems activated during tensile 

test in RD are significantly smaller than the CRSS for pyramidal <c+a> systems activated 

during compression test in ND. This leads to a lower macroscopic stress-strain curve 

obtained for the tensile test in RD compared to that obtained for the compression test in 

ND. 

- The shape of the macroscopic stress-strain curve is significantly affected by the 

twinning phenomena. When twinning occurs for majority of grains (A and B – oriented) 

the sample is very soft and initially there is a plateau in the macroscopic stress-strain curve. 

When the fraction of the twins is significant and the fraction of parents is small, the 

macroscopic stress increases significantly, because the twins with the T orientation are very 

hard and they play the role of reinforcement. Localization of the stresses at the T-oriented 

grains (twins) is better predicted by the modified EPSC model with threshold assumption 

compared to the continuous assumption. 
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Fig. 7.6 Partitioning of the macroscopic stress 𝜮𝟑𝟑 = 𝜮𝑹𝑫 between soft (G’) and hard 

(A) grains during compression test in RD. Two versions of model prediction: with 

continuous assumption (a, b) and with threshold assumption (c-f) are compared with 

experimental results. In figures (e, f) the evolution of the stresses |𝜎33
𝐵 | and |𝜎33

𝑇 | are shown 

together with macroscopic stress. In the case of |𝜎33
𝑇 | the uncertainty due to statistical error 

(bars) and systematic errors (corridor) are presented. 

 



 

137 

 

 

7.2. CRSS and RSS evolutions predicted by model 

 

To verify the experimentally determined CRSS and their evolution predicted by the 

modified EPSC model the calculated RSS and CRSS were compared with the RSS 

measured for different macrostresses |Σ𝑁𝐷|  and sample strains |E𝑁𝐷| . The activations of 

the basal system in the soft grains during three performed test are shown in Fig. 7.7. For all 

grains (D, F, G) the model predicted evolution of RSS versus macrostress |Σ𝑁𝐷|  perfectly 

agrees with the experimentally determined one. It is worth noting that, the activation of the 

basal system is clearly seen when the model CRSS are compared with the RSS evolution: 

during elastic deformation of the grain the CRSS value is constant and higher than RSS, 

but when the RSS reaches the CRSS value it stops growing and remains constant, equal or 

slightly higher than CRSS. This means that the basal system is active and the self-hardening 

of the basal system is negligible (parameters of work hardening for basal system tends to 

zero, c.f. Table 6.2). It should be emphasised, that only the basal system is activated for the 

soft grains (D, F, G) at least at the beginning of sample loading. It was verified (see 

Fig. A4.2 in Appendix 4.a) that for other slip systems as well as for the tensile twin system 

the values of CRSS exceeds significantly maximum values of RSS. In Fig. 7.7  additionally 

the evolutions of RSS and CRSS in two examples of soft grains are shown. These results 

confirm low and stable value of CRSS for basal slip system at least for small and 

intermediate loads.  
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Fig. 7.7 Evolution of CRSS and maximum RSS on basal system in soft grains versus 

|𝜮𝑵𝑫|, during compression test in ND (a, b, c), compression test in RD (d) and  tensile test 

in RD (e). Model predicted maximum RSS and CRSS are compared with experimental 

maximum RSS. The modified EPSC model with threshold assumption was used. 

Next, the analysis of slip system activation was done for the pyramidal <c+a> systems 

on the basis of RSS and CRSS evolution for the hard grains (A orientation) during 

compression test in ND. As shown in Fig. 7.8 the model predicted evolution of RSS agree 

with the experimental one, showing the same changes of the curve trends. Similarly, as in 

the case of basal system, the activation of <c+a> pyramidal systems is seen as slowdown 
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in RSS increase, after it reaches CRSS value. However, for the <a + c> pyramid systems, 

the increase in RSS remains when the system is active. It can be noticed that the RSS values 

are slightly above the CRSS for the first order and slightly below the CRSS for the second 

order ones. This suggests that the first order pyramidal <c+a> systems is active during 

whole loading, while the second order one is active only in the beginning of the test. 

However, the latter conclusion is based on the small differences of a few MPa, therefore it 

is not sure which type of the pyramidal <c+a> systems is really active, or maybe they are 

both active for different ranges of sample loading. The increase in the CRSS versus |𝐸𝑁𝐷|, 

after activation of the slip, determines the significant work hardening of the <c+a> pyramid 

systems described by Voce law, cf. Table 6.2. It should be emphasised that, the activation 

of the pyramidal <c+a> system can be analysed for A-oriented grains, because the other 

systems cannot be activated in these grains. Indeed, the CRSS values for all systems, 

excluding the pyramidal <c+a>, are higher than RSS during whole compression test in ND, 

as shown in Fig. A4.1 in Appendix 4.a. 
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d)  
Fig. 7.8 Evolution of CRSS and maximum RSS on pyramidal systems <c+a> in A-

oriented grains versus |Σ𝑁𝐷| and |E𝑁𝐷|, during compression test in ND. Model predicted 

maximum RSS and CRSS are compared with experimental maximum RSS for the first 

order (a, b) and the second order (c, d) pyramidal systems <c+a> . The modified EPSC 

model with threshold assumption was used. 
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The evolutions of RSS and CRSS for the pyramidal <a> and prismatic systems in A-

oriented grains during tensile test in RD is presented in Fig. 7.9. The model evolutions of 

RSS agree very well with experiment and the change in the plot trends is well seen when 

RSS riches value of CRSS (it is better visible on the plots drawn with respect to sample 

strain 𝐸𝑅𝐷). Then, the values of CRSS and RSS are almost equal to each other and they 

increase with applied load. It cannot be distinguish which system actually operates and the 

increase of the CRSS versus 𝐸𝑅𝐷 determines hardening of the active system. The same 

hardening, smaller as compared to the pyramidal <c+a> system is assumed for both systems 

pyramidal and prismatic having the same slip direction <a> (cf. Table 6.2). In Appendix 

4.b (Fig. A4.3) it is shown that the first order tensile twin system and all slip systems, 

excluding pyramidal <a> and prismatic systems, cannot be activated in the A-oriented 

grains, because the CRSS exceeds significantly the RSS values. 
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Fig. 7.9 Evolution of CRSS and maximum RSS on pyramidal <a> systems (a, b) and 

prismatic system (c, d) in A-oriented grains versus Σ𝑅𝐷 and E𝑅𝐷, during tensile test in RD. 

Model predicted maximum RSS and CRSS are compared with experimental results. The 

modified EPSC model with threshold assumption was used. 
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To determine the RSS and CRSS evolution for tensile twin system the orientation B 

during  compression test in RD should be analysed (Fig. 7.10a, b). The grains having this 

orientation as the first ones transform to twins and completely disappear at 𝐸𝑅𝐷 = 0,03, 

because of the highest value of Schmid factor for tensile twining slip system. As seen in 

Fig. 7.10a, b the experimental and model evolution of RSS perfectly coincides and the 

activation of this system is clearly seen. It is worth noting that the self-hardening of the 

twin system is negligible. In Fig. A4.4 (Appendix 4.c) it was shown that during twinning 

only the twin system operates, while the other ones are inactive because the RSS values for 

these systems are significantly smaller than CRSS values. Additionally, in Fig. 7.10c, d the 

evolutions of the RSS and CRSS values are shown for tensile slip in the case of A-oriented 

grains. It is seen that the value of RSS in the beginning is smaller than CRSS but during 

sample loading the RSS exceeds CRSS, leading to transformation of these grains to twins. 

This is why the twinning process occurs slower for A-oriented grains compared to the B-

oriented. The agreement between model and experiment is much worse for the A-oriented 

grains comparing to the other results presented in this section. 
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d)  
Fig. 7.10 Evolution of CRSS and maximum RSS on tensile twin system in B-oriented 

grains (a, b) and A-oriented grains (c, d), versus |Σ𝑅𝐷| and |E𝑅𝐷|, during compression test 

in RD. Model predicted maximum RSS and CRSS are compared with experimental results. 

The modified EPSC model with threshold assumption was used. 
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Finally, the activation and hardening of the pyramidal systems <c+a> in the T-oriented 

grains (twins) during compression test in RD was studied (cf. Fig. 7.11). Because for these 

grains the load is nearly parallel to <c> axis, therefore the only systems which can be 

activated are the pyramidal systems <c+a> (similarly as for the A-oriented grains in 

compression test in ND). As shown in Appendix 4.c(Fig. A4.5) the other systems cannot 

be activated, because the CRSS is much higher than RSS. Fig. 7.11confirms that the values 

of the CRSS well agree with the change in the trend of the presented RSS evolutions for 

the pyramidal <c+a> systems. Therefore, it is shown that the CRSS values for these systems 

in twin grains are higher compared to those determined for A orientations in the initial 

sample (see Table 6.2). In the presented model, it was assumed that before transforming 

into a twin system, the slip systems undergo significant hardening during slips on the twin 

system. Then the transformation does not change the CRSS value for the created twin, 

which is initially equal to the CRSS in the parent. However, it is also possible that the 

hardening of the system occurs immediately after transformation and this assumption will 

lead to the same results obtained in the analysis of the experimental data compared to model 

prediction.  
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d)  
Fig. 7.11 Evolution of CRSS and maximum RSS on pyramidal systems <c+a> in T-

oriented grains versus |Σ𝑅𝐷| and |E𝑅𝐷|, during compression test in RD. Model predicted 

maximum RSS and CRSS are compared with experimental maximum RSS for the first 

order (a, b) and the second order (c, d) pyramidal systems <c+a> . The modified EPSC 

model with threshold assumption was used. 
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Summarizing this section it can be emphasised that the RSS values for different grain 

orientations are correctly predicted by the modified EPSC model in which experimentally 

determined CRSS (or values very close to the measured ones) are used. It was found that 

changes in RSS evolution trends are well correlated with the CRSS values used in the model 

for both the slip and twin systems, which confirms their proper choice. It is also observed 

that the CRSS evolution coincides with the evolution of RSS when the system is activated, 

that means that the other parameters of Voce law (describing hardening of the systems) are 

also correctly adjusted. The most difficult problem in the conducted analysis concerns 

hardening related to the twin systems. Two approaches were considered in this work. In the 

first one the transformation of the parent grains into twins occurring continuously, from the 

beginning and the twin grains obtain the same stress state and CRSS as the parent. In the 

second approach, the twin system is initially active, but it does not produce a twin, up to 

the given threshold. In this case the hardening of the parent grain occurs, and the twin grain 

created after threshold is much harder. Moreover, the stress at the parent grain relaxes due 

to plasticity occurring during twin slips before creation of the twin. The so called threshold 

assumption shows much better agreement with the experimental results compared to 

continuous assumption, and explains significant initial hardness of the twin grains, which 

play role of the reinforcement during advanced sample deformation.  The threshold is 

physically explained by some energy barrier that must be overcome to form a twin and has 

also been used in previous works, e.g., [16]. In this model the twin is suddenly created 

when its relative volume calculated from equation (3.17) reaches 25%. The stress and the 

CRSS values for the created twin are the same as for the parent at this stage. 

 

 

7.3. Evolution of texture and twin fraction 

 

The mechanical behaviour of the grains was described in the previous sections. 

However, it should be emphasised that the macroscopic properties of the sample depend 

not only on the properties of grains but also on the interaction between them as well as on 

the number of grains having specific orientations (characterised by texture). As mentioned, 

the interaction between grains is well described by the modified EPSC model. Therefore, 

in this section the changes in texture (ODF) and volume fraction of twin grains will be 

described.  
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Fig. 7.12 EBSD orientation maps obtained for a) initial sample, b) sample compressed 

to - 2% in ND, c) sample stretched to 2% in rolling direction; and samples compressed in 

rolling direction to: d) - 2% , e) - 3% and f) to - 4%. 

a) Non-deformed d) ERD = −2% 

e) ERD = −3% b) END = −2% 

f) ERD = −4% c) ERD = 2% 
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The ODF was determined from EBSD for the samples subjected to different tests (see 

Fig. 7.12). The ODF for the initial undeformed sample is shown in Fig. 7.13 and the grain 

orientations that are tested in this work are marked. The changes of the texture are 

considered in model calculations, and they can be compared with the experimental ones.  

In Fig. 7.14 the model and experimental ODFs after tensile test in RD up to E𝑅𝐷 = 3% 

are shown. It is observed that both model and experiment show an increase in ODF value 

for B orientation and a decrease for the A orientation. These changes do not influence 

significantly macroscopic properties of the sample as well as the properties of grains 

because insignificant difference was found in the behaviour of A and B – oriented grains 

(similar grain stresses were measured for A and B orientations during tensile test in RD, 

c.f. Fig. 6.7).  

 

 

Fig. 7.13 Experimental texture measured using EBSD method for the initial sample. 

The sections through reduced Euler space (0° ≤ 𝜑1 ≤ 90°,  0° ≤ Φ ≤ 90° and 

0° ≤ 𝜑2 ≤  60°) along the 𝜑1 axis with step of 5º are presented. Moreover, the preferred 

orientations A and B, as well as the twin orientation (not present in the initial sample) are 

marked. 
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Fig. 7.14 Model predicted and experimental texture after tensile test in RD up to E𝑅𝐷 =

3%. The modified EPSC model with either continuous or threshold assumption give 

practically the same results. 

In the case of compression test in ND the changes in the ODF are not significant after 

deformations up to |E𝑁𝐷| = 4% (c.f. Fig. 7.15). Both experiment and model show only 

small rearrangement of the preferred orientations which does not significantly change the 

mechanical properties of the sample and the individual grains.  

 

Fig. 7.15 Model predicted and experimental texture after compression test in ND up to 

E𝑁𝐷 = 4%. The modified EPSC model with either continuous or threshold assumption give 

practically the same result. 
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Fig. 7.16 Model predicted and experimental texture after compression test in RD up to 

|E𝑅𝐷| = 2%, 3% and 4%. The modified EPSC model with continuous assumption of twin 

process was used. 

Certainly, the most important changes in ODF occur during compression test in the 

RD due to twinning process. As described above at first the softening of the sample is 

caused by twinning, but then the created twins reinforce the sample. The experimental 

ODFs for the deformations |E𝑅𝐷| = 2%, 3 % and 4% are compared with the modified 

EPSC model with either continuous or threshold assumptions of twins creation in Fig. 7.16 
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and Fig. 7.17, respectively. It was found that model qualitatively predicts the texture 

evolution and better agreement between model and experimental result are obtained for the 

calculations with continuous assumptions. It is worth noting that experimental and model 

results show a significant increase of twins during the compression test performed in RD 

(compare Fig. 7.16 with Fig. 7.13, where the twin orientation is marked).  

 

Fig. 7.17 Model predicted and experimental texture after compression test in RD up to 

|E𝑅𝐷| = 2%, 3% and 4%. The modified EPSC model with threshold assumption of twin 

process was used. 
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Knowing the evolution of texture the changes in the volume fraction of twins can be 

determined. This has been done using model, in which the number of twins is strictly 

determined. It was found  that insignificant fraction of grains is created during tensile test 

in RD (Fig. 7.18a) and compression test in ND (Fig. 7.18b), and this result is confirmed by 

EBSD measurements in  which the twins were not observed (see Fig. 7.12 and ODF 

presented in Fig. 7.15 and Fig. 7.16). 

In the case of compression test in RD model calculation show significant increase of 

the twin fraction, what is confirmed by the EBSD measurements, as well as the increase in 

the intensity of the diffraction peak 002 measured in the RD (Fig. 7.18c, d). The EBSD 

estimation of the twin fraction is based on the measured ODF function for which the twin 

fraction was related to the ODF intensity integrated around the twin orientation within the 

cube with the edge of 27º (this volume in the Euler space is representative for the twins’ 

fraction as it was checked by the model in which the number of twins is known). The 

evolution of measured relative peak intensity brings only qualitative information because 

it is calculated with respect to the final experimental results for which the twin fraction is 

unknown. Therefore, the presented function of relative peak intensity was calibrated using 

the values obtained from EBSD for  |E𝑅𝐷| = 2%, 3 % and 4% . In spite of possible error 

in such calibration using only beginning of the plot, the trend of changes is presented, 

especially because of  a good accordance with  EBSD results and good agreement with the 

model results for deformations over |E𝑅𝐷| = 8% (c.f. Fig. 7.15c, d). 

Analysing the results of the experiment performed during compression test in RD, it 

can be concluded that in the beginning of deformation |E𝑅𝐷| < 2% the volume of twins 

increases slowly, as seen in Fig. 7.18, and also proved by texture development shown in 

Fig. 7.16 and Fig. 7.17. Then in the range |E𝑅𝐷| ≈ 2% − 6% a very significant increase of 

twins’ fraction occurs, especially at the beginning of this range. Finally, for |E𝑅𝐷| > 6%, 

the saturation in twin fraction is seen. At the end of performed test (|E𝑅𝐷| ≈ 10,5%) the 

volume fraction reaches value of 70%. 

The behaviour of the experimentally determined evolution of twin fraction confirms 

the delay in the twins formation in the beginning of deformation, which agrees with the 

threshold assumption, however, both model assumptions (continuous and threshold) 

underestimates the twin fraction during its significant increase in the range |E𝑅𝐷| ≈ 2% −

6%. In this range slightly better prediction was obtained using continuous assumption. 

Finally, the model results approach the experimental points despite the assumption 

concerning twin formation. 
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Fig. 7.18 Evolution of volume twin fraction during tensile test in RD (a), compression 

test in ND (b) and compression test in RD (c, d). In the case of the latter test the 

experimental results (from EBSD measurements and analysing intensity of diffraction peak 

002 measured in the RD) are compared with the model results obtained using modified 

EPSC model with continuous assumption (c) and threshold assumption (d).   
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7.4. Compression tests performed in different directions  

 

The last experiment confirming the values of CRSS and the work hardening parameters 

(from Voce law) was performed for the samples cut in this way that the compression load 

is inclined from the ND towards RD directions, as shown in Fig. 7.19 

 

 

 

 

Fig. 7.19 Orientations of the samples with respect to the compressive force. The angle 

between direction of the load and ND is marked by 𝜂. 

In Fig. 7.20 the macroscopic stress-strain plots obtained from the compression test 

conducted with the force direction deviated from the ND by angle 𝜂 are compared with 

modified EPSC model predictions for the continuous and threshold assumption, 

respectively. The model parameters presented in Table 6.2 were used in the model 

calculations. Moreover, the macroscopic stresses after stabilization (partial relaxation at 

given strain) available from the NDC and RDC experiments for 𝜂 = 0° and 𝜂 = 90°  are 

also shown for comparison. These stresses better correspond to the states predicted by the 

time-independent EPSC model. The comparison of the experimental and model results 

shows quite good agreement which is slightly better in the case of the continuous 

assumption. The interplay between activation of different slip and twin systems is clearly 

seen from the curves presented for different angles 𝜂. In addition, the evolutions of the 

calculated twin fraction are shown in Fig. 7.20. 

When the compressive load is applied in ND ( 𝜂 = 0° ) a high value of the yield stress 

and significant hardening of the sample is observed. As explained above, it is caused by a 

high value of CRSS and significant hardening of the pyramidal <c+a> slip systems, the 

only systems which can be activated for the majority of preferred grain orientations (i.e. 

orientations A and B). The model prediction much better agree with the stresses after 

sample stabilisation comparing to continuous loading of the sample with a strain rate of 

5,8 ⋅ 10−5s−1. 

 

 

𝜂 = 0° 
𝜂 = 30° 𝜂 = 45° 

𝜂 = 60° 

𝜂 = 90° 

ND 

TD 

RD 



152 

 

When the compressive load is inclined from ND by 𝜂 = 30° significant decrease in 

yield stress and work hardening is observed but the plateau characteristic for twin formation 

is not seen in the experimental stress-strain plot. This means that the softening of the sample 

is caused by the activation of other slip systems for most grains, from which the softest 

basal system is the most important. The twin fraction is still small, i.e. the twinning process 

is not the most significant during sample deformation. It is wort noting that the effect of 

slip systems activation is well predicted by model. 

For greater values of inclination angle 𝜂 = 45° and 60° the formation of the plateau 

in the beginning of sample deformation is seen. Thus, the twinning begins play a significant 

role in plastic deformation. Indeed, the volume fraction of twins increases significantly. 

Again, the model predicts this effect correctly (however the effect of plateau is too large in 

the case of threshold assumption). 

Finally, for the angle 𝜂 = 90°   the compressive force is parallel to RD, and this case 

was widely described in this work. The plateau is observed, i.e. the twinning process is the 

most significant especially in the beginning of deformation, while when the fraction of 

twins significantly increases a significant hardening of the sample occurs. The model data 

better agree with the stabilised stress, after partial relaxation at given sample strain. 

It can be concluded that the latter experiment fully confirms the CRSS values and 

hardening parameters found in this work. The mechanical tests performed for different  

angles 𝜂 shows the competition between the basal and tensile twinning systems exhibiting 

low values of the CRSS, which was previously shown in [176] using acoustic emission 

method. Further neutron diffraction experiments for the samples compressed by a force 

inclined from ND are in preparation. Especially interesting is the experiment for 𝜂 =  30°, 

in which a significant value of RSS will be generated on the based slip system in grains 

with preferred texture orientations. This experiment, performed using CGM, will provide 

more reasonable data for CRSS verification for the basal slip system compared to the data 

obtained from the NDC, RDC and RDT experiments. 
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Fig. 7.20 Macroscopic stress-strain experimental curves compared with modified 

EPSC model results (with continuous or threshold assumption) for different inclination 

angles 𝜂. The macroscopic stresses after stabilization (partial relaxation at given strain) 

available from the in situ NDC and NTD experiments for 𝜂 = 0° and 𝜂 = 90°  are also 

shown (points). The corresponding model predicted volume fraction of twins is shown on 

the right.  
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7.5. Summary 

 

The experimentally determined CRSS values were used in the calculations using the 

EPSC model, in which the grains interactions were modified (towards Sachs model). The 

so obtained modified EPSC was applied to predict lattice strains and macroscopic stress-

strain plots for three tests studied in this work. As a result, such a set of hardening 

parameters (Voce's laws) was found for which the predicted lattice strains and macroscopic 

stress-strain plots are closest to the experimental ones, simultaneously for all tests.  

After determining all the parameters characterizing the slip systems and the twin 

system, the evolution of the model RSS was compared with those obtained directly from 

the experiment, obtaining an excellent agreement. Moreover, the experimental values of 

CRSS were confirmed by model calculations as values for which the model RSS exceeds 

the CRSS values. When the systems are active, the RSS and CRSS values show the same 

evolution, with RSS slightly exceeding CRSS. The model also showed which systems are 

not activated for the given grain orientation - this result confirms the assumptions made 

during the determination of the experimental CRSS values. 

The evolution of the crystallographic texture and volume fraction of the twins was also 

studied comparing model and experimental data. The qualitative agreement between model 

and experimental texture was found. In the case of twin volume fraction model prediction 

is underestimated in the beginning of the compression test in RD and approaches to the 

experiment for increasing load. The model and experiment show insignificant twin fraction 

in the case of tensile test in RD and compression in ND.  

The main problem of this work was the prediction of the twinning phenomena in model 

calculations. To do this, two assumptions concerning twin creation were proposed 

(continuous and threshold assumption), but in both cases the results are not well fitted to 

experiment. For example, the stress localisation at the twins is much better predicted by the 

model with threshold assumption, while the calculations with the continuous assumption 

show the texture and twin fraction evolutions closest to the experiment.  

Finally, the experiment confirming the determined parameters characterising 

activation and hardening of slip systems and twin system was performed. In this experiment 

the compressive load was applied in the direction inclined from ND towards RD and 

macroscopic stress-strain plots were measured. Then the model calculations in which the 

set of CRSS and Voce law parameters were done, and the results were compared with 

experiment. A very good agreement between measured and calculated macroscopic stress-

strains curves confirm the correctness of the parameters used in models. Moreover, the 

changes in evolution of these plots was explained by the activation of different slip systems 

and finally by twinning process.   
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8. General conclusions and summary 

 

The main purpose of this work was to develop experimental methods for investigating 

the micromechanical properties of polycrystalline materials, which enable direct 

determination of stresses for groups of grains and grains belonging to different phases. The 

proposed methodology is based on neutron measurements performed for a large 

representative volume in the sample, and the analysis of the obtained results uses the 

selective feature of diffraction method. The experimental methods developed in the study 

showed that the components of the stress tensor can be determined for groups of grains 

when the lattice strains are determined in many directions. The TOF technique used in this 

work is particularly advantageous because it enables measurements of lattice deformations 

with many ℎ𝑘𝑙 reflections for each direction in which the measurement is performed. 

Having developed experimental methods, the measurements were carried out in situ 

for various loads applied to the samples. The experimental studies concerned the behaviour 

of polycrystalline grains during elastic-plastic deformation, in particular such phenomena 

as slips on crystallographic planes, the phenomenon of twinning, stress localization in 

individual grains and changes in the crystallographic texture during plastic deformation. 

The developed methods were used to determine the micromechanical properties of grains 

having different orientations in hot-rolled AZ31 magnesium alloy and the evolution of 

phase stresses (for both constituents) in the Al/SiCp composite. 

In the first part of the work, in situ diffraction measurements were performed for the 

Al/SiCp composite subjected to thermal treatment and compression test. The source of the 

residual stresses in individual phases in the cooled material was explained by a significant 

difference in the thermal expansion coefficients of the components. SiCp reinforcement, 

having nearly nine times lower coefficient of thermal expansion compared to aluminium, 

shrinks much slower than the aluminium matrix in which it is contained. This causes the 

accumulation of high compressive hydrostatic stresses in the SiCp reinforcement. 

Thermally induced phase stresses were correctly predicted by the thermomechanical self-

consistent model (TMSC). 
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Then, the evolution of mean phase stresses caused by plastic strain (deviatoric 

character) and relaxation of thermal stresses (hydrostatic character) during the compression 

test were determined. These studies were aimed at determining the stresses in both phases 

of the composite, as well as explaining the phenomenon of thermally induced stress 

relaxation using the newly developed thermomechanical self-consistent (DTMSC) model. 

This model takes into account the stresses resulting from the thermal mismatch between 

the SiC particle and the plastically deformed soft matrix. The softening of the matrix leads 

to a relaxation of thermally induced phase stresses which are in good agreement with that 

measured experimentally. It should be emphasized that the relaxation of thermal stresses 

can also be caused by such phenomena as microdamage processes causing the decoupling 

of SiC particles from the aluminum alloy matrix. However, these effects cannot be 

predicted using continuum mechanics models such as those used in this work. 

The second tested sample was hot rolled AZ31 magnesium alloy. It is a material which, 

despite its almost isotropic elastic properties, shows a strongly anisotropic response to an 

applied external load caused by a significant crystallographic texture. In the research 

carried out on this sample, an attempt was made to explain this phenomenon by examining 

the nature of the plastic response of polycrystalline grains to loads applied in two different 

directions. Diffraction measurements were carried out in situ during the compression of the 

sample using the crystallite group (CGM) methods to determine the stresses for selected 

groups of crystallites. 

Thanks to the stress evolution measurements for different grain groups, it was possible 

to determine the stress distribution between crystallites having different lattice orientation 

with respect to the applied load. There are four characteristic groups of grains: hard, 

intermediate, soft and those for which twinning phenomenon occurs. Hard grains are those 

for which the plastic process takes place much later, by activation of the pyramidal slip 

systems <c+a> showing the highest CRSS value, while the other slips and twinning cannot 

be activated due to the nearly zero and negative RSS values. Soft grains are those grains in 

which the basal slip with the lowest CRSS value is activated, while the intermediate grains 

are those for which the prismatic <a> and / or the pyramidal <a> system is activated, and 

the other slips and twinning remain inactive. In the fourth group of grains, twinning 

phenomena can occur, leading to saturation of localized stress regardless of the slip systems 

activity. 

The partitioning of stresses between the grains plays a key role in the macroscopic 

response of the sample depending on the combination of the type and direction of the 

applied load with a sharp crystallographic texture. Due to the different types (compressive 

or tensile) and orientations of the applied load, most grains with the preferred texture 

orientations exhibit very different plastic behaviour leading to macroscopic anisotropy of 

the sample. As shown in this work, the greatest macroscopic stresses can be achieved when 

for most crystallites the applied compressive force is parallel to the c-axis, i.e. when the 
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load is parallel to ND. Due to such geometrical relationships, the value of RSS greater than 

zero can be achieved only for pyramidal slip systems <c+a>, what can be easily calculated 

from Schmid's law. Therefore the majority of the grains is hard and the sample is hard as 

well. Different situations take place during the tensile test in RD, when for the preferred 

orientations the twinning systems remain inactive (RSS is less than zero), the basic system 

is also inactive (RSS is equal to zero), and the prismatic <a> or/and pyramidal <a> systems 

activate for majority of the grains at an intermediate level of the applied load (much lower 

than when the compressive load was parallel to ND). Due to the low value of the stress 

applied to the sample, also the RSS values on the <c+a> slip systems are too low to activate 

them. This is an intermediate sample response. In the third experiment (compression in RD) 

the most complex sample response was observed, i.e. for a small value of the applied load, 

the twinning process occurred for the preferred texture orientations leading to saturation of 

the macroscopic stress-strain curve, i.e. plastic deformation took place without visible 

hardening. However, as most of the grains jumped to the twin orientations, significant 

sample hardening occurred as the twin orientation exhibited a c-axis parallel to the tensile 

load applied along RD. This means that the orientations of the twin are hard, and the twins 

can carry the greatest load compared to other grains.  

A very important achievement of this work is the determination of the values of 

resolved shear stresses (RSS) and critical distributed shear stresses (CRSS) for various slip 

systems and twinning, directly from the experiment. For this purpose, no model 

assumptions were used, and the CRSS values were determined directly on the basis of the 

analysed trends in the evolution of experimental RSS as a function of macrostress and/or 

macrostrain values. The values determined from the experiment were obtained with their 

uncertainties, excluding the CRSS for the <c+a> pyramidal systems for the twin orientation 

(in the latter case, due to an insufficient number of measuring points, the uncertainty was 

estimated only roughly). It should be emphasized that the uncertainties of the determined 

CRSS values were calculated for the first time. In previous works, uncertainty analysis was 

not possible when CRSS were estimated by comparing the evolution of the model strains 

with those measured in two directions with respect to the sample. The second advantage of 

the new methodology presented in this paper is that the results are unambiguous and do not 

depend on the assumptions used in the model. Moreover, the experimentally determined 

CRSS can be used to validate the crystallographic model. 

In order to check the agreement of the EPSC model with the obtained experimental 

results, the CRSS parameters were entered into the calculations as input data. After 

adjusting the model to the experimental data by changing its other parameters (hardening 

parameters used in Voce's law), full qualitative agreement was achieved in terms of the 

evolution of lattice strains, stresses localized at particular grains and macroscopic stresses. 

It should be emphasized that to achieve a very good agreement between the three 

experiments and the corresponding model calculations, the assumption of the  
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self-consistent model was slightly modified by shifting the type of intergranular interaction 

towards the Sachs assumption. It has been found that during plastic deformation the total 

incompatibility strains are about 20% greater than those predicted by the self-consistent 

approach, i.e. weaker intergranular interaction takes place comparing to self-consistent 

Eshelby type model. In addition, two different approximations concerning the formation of 

twins were tested, i.e. the so-called "threshold assumption" and "continuous assumption ". 

It has been found that the localization of stress in “newborn” twins is slightly better 

predicted using the threshold assumption, while the twins fraction and texture evolution are 

better estimated using the continuous assumption. It is worth noting that the twins 

phenomenon and the stress values of the newly formed twins have not been accurately 

predicted using the model used in this work. Therefore other methods for simulation of 

twins formation process should be tested using the experimental results obtained in this 

work. 

Finally, the experimental CRSS values and a set of other model parameters 

(determined on the basis of three conducted experiments) were used to predict the 

macroscopic behaviour of the sample for a compressive load tilted from the ND by a given 

angle. The model results were then compared with the experimental results and a very good 

agreement was obtained. This is a confirmation that the parameters describing the plastic 

deformation of the tested material AZ31 are correctly determined. Further neutron 

diffraction experiments with a compressive load tilted from ND are in preparation. 

These measurements, using the crystallite group (CGM) method, will show the stress 

partitioning between grains for the sample in which the basal slip system is activated for 

the majority of crystallites. This will allow us to determine the CRSS value for the basal 

system more unambiguously than in the experiments carried out in this paper, in which this 

system was activated for non-preferred texture orientations. 
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Appendix 1. Determination of the interplanar spacings for 

reflections absent in the initial sample  

 

In the study of AZ31 alloy the lattice strains were determined on the basis of equation 

(6.1) in which the difference between interplanar spacing in the sample under load 

(< 𝑑 >ℎ𝑘𝑙) and these in initial sample were calculated (< 𝑑 >ℎ𝑘𝑙
0 ). This minimises the 

possible systematic errors in peak position determining. However, in the case of the twin 

grains arising during compression in RD the grains with orientations corresponding to the 

twins were not present in the initial sample, therefore the necessary interplanar spacings 

< 𝑑 >ℎ𝑘𝑙
0  were not available. This especially concerns the absence of diffraction peaks for 

002 and 004 reflections in the detector L2 measuring the interplanar spacings in the 

direction of the load applied along RD. Thus, the values of the < 𝑑 >002
0,𝐿2

 and < 𝑑 >004
0,𝐿2

 

were found using interpolation method in which the available interplanar spacings 

< 𝑑 >ℎ𝑘𝑙
0,𝐿2

 and < 𝑑 >ℎ𝑘𝑙
0,𝐿5

 measured respectively by L2 and L5 detectors were used. To do 

this the ratios of interplanar spacings for the corresponding reflections ℎ𝑘𝑙 were calculated 

(except of reflections 002 and 004): 

 𝑘ℎ𝑘𝑙 = 
<𝑑>ℎ𝑘𝑙

0,𝐿2

<𝑑>ℎ𝑘𝑙
0,𝐿5 . (A1.1) 

Then, the linear regression was used to fit the straight lines assuming dependence: 

 𝑘ℎ𝑘𝑙 =  𝐴 < 𝑑 >ℎ𝑘𝑙
0,𝐿5+ 𝐵 (A1.2) 

The unknown 𝑘002 and 𝑘004 values were found from the fitted lines on the basis of 

measured < 𝑑 >002
0,𝐿5

 and < 𝑑 >004
0,𝐿5

 values as shown in Fig. A1.1. Finally the values : 

 < 𝑑 >002
0,𝐿2= 𝑘002 < 𝑑 >002

0,𝐿5
  and  < 𝑑 >004

0,𝐿2= 𝑘004 < 𝑑 >004
0,𝐿5

 (A1.3) 

were found. The uncertainties of the determined interplanar spacings  were calculated from 

the propagation of linear regression uncertainties. The same procedure was applied for the 

data obtained before (𝜔 = 0°) and after sample rotation about sample axis (𝜔 = 90°) (see 

Fig. A1.1), and the results are given in Table A1.1  
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Fig. A1.1 The dependences of 𝑘ℎ𝑘𝑙 vs.  < 𝑑 >ℎ𝑘𝑙
0,𝐿5

 fitted by straight lines on the basis 

of which the 𝑘002 and 𝑘004 values were interpolated for measured < 𝑑 >002
0,𝐿5

 and 

< 𝑑 >004
0,𝐿5

 values. 

 

Table A1.1 Determined < 𝑑 >002
0,𝐿2

 and < 𝑑 >004
0,𝐿2

 interplanar spacings for sample 

rotation angle 𝜔 = 0° and  𝜔 = 90°.  

Reflection < 𝑑 >ℎ𝑘𝑙
0,𝐿2

 (Å) 𝑢(< 𝑑 >ℎ𝑘𝑙
0,𝐿2) (Å) 

002 (𝜔 = 0°) 2,60232 0,00065 

004 (𝜔 = 0°) 1,29791 0,00032 

002 (𝜔 = 90°) 2,60253 0,00076 

004 (𝜔 = 90°) 1,29771 0,00035 

  



 

161 

 

Appendix 2. Sets of reflections used for stress determination 

by using crystallite group method 

 

Table A2.1  Examined poles for crystal orientations A - G' of AZ31 magnesium during 

normal direction compression (NDC), rolling direction tensile (RDT) and rolling direction 

compression (RDC) tests. The orientations of the scattering vector (𝜓 and  𝜑) used in the 

measurement are given. In the case of EPSILON-MSD, the orientations of the scattering 

vector closest to the selected poles are shown. 

No. (ℎ𝑘𝑖𝑙) 𝜓 [°] 𝜑 [°] No. (ℎ𝑘𝑖𝑙) 𝜓 [°] 𝜑 [°] 

Orientation A, Experiment: RDT Orientation A, Experiment: RDC 

1 12̅10 0,00 0,00 1 12̅10 0,00 0,00 

2 11̅00 30,00 0,00 2 101̅0 90,00 0,00 

3 21̅1̅0 60,00 0,00 3 1̅010 90,00 0,00 

4 101̅0 90,00 0,00 4 112̅2 60,00 215,00 

5 0001 90,00 90,00 5 21̅1̅2 60,00 35,00 

6 11̅03 62,70 72,70 6 0001 90,00 90,00 

7 101̅3 90,00 58,00 7 0001̅ 90,00 270,00 

8 101̅1 90,00 28,00 Orientation B, Experiment: RDC 

Orientation B, Experiment: RDT 1 202̅1̅ 14,81 97,47 

1 101̅0 0,00 0,00 2 202̅1 14,81 262,53 

2 112̅0 30,00 0,00 3 101̅0 0,00 0,00 

3 011̅0 60,00 0,00 4 12̅10 90,00 0,00 

4 1̅21̅0 90,00 0,00 5 1̅21̅0 90,00 180,00 

5 0001 90,00 90,00 6 11̅02 71,30 136,00 

6 011̅3 74,60 61,60 7 11̅01 60,00 215,00 

7 101̅3 58,00 90,00 8 11̅02̅ 71,30 226,00 

Orientation C, Experiment: RDT 9 01̅12 71,30 316,00 

1 12̅12 0,00 0,00 10 01̅12̅ 71,30 46,00 

2 011̅3 88,47 74,61 11 01̅11 60,00 35,00 

3 0001 60,00 90,00 12 0001 90,00 90,00 

4 202̅1 82,60 13,00 13 0001̅ 90,00 270,00 

5 101̅1 76,36 24,77 Orientation D, Experiment: RDC 

Orientation D, Experiment: RDT 1 101̅1 0,00 0,00 

1 1̅013 90,00 90,00 2 101̅2 14,80 97,00 

2 101̅1 0,00 0,00 3 01̅13̅ 47,20 116,00 
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Orientation A, Experiment: NDC 4 01̅14 47,20 116,00 

1 0001 0,00 0,00 5 01̅13 60,00 125,00 

2 12̅10 90,00 90,00 6 101̅3 90,00 270,00 

3 11̅02 46,00 125,00 7 11̅03 47,20 63,00 

4 1̅010 90,00 180,00 8 11̅04 47,20 63,00 

5 01̅12̅ 46,00 244,08 9 101̅3 90,00 270,00 

6 1̅21̅0 90,00 270,00 10 101̅3 90,00 90,00 

7 11̅02̅ 46,00 295,92 Orientation F, Experiment: RDC 

8 101̅0 90,00 0,00 1 101̅3 0,00 0,00 

9 01̅12 46,00 64,08 2 101̅2 14,81 262,53 

Orientation B, Experiment: NDC 3 11̅04 47,20 116,00 

1 0001 0,00 0,00 4 11̅03̅ 60,00 125,00 

2 12̅10 90,00 0,00 5 12̅10 90,00 180,00 

3 11̅02 46,00 35,00 6 101̅1̅ 90,00 270,00 

4 1̅010 90,00 90,00 7 1̅21̅0 90,00 0,00 

5 01̅12̅ 46,00 154,08             G’  E         :     

6 1̅21̅0 90,00 180,00 1 101̅2 0,00 0,00 

7 11̅02̅ 46,00 205,92 2 101̅1 14,81 262,53 

8 101̅0 90,00 270,00 3 101̅3 14,81 97,00 

9 01̅12 46,00 334,08 4 101̅4 14,81 97,00 

Orientation D, Experiment: NDC 5 11̅03̅ 60,00 125,00 

1 11̅02̅̅̅̅  14,81 262,53 6 11̅04̅ 60,00 125,00 

2 11̅03 0,00 0,00 7 101̅2̅ 90,00 270,00 

3 101̅3 60,00 125,26 8 01̅13 60,00 55,00 

4 21̅1̅0 60,00 305,26 9 01̅14 60,00 55,00 

5 01̅13 60,00 55,00 10 101̅2̅ 90,00 90,00 

6 12̅10 60,00 235,00 Orientation T, Experiment: RDC 

7 11̅01 90,00 270,00 1 0004 0,00 0,00 

8 11̅01 90,00 90,00 2 112̅2 125,00 60 

9 112̅0 90,00 0,00 3 12̅10 0,00 90,00 

10 1̅1̅20 90,00 180,00 4 0002 0,00 0,00 

Orientation F, Experiment: NDC 5 22̅02̅ 35,00 60,00 

1 22̅01̅ 14,81 262,53 6 11̅01̅ 35,00 60,00 

2 11̅01̅ 0,00 0,00 7 101̅0 270,00 90,00 

3 11̅02̅ 14,81 97,47 8 1̅1̅22 305,00 60,00 

4 101̅1̅ 47,22 25,92 9 1̅21̅0 180,00 90,00 
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5 01̅11̅ 47,22 154,00 10 22̅02̅ 215,00 60,00 

6 101̅1 71,29 315,81 11 11̅01̅ 215,00 60,00 

7 01̅11 71,29 225,81 12 1̅010 90,00 90,00 

8 112̅0 90,00 0,00     

9 1̅1̅20 90,00 180,00     

Orientation G, Experiment: NDC     

1 11̅02̅ 0,00 0,00     

2 11̅01̅ 14,80 277,47     

3 112̅0 90,00 0,00     

4 1̅1̅20 90,00 180,00     

5 101̅2 71,29 135,81     

6 01̅12 71,00 44,00     

7 101̅3 60,00 125,26     

8 12̅12 88,10 255,31     
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Appendix 3. Grain stresses predicted for RDC experiment 

by modified EPSC model with continuous assumption  
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Fig. A3.1 Evolution of the grain stresses for orientations A,B,T and G’ versus 

macrostress |Σ𝑅𝐷| during compression test performed along RD compared with model 

using continuous assumption. The grains having B orientation are transformed to twins (T-

orientation) at approximately |Σ𝑅𝐷|=90 MPa. The evolution of macroscopic stress |Σ𝑅𝐷| is 

drawn with a solid orange line.  
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Appendix 4. Comparison of experimental and model 

evolutions of RSS and CRSS for inactive systems. 

 

In this appendix the evolution of RSS (experimental and predicted) and CRSS versus 

|Σ𝑁𝐷| or |E𝑁𝐷| are presented for slip and twinning systems, which are not activated for 

given grain orientations in three studied deformation modes. In all figures model predicted 

maximum RSS and CRSS are compared with experimental maximum RSS.  
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Fig. A4.1 Evolution of CRSS and maximum RSS on basal (a), prismatic (b), 

pyramidal <a> (c)  slip systems and first order tensile twin system (d) in A-oriented 

grains versus |Σ𝑁𝐷|, during compression test in ND. 
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Fig. A4.2 Evolution of CRSS and maximum RSS on prismatic (a), pyramidal <a> (b), 

first (c) and second (d) order pyramidal <c+a> slip systems and first order tensile twin 

system (e) in soft grains versus |Σ𝑁𝐷|, during compression test in ND. Model predicted 

maximum RSS and CRSS are compared with experimental maximum RSS.  
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b. RDT experiment 

|
ND

|  (MPa)

0 50 100 150 200 250

M
ax

im
u

m
 R

S
S

 a
n

d
 C

R
S

S
  
(M

P
a)

0

50

100

150

200

RSS - experiment

RSS - model

CRSS - model

Orientation A,

First order pyramidal <c+a> slip system

RDT

a) |
ND

|  (MPa)

0 50 100 150 200 250

M
ax

im
u
m

 R
S

S
 a

n
d

 C
R

S
S

  
(M

P
a)

0

50

100

150

200

RSS - experiment

RSS - model

CRSS - model

Orientation A,

Second order pyramidal <c+a> slip system 

RDT

b)

|
ND

|  (MPa)

0 50 100 150 200 250

M
ax

im
u

m
 R

S
S

 a
n

d
 C

R
S

S
  

(M
P

a)

0

50

100

150

200

RSS - experiment

RSS - model

CRSS - model

Orientation A, basal slip systemRDT

c) |
ND

|  (MPa)

0 50 100 150 200 250

M
ax

im
u
m

 R
S

S
 a

n
d
 C

R
S

S
  
(M

P
a)

-200

-150

-100

-50

0

50

100

RSS - experiment

RSS - model

CRSS - model

Orientation A,

First order tensile twin system 

RDT

d)  

Fig. A4.3 Evolution of CRSS and maximum RSS on the fist (a), second (b) 

pyramidal <c+a>, basal (c) slip systems and first order tensile twin system (d) in A-oriented 

grains versus |Σ𝑅𝐷|, during tensile test in RD.  
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c. RDC experiment 
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Fig. A4.4 Evolution of CRSS and maximum RSS on basal (a), prismatic (b), 

pyramidal <a> (c), first order (d) and second order (e) pyramidal <c+a> slip systems in B-

oriented grains versus |Σ𝑅𝐷|, during compression test in RD. Twin during rolling direction 

compression experiment  
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Fig. A4.5 Evolution of CRSS and maximum RSS on basal (a), prismatic (b), 

pyramidal <a> (c) slip systems and first order tensile twin system (d) in twin grains versus 

|Σ𝑅𝐷|, during compression test in RD. The results of modified EPSC models with 

continuous and threshold assumptions are shown. 
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