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RESUMO

Espalhamento Elástico pp e pp̄

Anderson Kendi Ramidan Kohara

Orientadores: Erasmo Ferreira e Takeshi Kodama

Resumo da Tese de Doutorado submetida ao Programa de Pós-graduação em

F́ısica, da Universidade Federal do Rio de Janeiro - UFRJ, como parte dos requisitos

necessários à obtenção do t́ıtulo de Doutor em Ciências (F́ısica).

Neste trabalho de tese, investigamos processos de espalhamento elástico e difrativo

em altas energias em colisões pp e pp̄.

Na primeira parte da tese estudamos o espalhamento elástico pp e pp̄ na região

frontal, apresentando uma análise detalhada do processo, que é descrito por uma

função complexa F (s, t) de duas variáveis cinemáticas (variáveis de Mandelstam).

Utilizamos as relações de dispersão derivadas para amplitudes e slopes (inclinações)

em suas formas exatas e obtemos v́ınculos entre os parâmetros das partes real e imag-

inária. Criticando o tratamento das colisões elásticas feito pelo Particle Data Group

(PDG) mostramos a necessidade de se analisar os dados experimentais levando em

conta os efeitos de baixas energias nas relações de dispersão e as diferenças entre os

valores dos slopes real e imaginário (BR e BI).

Para o tratamento dos dados em todos os valores t, utilizamos amplitudes baseadas

no regime assintótico do modelo do vácuo estocástico, o qual é constrúıdo no espaço

do parâmetro de impacto b, que é apropriado para a descrição geométrica dos pro-

cessos de colisão. Como o espaço geométrico não é observável experimentalmente,

é necessário passar ao espaço de momentos para descrever quantidades observáveis.

Em nosso modelo a passagem das amplitudes F (b, s) para F (t, s) por transformada

de Fourier é feita de forma anaĺıtica exata. Aplicando o modelo para cada uma das
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energias existentes, estudamos sua dependência com a energia, mostrando que ela

satisfaz os teoremas de Pomeranchuck generalizado, a forma assintótica do limite de

Froissart-Martin, e obedecem os v́ınculos de unitaridade. Fazemos descrição de alta

precisão para os experimentos do LHC a 7 TeV e apresentamos previsões para ener-

gias de futuros experimentos. Os parâmetros caracteŕısticos das interações frontais

são constrúıdos obedecendo as relações de dispersão.

No estudo do comportamento das amplitudes no espaço geométrico mostramos

que os dados de espalhamento pp para altas energias não seguem o comportamento

assintótico de um disco negro. Os processos nas energias assintóticas podem ser

descritos em termos de uma única variável combinando parâmetro de impacto e

energia (propriedade de escala).

Aplicamos nossa análise ao espalhamento p-ar observado em raios cósmicos uti-

lizando nossas amplitudes no formalismo de Glauber. Obtemos importantes pre-

visões para os raios cósmicos, descrevendo os dados experimentais em um largo

espectro de energia.

Comparamos nosso modelo com outros modelos teóricos, identificando diferenças

e semelhanças. Entendemos que qualitativamente algumas propriedades das ampli-

tudes são universais, devendo ser obedecidas por todos os modelos, tais como, a

existência de pelo menos dois zeros da parte real e dois da imaginária. O desloca-

mento do primeiro zero real como função da energia obedece previsão de um teorema

de André Martin. O segundo zero da parte imaginária somente aparece para muito

alta energia e alto |t|.

Finalmente analisamos processos difrativos quasi-elásticos. Neste estudo inves-

tigamos a estrutura do Pomeron em termos de constituintes fundamentais da Cro-

modinâmica Quântica. Aplicamos as distribuições de partons difrativas medidas

nos experimentos do acelerador HERA (DESY) em um simulador Monte Carlo para

processos hadron-hadron do LHC e obtemos previsões para 13 TeV.

Ao longo de todo o trabalho de tese, insistimos no prinćıpio de que os dados exper-
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imentais devem ser estudados e descritos em termos de amplitudes de espalhamento

com identificação expĺıcita das partes real e imaginária. Essa descrição completa

deve construir uma ponte entre teoria e experimento. Obtemos importantes pre-

visões que podem auxiliar modelos teóricos e análises de futuros experimentos com

raios cósmicos e aceleradores.

Palavras-chave: Espalhamento Elástico, Seção de Choque Diferencial, Seção de

Choque Total, Relações de Dispersão.

Rio de Janeiro

11/2015
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Chapter 1

Theory and phenomenology of

strong interactions

The study of strong interactions has been a permanent challenge for almost one

century suffering from the absence of a fundamental theory, and only recently Quan-

tum Chromodynamics (QCD) is universally accepted as its fundamental basis. QCD

was formulated in the early 70’s in terms of a non-Abelian gauge field theory (Yang-

Mills theory) with SU(3) color symmetry [1], [2]. Ref. [3] gives a short historical

review of the emergence of QCD, written by one of its founders. The dynamical

degrees of freedom are fields of quarks and gluons, with the Lagrangian density

LQCD =
∑
f

q̄(f)
[
iγµD̂µ −mf

]
q(f) − 1

4
F̂µν (x) F̂ µν (x) , (1.1)

where q̄(f) is Dirac spinor field for the quark of flavor f (there are six flavors), with

mass mf , having the vector structure in color space,

q(f) =


q

(f)
1 (x)

q
(f)
2 (x)

q
(f)
3 (x)

 , (1.2)

1
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and D̂µ is the covariant derivative defined as

D̂µ = ∂µ − igÂµ . (1.3)

Here, Âµ denotes the gluon field in the (3× 3) Hermitian matrix form, which can

be represented as

Âµ =
8∑

a=1

τ̂aAaµ (x) , (1.4)

where {τ̂a} are 8 generators of the SU(3) color group in the fundamental represen-

tation (3 × 3 matrices). The set of Lorentz 4-vectors
{
Aaµ (x)

}
represents 8 gluon

fields in the adjoint representation with corresponding color indices a.

The gluon field strength (which corresponds to the color electromagnetic field)

F̂µν is defined as the commutator of the covariant derivatives,

F̂µν = τ̂aF a
µν =

i

g

[
D̂µ, D̂ν

]
, (1.5)

with g being the strong coupling constant. Using the structure constants of the

group
{
fabc

}
, we can also write

F a
µν = ∂µA

a
ν − ∂νAaµ + g

8∑
b,c=1

fabcAbµA
c
ν . (1.6)

From the mathematical point of view, QCD is a beautiful and direct extension

of Quantum Electrodynamics (QED), constructed by generalization of the gauge

symmetry from the gauge group U(1) to SU(3). The color quantum numbers play

the role of the electric charge of Electromagnetism.

However, there are several fundamental differences between QCD and QED.

First of all, the basic degrees of freedom of QCD are fields of quarks and gluons,

and differently from electron and electromagnetic fields in Electrodynamics, they are

not observable particles in isolated form. Physically observable strongly interacting
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particles (hadrons) are colorless composite objects formed by quarks and gluons,

constructed by QCD dynamics.

Another important difference is that the gluons, which play the role of photons

in Quantum Electrodynamics (QED), interact with themselves. This self interac-

tion comes from the non-linear terms in Eq.(1.6). These two aspects lead to crucial

differences from the well-established QED, and we are submitted to these differences

throughout this thesis. For the sake of bookkeeping, we list below some basic prop-

erties of QCD without any demonstration (some of them are not even proven). For

more details, we refer to text books [4], [5].

1. In a quantum field theory, the perturbative scheme is performed in terms of

the degrees of freedom of the theory. Thus, in QCD, the perturbation scheme is

applied to the dynamics of quarks and gluons.

2. The vacuum state of the QCD degrees of freedom (the state defined as null

eigenstate for quark and gluon number operators, which is simply called QCD vac-

uum) is not the physical vacuum of the world described by QCD, which is defined

as the ground state of the system described by the theory. The structure of the

physical vacuum state is not reachable in terms of perturbation theory from the

QCD vacuum.

3. All known hadrons are composed as color singlet states in terms of a minimum

number of quarks, which are referred to as valence quarks. There are two classes of

hadrons: the baryons, which correspond to the totally color antisymmetric states of

three quarks (or anti-quarks), and the mesons, composed by a quark and an anti-

quark, also in color singlet states. Possible existence of hadrons without valence

quarks is suggested as glueballs, but this existence is not yet confirmed.

4. Isolated quarks or gluons are not observable in Nature. This is an empirically

established fact. QCD degrees of freedom are confined inside hadrons in such a way

that any physically observable object should be in the state of null color charge. This

(assumed) property of QCD is called“confinement”.There are several indications, but
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a general proof of the confinement mechanism of QCD is not known yet.

5. It has been shown [6], [7] that the running coupling constant of QCD decreases

as ∼ 1/ ln(Q2), where Q2 is the momentum transfer squared. This property is

called “asymptotic freedom”, which permits the use of perturbative schemes for the

dynamics of quarks and gluons at very high energies.

6. An ab-initio non-perturbative method, the lattice QCD framework (lQCD) [8],

has been extensively developed for the study of the physical vacuum and its spectrum

and of the hadronic structure. However, is spite of admirable efforts and progresses

the reliable results on hadronic properties still remain limited.

7. Although the explicit dynamics of quarks and gluons is not apparent in the

hadronic world due to the confinement, properties of the physical vacuum become

more and more important at high energies, mapping non-perturbative and pertur-

bative aspects of QCD, entangled in a complicated way in the dynamics of hadronic

collision processes.

8. In spite of this entanglement, factorization theorems of QCD [9] in hard

collisional processes allow a separation of interactions into scales of short and large

distances. Due to factorization theorems, the high energy behavior of hadronic

interactions can be discussed quantitatively by combining the short scale partonic

cross sections, calculated perturbatively in QCD, with long range, non-perturbative

ingredients of hadronic properties such as parton distribution functions (PDFs).

9. In some reactions, very energetic quarks or gluons are ejected out of the

hadronic domain, but they excite the physical vacuum along their trajectory and

eventually turn into a sequence of hadrons, which are observed as “jets”. Jets are

considered as direct signals of the hard scattering of quarks and gluons (partons).

10. When a sufficient amount of energy is deposited into a finite domain of

space-time reaching the thermodynamic equilibrium, then the quarks (anti-quarks)

and gluons are excited from the physical vacuum and melt into the so-called plasma

of quarks and gluons (QGP), giving way to thermodynamical degrees of freedom that
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can be used to describe the system. Such a plasma state is supposed to have been

created in the beginning of the Universe, and during the last decade these appeared

evidences that such a state is created in laboratory in ultra-relativistic collisions of

heavy ions. These evidences are considered as indication that the physical vacuum

is composed of quarks and gluons.

Having the above aspects of QCD in mind, in this thesis we study the high

energy behavior of proton-(anti)proton (pp, pp̄) scattering processes in terms of a

QCD based model for the scattering amplitudes, in particular, their elastic scattering

amplitudes. Elastic scattering processes hold a very unique position in the study of

high energy hadronic collisions. First of all, for a given center of mass energy,
√
s,

elastic scattering is completely specified just by a single complex function F (
√
s ; t)

of one unique variable t, the four-momentum transfer squared. Once this complex

function is known, we can express the integrated elastic cross section, σelas, and

using the optical theorem, the total cross section σ, and hence the total inelastic cross

section σinel . Furthermore, general properties required for the scattering amplitudes

such as unitarity give some constraints on the functional behavior.

In classical physics, when two massive composite objects collide very energeti-

cally, the fraction of elastic processes, in which the incident objects survive, becomes

very small, as we usually see in everyday life. When we hit two water glasses against

each other violently, they certainly break into many pieces. A first intuitive classical

estimate would lead that the ratio of the integrated elastic cross section to the total

cross section, σelas/σ , would decrease as ∼ 1/n, where n is the number of the open

inelastic channels at that energy.

However, in quantum mechanics, particles behave as waves and the above argu-

ment does not hold. For example, as it is well-known, the high energy limit of the

total cross section of a particle, scattered by a potential corresponding to a com-

plete black disk is just twice the geometrical cross section of the disk. A black disk

is somewhat equivalent to the system in which, for any impact parameter, there is
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an infinite number of inelastic channels. The factor 2 comes from the two different

ways of modifying the incident wave: in one, the absorption from the incident plane

wave excites inelastic processes inside the disk, and in the other a diffracted wave

is created to refill the shadowed region behind the disk. This last process gives

rise to a sharp peak in the differential cross section in the very forward domain.

Such a peak can be observed in the case of scattering of light by a black disk as

a bright spot at the center of the shadow, known as Poisson’s bright dot, and is a

general feature of the mechanism of scattering of waves. Thus, it is also expected

that such a view for elastic scattering of p-p (p-p̄) at very high energies might be

valid, since at very high energies the internal structure becomes less important and

only the geometrical extension of the matter is expected to be relevant. In fact, the

differential elastic cross section has a sharp peak in the forward region, followed by

a complex diffractive structure for larger values of the momentum transfer (larger

scattering angles). However, the factor between total and integrated elastic cross

section is not 2, showing that black disk does not provide a realistic description of

hadronic scattering. Thus, naively speaking, one might attribute the sharp forward

peak behavior of the differential cross section as the result of a diffraction from a (an

almost) black-disk nature of the proton structure at very high energies, representing

the opening of many inelastic channels within their interaction distance. That is, the

elastic process could be expected as the diffraction of the incident waves scattered

by an opaque object. In such an image, we would expect that from the analogy in

the black disk potential, the total cross section at very high energy would tend to

a constant value, corresponding to the geometrical size of a proton. However, with

the advent of new accelerators in the early 60´s which were able to measure the

total cross section of p-p (p-p̄) above 20 GeV, such a naive picture was forced to

encounter a great surprise. There, although the total cross sections of p-p and p-p̄

are started to converge to become equal as conjectured in the theorem of Pomer-
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anchuck [10, 11]1, their values do not stay constant and increase with the incident

energy.

From the pure theoretical point of view, the possibility that the asymptotic be-

havior of p-p (p-p̄) cross section does not necessarily converges to a finite constant

value was not discarded within the framework of the S-matrix theory developed in

mid 50´s. The S-matrix approach was intensively studied in order to circumvent

the incapability of field theoretical approaches for strong interactions before QCD

was discovered. The behavior of the total cross section indefinitely increasing as

function of the incident energy is really difficult to understand in terms of a simple

non-relativistic quantum mechanical model of p-p interactions. On the other hand,

in a relativistic field theory where infinite degrees of freedom can participate in the

scattering process, this possibility is already perceived, because the proper renormal-

ization scheme and resulting effective coupling constant (form factor) may depend

on the energy scale. However, there was no concrete quantitative theory in the pre-

QCD era, since the strong interactions were not treatable within a framework of

quantum field theories known at that time.

The experimental discovery of increasing total cross sections opened great in-

terest in the high energy phenomenology of the scattering amplitude within the

S-matrix formalism. As mentioned above, in the theoretical scheme of general S-

matrix theory, the possibility that the total cross section does not stay constant

at high energies had already been noticed. Among others, we cite the works of T.

Regge, L. Pomeranchuck, Froissart, Martin and Luckaszuk, who studied the possi-

bility of the increase of the cross section in terms of the structure of the S matrix.

The theoretical structure in the study of the bound on the total hadronic cross

section has passed through several improvements since the first formulation. In par-

ticular, Froissart [12] derived the upper-bound of the total cross section as function

1The theorem states that in A+B and Ā+B collisions, if both of cross section tends to constant
at the limit of infinite incident energy, the two cross sections should approach the same value. H.
Miyazawa also arrived at the same theorem in the same year as Pomeranchuck, as published in a
Japanese journal.
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of energy, known as Froissart (or unitarity) bound (1961), which states that as far

as unitarity of the S-matrix is satisfied, the p-p (p-p̄) cross section is bounded as

σ (s) ∼ C× ln2

√
s

s0

, s� s0 (1.7)

where C and s0 are unknown constants. This theorem was first proved assuming

the Mandelstam representation. This assumption might not be valid, for example, if

there are rising Regge trajectories. Later (1966) Martin proved the bound rigorously

in a much more general framework of axiomatic local field theory as applied to

hadrons [13]. Then Lukaszuk and Martin (1967) wrote the bound [14] in the form

σtot ≤
4π

(t0 − ε)
log2(s/s0) ≡ σmax (1.8)

where t0 is the next singularity and ε is nonzero and arbitrarily small. The bounds

are written in terms of a quantity σmax , where s0 and ε are unknown quantities.

Some difficulties remained in the proofs of bounds, due to assumptions not rigor-

ously proved. In a recent paper [15] the authors claim that the shortcomings (such

as the unknown constants) were removed. Martin and Roy study specifically the

π0π0 system, and establish bounds for an energy average of the total cross section

free of the quantity ε, and relate the scale s0 with a property of the system in the

t-channel (D-wave scattering length).

The paper shows that for c.m. energy
√
s → ∞ , the weighted average of the

cross section defined by

σ̄(s,∞) = s

∫ ∞
s

ds′

(s′)2
σtot(s′) (1.9)

is bounded by

σ̄(s,∞) ≤ π

m2
π

[log(s/ssc) + (1/2) log log(s/ssc)]
2 . (1.10)
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The constant quantity

C =
4π

4m2
π

=
4π

|t|0
(1.11)

is determined by the position of the nearest t channel singularity |t|0 in ππ scattering.

The value of the scale ssc depends on the hadron-hadron system studied. For the

ππ system, the predicted value is

1

ssc

= 17π

√
π

2

1

m2
π

. (1.12)

However, compared to the phenomenology and data in ππ scattering, the bounds

are too high, so the the ssc is unrealistic, or the bound is not useful.

Nowadays it is known that the behavior of the collision processes at high energies

is intimately related with the structure of the physical vacuum of QCD. Actually,

studying the elastic scattering amplitudes in terms of a QCD based model, we are

able to extract important information which may clarify the role of the physical

vacuum. The pioneering work in this direction was done by H.G. Dosch, E. Ferreira

and A. Kramer in 1992-1994 [16], incorporating the behavior of the correlation

function of the Wilson loops of QCD obtained in the Stochastic Vacuum Model [17],

and calculating total cross sections and forward slope, for baryon-baryon and meson-

baryon for fixed energy. In subsequent works [18], [19], the profile functions of the

scattering amplitude based on the SVM were studied in detail with analytical form in

terms of the impact parameter. These studies gave the complete b and consequently

t dependence of the pp amplitudes.

In the present work, we further pursuit in detail this approach and perform the

detailed analysis of the experimental data up to the highest energies available from

LHC and cosmic ray experiments, building a complete and natural energy depen-

dence for our model. From this analysis, we arrive at complete analytic expressions

for F (s, t) [20,21]. The most important point of our approach is that, different from

a simple phenomenological model that to be ajusted to the experimental data, we
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work with the complex amplitudes extracted from the QCD based theory, and from

this, we propose a disentanglement, from the experimental data of the contributions

of the real and imaginary parts of the amplitude.

Other observations in p-p (p-p̄) scattering show that there exist inelastic chan-

nels in which the final state protons (the so-called leading particles) exhibit a very

similar behavior to those of the elastic scattering case. We refer to those events as

diffractive inelastic processes. Differential cross sections of these events are char-

acterized by a very steep angular distribution of the final state protons as seen in

the elastic channels, but the rapidity distribution of associated produced hadrons

is characterized by the presence of a large gap, differently from non-diffractive in-

elastic events. Furthermore, the multiplicities of produced particles are rather small

compared to the average multiplicity. The presence of such a large rapidity gap

suggests that no color charge flow occurs in such events. This occurs because, due

to the confinement, it is very difficult to produce hadrons with a large momentum

gap in terms of perturbative, hard QCD process. This is exactly the case of elastic

scattering, where there is no color exchange between the two protons (naturally, the

rapidity gap between the two protons in the elastic channel is the largest possible).

This characteristic property of the diffractive events suggest that they can be con-

sidered as the excitation of one of the protons (single diffractive) or both (double

diffractive) associated with their diffractive scattering, with subsequent decay with

emission of hadrons. Thus, the basic scattering mechanism may be almost the same

as elastic scattering. In spite of the similarities with elastic scattering, our present

formulation does not describe the inelastic channels.

It is more than 40 years since the unified approach to deal elastic and diffractive

inelastic scatterings has been proposed in terms the exchange of a hypothetical parti-

cle in t-channel, called Pomeron [22], within the Regge Pole approach [23]. Pomeron

is assumed to be a colorless object and have different excitation spectra compared

to a normal hadron. Several phenomenological schemes under this hypothesis have
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been studied extensively. In terms of QCD, it is suggested that Pomeron might be

classified as member of the family of glueballs [22].

In recent studies, the QCD-based technique of evolution equations in the rapidity

space to obtain the gluon distribution function plays the central role in the descrip-

tion of the structure of Pomerons [4]. On the other hand, this approach has several

aspects in common with the Stochastic Vacuum Model, in which our scattering am-

plitudes are constructed, although our model does not starts with the presence of

Pomeron explicitly. Aiming to understand in future how the Pomeron approach can

be understood within our approach and extend the model to inelastic processes, we

present several studies within the scheme of so-called“Resolved Pomeron Model” [24]

developed during the author´s visit to Ecole Polytechnique within the Sandwich

Graduate Program of the CAPES, Ministry of Education, Brazil in Collaboration

with Dr. Cyrille Marquet.

1.0.1 Contents of the Thesis

The structure of this thesis is as follows. In Chapter 2, we describe concisely

the formalism of our model for elastic scattering. For this purpose, we first intro-

duce basic ingredients and variables, such as S-matrix and its analytic properties,

dispersion relations, and eikonal representation. More details are given in Appendix

A. We then sketch the basic concepts of the Stochastic Vacuum Model (SVM) to

represent the correlation functions of Wilson loops. These correlation functions are

associated to the imaginary part of the scattering amplitude of colored objects, and

implemented to construct the S-matrix elements through the eikonal representation

(impact parameter space). There, we write the scattering amplitudes as convolution

of the distribution of colored objects inside the colliding hadrons with the eikonal

amplitude given by SVM. From this, the asymptotic behavior of hadron-hadron am-

plitudes for all b is studied. The basic ingredients of the interaction, representing

non-perturbative properties of the QCD vacuum is the gluon condensate. On the
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other hand, phenomenologically it is known that the very forward scattering ampli-

tudes are well characterized by its exponential dependence in t, corresponding to a

Gaussian form of the profile function in b-space. To satisfy this phenomenological

boundary condition, we introduce an interpolating formula as the sum of the Gaus-

sian distribution form, and the distribution which has asymptotic behavior given by

SVM, the so-called shape function, which represents properties of QCD vacuum field

and has more extended range in b-space. This term describes the deviation from a

pure Gaussian form typical of Pomeron physics framework, for finite values of b. To

give full treatment in b-space, four real parameters are introduced in each real and

imaginary part of the amplitude for a given energy. These parameters depend on

the energy scale involved, since they somewhat represent the effective distribution

of the scattering centers, which are to be determined from the experimental data.

SVM describes how the vacuum behaves as the mediator of the interaction among

these scattering centers. The F (s, t) amplitudes are obtained analytically by Fourier

Transform. In the present work we determine the energy dependence of the ampli-

tudes as functions of the energy, to obtain a full, analytic expression of scattering

amplitudes for any values of s and t.

Before the analysis for the construction of the scattering amplitude for all s and t

values, in Chap.3 we pay special attention to a detailed analysis of the experimental

data in the forward region, that imposes important constraints for the behavior of the

amplitudes for all t, and gives connection between real and imaginary parts through

Dispersion Relations (DR). Careful analysis of the forward scattering amplitudes

using data at several energies is made. The use of the dispersion relations is shown

to be very important and with the correct Coulomb interference terms, we show in

fact that both real and imaginary parts should be treated as independent exponential

functions in t, as treated in our approach for the full-t amplitudes.

In Chap.4 we proceed to study the energy dependence of the parameters intro-

duced in the full amplitudes presented in Chap.2. For this purpose, the wide-range t
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dependence of the observed data is carefully investigated, especially paying attention

to the behavior of dips and bumps in the differential cross section, in addition to the

forward scattering behavior. We show that the complex amplitude near the first zero

of the imaginary part is connected to the position and the forms of dips and bumps,

as was first discussed in Ref. [19]. Properties of the real part are studied, and it is

shown that they play crucial role in the determination of the behavior of the dip,

bump and tail (where the imaginary part is not totally dominant as in the forward

direction). After analyzing all data for available energies up to 7 TeV, we find that

the energy dependence of the parameters behave very regularly and smoothly. This

permit us to construct analytic expressions of these parameters, imposing constraints

from the unitarity conditions. Energy dependence of some of them are clearly given

by a straight line or a quadratic curve in ln s. After determining this energy depen-

dence, a kind of iterative analysis for the rest of parameters is made, with the help

of constraints imposed by the unitarity and DR. This process converges to express

all parameters as simple analytic forms in ln s, and the final form of the amplitude

F (s; t) is written for arbitrary values of s and t. Using this amplitude (referred to

as KFK, from Kohara-Ferreira-Kodama) [20, 21], we compare the predicted values

of total and differential cross sections to the data obtained recently for
√
s = 7 and

8 TeV.

In Chap.5 we discuss the properties of KFK amplitudes in b-space. We found

that the profile functions at high energies show precise geometrical scaling. We

further obtain that profile function is not that of a sharp black disk, but rather

possesses an appreciable diffused surface structure. This leads to a prediction that

the asymptotic value of the ratio, σelas/σ does not converge to 1/2, but to a smaller

value (about 1/3). We compare this result with other work [25].

In Chap.6, using the advantage of simple, explicit analytical expressions of the

amplitudes, we apply them to the calculation of proton-nucleus within the Glauber

formalism and compare results [26] with the cosmic ray data [27–34]. We also
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discuss the geometric properties and asymptotic behavior of the p-A cross section

in the Glauber model, obtaining a finite asymptotic limit for the σpp/σp−air ratio.

In Chap. 7 we perform a comparative study of our model with other known

models frequently used in the literature, showing similarities and differences, which

can be checked in future experiments.

In Chap. 8, as an additional study to the analysis of the elastic scattering

amplitudes, we present an analysis developed within the framework of the Resolved

Pomeron Model. We investigate the double Pomeron exchange process leading to

prompt photon production.

Chap. 9 is dedicated to the discussion and perspectives of our line of work.



Chapter 2

Elastic scattering: amplitudes in

the Stochastic Vacuum Model

In this chapter we describe elastic scattering of hadrons in terms of the S-Matrix

formalism. The scattering amplitudes are complex quantities functions of two kine-

matical variables s and t. Causality and analyticity constrain the real and imag-

inary forward parts through dispersion relations (DR). Many models describe the

scattering amplitudes, but still, no solution covers all experimental data with high

precision. At high energies and small momentum transfer the eikonal representation

of the collision processes is natural, since in this regime the system accepts a geo-

metrical description. After presenting the general properties, we present the basis of

the scattering amplitudes in the framework of the Stochastic Vacuum Model (SVM),

mentioning the main references.

2.1 S-matrix and transition amplitudes

In a quantum mechanical system, the transition amplitude from an initial to a

final state (|i〉 → |f〉), is described by the S-Matrix, which is a unitary operator

15
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containing all the dynamical information involved in the collision process,

|f〉 = Ŝ |i〉 . (2.1)

Given the initial state |i〉, the probability of finding a final state |f〉 is

Pfi = |〈f |Ŝ|i〉|2 , (2.2)

and the completeness relation summing over all possible final states is

∑
f

|f〉〈f | = 1 . (2.3)

The probability of finding any final state is 1, so that

∑
f

Pfi = 〈i|Ŝ†
(∑

f

|f〉〈f |
)
Ŝ|i〉 = 〈i|Ŝ†Ŝ|i〉 = 1 , (2.4)

which implies Ŝ†Ŝ = 1̂, and, Ŝ is unitary matrix.

The S-matrix can be written in terms of non-interacting and interacting parts

Ŝ = 1̂− iT̂ , (2.5)

and the matrix elements are written

Sfi = 〈f |Ŝ|i〉 = δfi − i (2π)4δ4(Pf − Pi) Tfi , (2.6)

with δfi = 〈f |i〉 representing the absence of interaction and (2π)4δ4(Pf − Pi)Tfi =

〈f |T̂ |i〉 is the non-trivial part representing the interaction term. The variables Pf and

Pi are the final and initial total linear 4-momentum of the particles. The transition
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rate per unity volume is defined by

Rfi = (2π)4δ4(Pf − Pi) |Tfi|2. (2.7)

The sum over all final states of the transition rate divided by the incident flux of

particles gives the total cross section

σtotal =
1

j

∑
f

Rfi, (2.8)

where the flux of incident particles is given by the relative velocity of incident beams

multiplied by the volumetric density. The flux written

j = |~v ∗1 − ~v ∗2 |2E∗1 2E∗2 =
∣∣∣~p ∗1
E∗1
− ~p ∗2
E∗2

∣∣∣2E∗1 2E∗2

= |~p ∗i |
[E∗1 + E∗2
E∗1E

∗
2

]
4E∗1E

∗
2 = 4p∗i

√
s , (2.9)

is a quantity invariant under a Lorentz boost. The superscript ∗ denotes the quantity

in the CM frame as defined in Appendix A. Combining Eq.(2.9) and Eq. (2.8), the

total cross section is written

σtotal =
1

4p∗i
√
s

∑
f

Rfi . (2.10)

Essentially, the total cross section represents the sum over all possible events ob-

served in the final state per unit flux, unit volume and unit time.

2.1.1 Optical theorem

Using the unitarity condition we have

〈k|Ŝ†Ŝ|i〉 = δki , (2.11)
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and it follows

〈k|T̂ |i〉 − 〈k|T̂ †|i〉 = i
∑
f

(2π)4δ4(PK − Pf )〈k|T̂ †|f〉〈f |T̂ |i〉 . (2.12)

Considering the case where the final state is equal to the initial state |k〉 = |i〉,

2 Im〈i|T̂ |i〉 =
∑
f

Rfi . (2.13)

Eq. (2.10) then becomes

σtotal =
Im〈i|T̂ |i〉

2p∗i
√
s

. (2.14)

The condition that the final state is equal the initial state, with the transferred

momentum t = 0, gives

σtotal =
Im F (s, t = 0)

2p∗i
√
s

' Im F (s, t = 0)

s
, (2.15)

where we define F (s, t) ≡ 〈f |T̂ |i〉 and have introduced the high energy approxima-

tion
√
s ' 2p∗i . This expression is the optical theorem that relates the total cross

section with the imaginary amplitude at t = 0 for a given energy.

2.1.2 Differential cross section

For the elastic channel, the scattering differential cross section describes the

angular dependence of the probabilities of the scattered particles. An infinitesimal

cross section element is written

dσ =
|F (s, t)|2

4p∗i
√
s
dΓ , (2.16)

where dΓ is the relativistic invariant phase space

dΓ =
1

4π2

p∗f
4
√
s
dΩ , (2.17)
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with dΩ = sin(θcm)dθcmdφ. The relation between the variables Ω and t is obtained

using Eq. (A.19)

dt = −
|~p ∗f |2

π
dΩ , (2.18)

and then

dσ

d|t|
=

1

16πs(s− 4m2)
|F (s, t)|2 ' 1

16πs2
|F (s, t)|2 . (2.19)

F (s, t), is a complex function which must be studied in detail for the complete

description of scattering dynamics. Part of our work is devoted to the study of the

analytical properties of this amplitude and its behavior in s and t variables.

2.1.3 Analyticity and dispersion relations

The scattering amplitudes are described by a complex function of two variables,

say E and t, where E is the incident particle energy in the lab system. In pp (pp̄)

scattering at high energies we may use the relation with the cm energy s ' 2 m E

where m is the proton mass. Relations are given in Appendix A. The basic assump-

tions usually made on the scattering amplitudes are that they are analytical and

causal. In spite of the apparent distinction between these two features, they are

related with each other. Another important assumption is that the singularities ap-

pearing in the complex energy plane are associated with properties of the dynamical

processes, with the association of poles to bound states or resonances in the interme-

diate states. Cuts, connected with branching points, are associated with thresholds

of n particle states in the final states. Under these assumptions, dispersion relations

(DR) connecting the real and imaginary amplitudes in the forward direction can be

written.

In Appendix B we derive the integral DR from first principles. For pp and pp̄

scattering we write the integral DR with one subtraction constant in terms of even
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and odd amplitudes respectively

Re F+(s, u) = K +
2

π
s2P

∫ ∞
2m2

Im F+(s′)

s′(s′2 − s2)
ds′ , (2.20)

Re F−(s, u) =
2

π
sP

∫ ∞
2m2

Im F−(s′)

s′2 − s2
ds′ , (2.21)

where m is proton mass and

F+(s, u) ≡ [F (s, u)pp→pp + F (u, s)pp̄→pp̄]/2 (2.22)

and

F−(s, u) ≡ [Fpp→pp(s, u)− Fpp̄→pp̄(u, s)]/2 . (2.23)

2.1.4 Derivative dispersion relations

The calculation of principal value integrals are usually treated by algorithms ex-

ecuting a large number of mathematical operations. One alternative to the usual

integral DR are the Derivative Dispersion Relations (DDR) whose expressions were

originally written in a very high energy approximation in terms of trigonometric

functions, with spurious singularities for certain parameter values with divergent

terms, and poor approximation with DR for low energies. For several years these

forms were extensively used in the literature. In Ref. [35] the authors derived for

the first time the exact forms for DDR representing the original integral disper-

sion relations (IDR). The new forms were expressed in terms with logarithm and

trigonometric functions plus series of double sums of derivatives. The double sums

are mathematically complicated to calculate and it is difficult to prove their conver-

gence. This problem was solved in [36], where the double sums where reduced to

single sum for appropriate forms of the imaginary amplitudes. Then, independent

derivation of exact DDR forms was presented [37], with identification of reasons for
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apparent singularities, and practical final forms written.

For practical applications in phenomenology the exact DDR are more efficient to

treat the imaginary inputs. From the Froissart-Martin Theorem [12], the behavior of

total cross section becomes simple at high energies, being limited asymptotically by a

log2(s) form. From the experimental data analysis one can obtain a parametrization

for the total cross section and by the optical theorem we write the forward imaginary

amplitude as function of s. Then, the DDR gives the real amplitude at t = 0. An

extension of the DDR for the first derivative of the imaginary amplitude with respect

to t close to t = 0 gives the real slope BR [38], once the imaginary slope BI is given

as function of s. This second form of DDR depends on the input for the imaginary

slope as function of the energy.

In the model discussed in this thesis the analytical forms of inputs are simple

powers of (sλ logn s) with n being an integer number and λ a real number in the

range −1 < λ ≤ 0. In Pomeron-like models, terms with λ > 0 occur.

For practical applications we define the Principal Value (PV) integrals

I(n, λ, x) = P

∫ +∞

1

x′λ logn(x′)

[x′2 − x2]
dx′ . (2.24)

The phenomenology demands us to compute terms with n = 0, 1, 2, 3, 4 and −1 <

λ ≤ 0. In Appendix B we consider the 5 cases of n and we show the mathematical

properties of the exact forms of the DDR.

2.1.5 Eikonal framework

Many phenomenological models have been proposed to describe pp and pp̄ elastic

scattering. Some models are based on the exchange of particles in the t-channel, and

others emphasize the energy dependences of the S-matrix poles and cuts. Following

E. Predazzi and V. Barone [23], we refer to the first type as t-channel models and

the second kind as s-channel models. The well-know approach of a t-channel model
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is the Regge-pole theory, based on properties in the complex angular momentum

plane, with association of singularities to reggeons (families of mesons, baryons) and

Pomeron exchanged in the t-channel. These reggeons and Pomeron determine the

behavior of the scattering amplitudes in the s-channel. No prescription is assumed

for the t-dependence of the complex poles.

On the contrary, the eikonal approaches are examples of s-channel models. In

this class of models the t dependence is obtained from the Fourier transform of

amplitudes first written in geometric impact parameter space. In this framework, it

is easy to impose the unitarity constraint. However, the energy dependence is usually

not specified a priori, and must be incorporated by phenomenology or theoretical

assumptions.

Both classes of models have merits and shortcomings in the description of exper-

imental data. In spite of the large variety of attempts, so far, no model combines

the s and t behavior in a satisfactory and complete way based only on fundamental

principles.

In this thesis we work with a model first built in the eikonal framework. Through

Fourier Transform we pass to the s, t space and construct the energy dependence

of the model analysing experimental data of differential cross sections. We also

compare our amplitudes with other models built using the same eikonal framework.

To introduce the eikonal formalism, we here mention its basic ingredients. We

start with partial wave expansion scattering amplitude in s-channel

F (k∗, θk∗) = 4
∑
l

(2l + 1) al(k
∗) Pl(cos θk) , (2.25)

where k∗ is the incident linear particle momentum, l is the angular momentum, Pl

is the Legendre Polynomial of first kind, θk∗ is the scattering angle between the

incident and the scattered particles in the CM frame and al(k
∗) is the partial wave
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amplitude, which can be written,

al(k
∗) = i(1− Sl) , (2.26)

with Sl = e2iδl(k
∗) being the matrix element of S-Matrix in angular momentum

representation, and δl(k
∗) is the complex phase shift.1

At high energies (large k∗), and small scattering angles θk∗ , large values of l

become more important, with

Pl(cos θk∗) ' J0(lθk∗) . (2.27)

Making an analytic extension of l, the sum in Eq.(2.25) is written as an integral

F (k∗, θk∗) = 4

∫
dl (2l + 1) a(k∗, l) J0(lθk∗) , (2.28)

were a(k∗, l) = al(k
∗) for integer values of l. With the relation k∗ b = l + 1/2 we

write

F (k∗, θk∗) = 4 k∗ 2

∫
db b a(k∗, b) J0(k∗ b θk∗)

=
is

2π

∫
d2~b ei~q.

~b (1− e2iδ(k∗,b)) , (2.29)

where we use the approximation qb ' lθk∗ , (~q being the momentum transfer) and

the Bessel function property

1

2π

∫
d cos(θk∗)e

iqb cos(θk∗ ) = J0(q b) . (2.30)

1Note that, in the elastic channel, due to the rotational symmetry and associated with Schur’s
lemma the S-matrix elements should be diagonal in the energy and angular momentum basis, and
independent of the angular momentum projection m.



24

With −q2 = t, and at high energies k∗ 2 ' s/4, we write

F (s, t) =
is

2π

∫
d2~b ei~q.

~b (1− e2iδ(s,b)) . (2.31)

Theoretical models based on the eikonal framework provide the phase shift func-

tion δ(s, b), commonly presented as the eikonal function χ(s, b) = 2δ(s, b).

In order to absorb the energy dependence in the amplitudes we define F̃ (s, b) =

s a(s, b) = is(1− eiχ(s,b)) and write

F (s, t) =
1

2π

∫
d2~b ei~q.

~b F̃ (s, b) . (2.32)

In the next section we motivate and present a b dependent scattering amplitude

based on the Stochastic Vacuum Model. The energy dependence is constructed

separately in another chapter. After the combination of s and b dependences we

finally complete the interacting model arriving at an expression for the complex pp

elastic scattering amplitude F̃ (s, b).

2.2 b - dependence of pp amplitudes of the Stochas-

tic Vacuum Model

The main point of this section is to motivate and explain the theoretical basis

of our scattering amplitudes valid for all b, and consequently, for t space. Quantum

Chromodynamics (QCD) is the fundamental theory that explains the strong inter-

actions. However, in relativistic elastic scattering between hadrons the momentum

transfer t is in general small. In this regime the QCD strong coupling constant

αs(t) becomes large, which makes impossible a perturbative treatment, such as in

terms of Feynmann diagrams. A non-perturbative framework is needed to describe

these peripheral collisions. In this section we explain the Stochastic Vacuum Model,

a non-perturbative scheme based on QCD and the correlation functions extracted



25

from its assumptions.

2.2.1 Stochastic Vacuum Model

After the success of QCD sum rules [39] many effects of non-perturbative QCD

could be properly described phenomenologically by the parameters of ’physical’ vac-

uum (condensates, etc). A relatively simple model, called Stochastic Vacuum Model

(SVM) uses these vacuum properties to treat several properties of hadronic interac-

tions, as the linear rising of the confining potential between quarks [17].

In the framework of quantum field theory, Nachtmann calculated [40] the scat-

tering amplitude of a quark/antiquark moving along a light-like path in an external

colour field given in the eikonal approximation. These results were applied to quark-

quark and quark-antiquark scattering by Dosch and Kramer [41], using the vacuum

correlators (gluon condensates [42], introduced first in the spectroscopy of hadrons

by Shifman-Zakharov-Vainshtein [39]) in order to compute the functional average

over the background gluonic fields. However quark-quark scattering amplitudes are

gauge dependent quantities, and in this sense, the Wegner-Wilson loops [8] defined

in Minkowski space-time are more appropriate tools to deal with soft hadron-hadron

problems, since they are gauge invariant quantities. The loops are formed by quarks

and anti-quarks moving at high energies with anti-parallel trajectories along the

light-like paths (see Fig. (2.1)) with the edges connected by Wilson lines.

Due to the first success of SVM, an extension was made and applied to describe

high energy scattering of hadrons [43] using the Wilson loops. In these studies the

main observation is that the gauge invariant background field correlator plays an

important role. Using this model, Dosch, Ferreira and Kramer [44] calculated the

total cross sections and the slope parameters of the elastic differential cross sections

of meson-baryon and baryon-baryon systems for fixed energy (
√
s = 20 GeV). The

basic ingredients to calculate the hadron-hadron amplitudes in the framework of

SVM is the gluon condensate and the correlation length that is associated with the
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vacuum interaction range.

In the following, we explain the correlation function coming from the average of

Wilson loop over the background fields [40]. Wilson loop is defined by

W [C] ≡ tr Pe−ig
∮
C(x,x) dz

µAµ(z) = tr V [C(x, x)] (2.33)

where g is the strong coupling constant, C(x, x) is a closed circuit, P is the path

ordering and Aµ =
∑

iA
i
µτi/2 is the color field with τi being the Gell-Mann matrices

of SU(3). The Wilson line V [C(x, y)] is defined by

V [C(x, y)] = Pe−ig
∫
C(x,y) dz

µAµ(z) , (2.34)

along the general circuit C(x, y). Using the non-Abelian Stokes theorem [45] the

closed line integral above is converted into a surface integral with dSµν being the

infinitesimal area element surrounded by the circuit C(x, x). Then the expectation

value of the Wilson loop is

〈W [C]〉 = 〈 tr Pe−ig
∫
S dS

µνFµν [z,C(w,z)]〉, (2.35)

with

Fµν [z, C(w, z)] = V [C(w, z)]Fµν(z)V [C(z, w)] , (2.36)

where Fµν(z) is the gluon strength tensor, which is parallel transported from the

position w (chosen arbitrarily in order to define the correlator in a gauge invariant

way) to the point z.

Using cumulant expansion one can write Eq.(2.35) as

〈W [C]〉 = P exp
[∑

n

(−ig)n

2nn!

∫
S

dSµ1ν1(z1)...dSµnνn(zn)

〈〈 tr Fµ1ν1 [z1, C(w, z1)]...Fµnνn [zn, C(w, zn)]〉〉
]
, (2.37)
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where 〈〈 tr Fµ1ν1 [z1, C(w, z1)]...Fµnνn [zn, C(w, zn)]〉〉 are the cumulants of correlation

functions. For a given function f(z), the cumulant definition is

〈〈f(z)〉〉 = 〈f(z)〉 (2.38)

〈〈f(z1)f(z2)〉〉 = 〈f(z1)f(z2)〉 − 〈f(z1)〉〈f(z2)〉 (2.39)

〈〈f(z1)f(z2)f(z3)〉〉 = 〈f(z1)f(z2)f(z3)〉 − 〈f(z1)〉〈f(z2)f(z3)〉

−〈f(z2)〉〈f(z3)f(z1)〉 − 〈f(z3)〉〈f(z1)f(z2)〉 (2.40)

〈〈f(z1)f(z2)f(z3)f(z4)〉〉 = 〈f(z1)f(z2)f(z3)f(z4)〉 − 〈f(z1)f(z2)〉〈f(z3)f(z4)〉

−〈f(z1)f(z3)〉〈f(z2)f(z4)〉 − 〈f(z1)f(z4)〉〈f(z2)f(z3)〉

... (2.41)

Since the Gell-Mann matrices appearing in the gluon strength tensor Fµν(x)

are traceless, the lowest order approximation for the expected Wilson loop value is

quadratic in the strength tensor. The first assumption of SVM is that higher order

cumulants are zero, which means that only Gaussian correlators survive. This leads

to

〈W [C]〉 ≈ exp
[
− g2

222!

∫
S

dSµ1ν1(z1)dSµ2ν2(z2)〈 tr Fµ1ν1 [z1, C(w, z1)]Fµ2ν2 [z2, C(w, z2)]〉
]
,

(2.42)

and the path ordering is no longer important. The expansion of the above expres-

sion in terms of the correlation function appearing in the exponent is the starting

point to obtain the hadron-hadron soft scattering amplitudes at high energies. The

second assumption of SVM is the Lorentz invariance of the correlator. Obeying this
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requirement the correlation function is written [41,42]

〈g2F a
µν [z1, C(w, z1)]F b

αβ[z2, C
′(w, z2)]〉 =

δa,b

12(N2
c − 1)

〈g2FF 〉
[
κ(gµαgνβ − gµβgνα)D(z2)

+(1− κ)
1

2
[
∂

∂zµ
(zαgνβ − zβgνα) +

∂

∂zν
(zβgνα − zαgνβ)D1(z2)]

]
(2.43)

where z = z1 − z2, 〈g2FF 〉 = 〈g2F a
µν(0)F a

αβ(0)〉 being the gluon condensate [39],

NC is the number of colors and a, b are the color indexes. The third assumption of

SVM establishes that the functions D(z2) and D1(z2) must fall off with increasing

z2. These functions are related with the non-Abelian and Abelian contributions

respectively and they are normalized such that D(0) = D1(0) = 1. The constant κ

measures the relation between these relative contributions and can take values from

0 to 1. The exponential fall of the functions D(z2) and D1(z2) is motivated in the

lattice QCD calculations in Euclidian space-time, and also, lattice QCD indicates

large values to κ/(1 − κ), (κ = 0.75) which means a dominance of non-Abelian

contributions.

The correlation length is defined by

∫ ∞
0

dz D(z2) ≡ a . (2.44)

Numerical study of D functions [46] shows an exponential decreasing behavior for

z2 → ∞ and the correlation length a ≈ 1 allowing to reach asymptotic forms for

D(z2) and D1(z2).

2.2.2 Eikonalyzed amplitudes

Now we describe the application of SVM in order to obtain the b dependence of

hadron-hadron amplitudes within the eikonal framework.
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The quark-quark scattering amplitude derived in [40] is

Tqq|s→∞ → −iū(p3)γµu(p1)ū(p4)γµu(p2)(Z−2
ψ )

∫
d2~b ei~q.

~b 〈[V [Γ+]− 1][V [Γ−]− 1]〉 ,

(2.45)

where u and ū are Dirac spinors associated with matrices γµ, Zψ ≡ 〈 tr V [0]〉/NC

is the wave function renormalisation constant determined from the eikonal approx-

imation and Γ± are the quarks trajectories along light-like paths. In Fig.2.1 we

show two quarks trajectories along light cone coordinates. In high energy limit the

pre-factor in the above equation simplifies to

−iū(p3)γµu(p1)ū(p4)γµu(p2)→ −2is δλ3,λ1δλ4,λ2 , (2.46)

where λ’s are the helicity indices. This amplitude was extended to loop-loop scat-

tering [41] replacing the trajectories Γ± by the closed rectangular circuit C± along

the light-like directions ±. In the following the helicities are no longer important.

In this sense, the scattering profile function between two loops is

J(~b, ~R1, ~R2) = Z−2
ψ 〈 tr [V [C+]− 1] tr [V [C−]− 1]〉 , (2.47)

where

Z−2
ψ =

[
〈 1

NC

tr V [0, ~R1]〉〈 1

NC

tr V [0, ~R2]〉
]−1

= 1 , (2.48)

with V [C+] ≡ V [−b/2, ~R1] and V [C−] ≡ V [+b/2, ~R2]. The vectors ~R1 and ~R2 are

vectors connecting quarks/antiquarks inside the hadron in the plane transverse to

the movement and the vector ~b is the impact parameter between two loops as shown

in Fig. 2.2. The renormalization constant put equal 1 in expression (2.48) is related

to the tensorial structure in Eq. (2.43).
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Figure 2.1: Two quarks trajectories Γ± along light cone coordinates where x0 = t,
x3 = z, xt are the transverse coordinates. The transverse distance between the two
lines defines the impact parameter.
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Figure 2.2: Analogously to Fig. 2.1 we show the loop-loop interaction in the light
cone coordinates, where ~R1 and ~R2 being the quarks/antiquarks vectors within the

hadrons and ~b is the impact parameter in the transverse plane. C+ and C− are the
circuits of the Wilson loops over the coordinates x± = x0 ± x3.
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After an expansion of the Wilson loops in Eq.(2.47), it follows

J(~b, ~R1, ~R2) = −(−ig)4(
1

2
!)2 tr [τC1τC2 ] tr [τD1τD2 ]

∫
S1

2∏
i=1

dSµν(xi)

∫
S2

2∏
j=1

dSαβ(yj)

× 1

N2
C

〈FC1
µ1ν1

(x1, w)FC2
µ2ν2

(x2, w)FD1
α1β1

(y1, w)FD2
α2β2

(y2, w)〉+ (higher order) . (2.49)

The first assumption in SVM allows to factorize the correlation function of n points

in 2-points correlation functions. This is the same factorization as the one provided

by Wick theorem in quantum field theory,

〈FC1FC2FD1FD2〉 = 〈FC1FC2〉〈FD1FD2〉+ 〈FC1FD1〉〈FC2FD2〉 (2.50)

+ 〈FC1FD2〉〈FC2FD1〉.

The scattering amplitude for two hadrons is built with a convolution between two

Wilson loops and the transverse distribution functions of quarks inside hadrons

[41,44],

T (s,−q2) = 2is

∫
d2b e−i~q.~p

∫
d2 ~R1

∫
d2 ~R2|ψ1(~R1)|2|ψ2(~R2)|2 J(b, ~R1, ~R2) ,(2.51)

where ψ1(~R1) and ψ2(~R2) are the quark/antiquark wave functions relative to the

Wilson loops that represent the hadrons. An ansatz is given by [43,44,47]

ψH(R) =
√

(2/π)
1

SH
e−R

2/S2
H , (2.52)

SH being a parameter associated with the hadron size, with distance dimension,

and R is the absolute value of the position vector of quarks inside the hadron. The

scattering amplitude for scattering of two hadrons is

JH1H2(~b, SH1 , SH2) =

∫
d2 ~R1

∫
d2 ~R2 J(~b, ~R1, ~R2) |ψ1(~R1)|2 |ψ2(~R2)|2 , (2.53)
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which is dimensionless. For short we write JH1H2(~b, SH1 , SH2) = J(b/a). Taking

into account the geometry of the interacting loops in light cone coordinates the

asymptotic studies of profile function Ref. [47] showed that for large values of b/a

(impact parameter greater than the correlation length) the function approximates

to

J(b/a) = exp
(
− 3π

8

b

a

)[ A1

b/a
+

A2

(b/a)2
+ ...

]
(2.54)

with A1, A2, ... being functions of SH/a, and the number 3π/8 comes from the cor-

relation function. For small and intermediate values of b/a, the phenomenology

requires an additional Gaussian behavior for the function J(b/a). The sum over all

regions [44] is

J(b/a) ' J(0)

[
A0 e

−P (b/a)2

+
N∑
j=1

Aj
1 + Cj(b/a)j exp[(3π/8)(b/a)]

]
, (2.55)

where P , Cj and Aj are parameters depending on the ratio SH/a.

In order to reproduce correctly the experimental data, a few changes are neces-

sary in the profile function. The terms contributing for large b values are converted

in a shape function with two terms and a relative negative sign in between, and

the b variable is shifted with a parameter γ in order to avoid singularities in the

denominator. With these changes the suggested form is

J(b/a) = J(0)
[
e−b

2/a1 + a2 Ãγ(b)
]
, (2.56)

with Ãγ(b) a function of the form

Ãγ(b) =
e−ρ4

√
γ2+b2√

γ2 + b2
(1− eρ4γ−ρ4

√
γ2+b2) , (2.57)

with ρ4 = 3π/8, and the parameters a1 and a2 depend on SH/a. This form gives
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Ãγ(b = 0) = 0. Finally, replacing the results above in the expression for the scatter-

ing between two hadrons, Eq. 2.51, in first order, the scattering amplitude becomes

T (s, t) = is[〈g2FF 〉a4]2a2

∫
d2~b ei~q.

~b J(b/a) . (2.58)

The remaining integration is analytically soluble, giving

T (s, t) = is[〈g2FF 〉a4]2a2π
{
J(0)

[
a1e
−a2|t|a1/4 + 2a2 Aγ(t)

]}
,

(2.59)

with

Aγ(t) =
e−γ
√
ρ2+a2|t|√

ρ2 + a2|t|
− eγρ e

−γ
√

4ρ2+a2|t|√
4ρ2 + a2|t|

. (2.60)

To perform the integral of the shape function we made use of the formula [48]

∫ ∞
0

J0(βv)
e−λ

√
1+v2

√
1 + v2

v dv =
e−
√
λ2+β2√

λ2 + β2
. (2.61)

Note that Aγ(t = 0) = 1. Because of the correlation function is a real quantity it is

important to remark that the amplitude have written is purely imaginary, and no

energy dependence was taken into account. In [16] this was introduced through the

effective hadronic size SH(s), taken as a linear form a+ b log s.

Based in the description above we express our imaginary amplitude as

TI(s, t) = αIe
−βI |t| + λIΨI(γI , t) , (2.62)

with

ΨI(γI , t) = 2 eγI
[

e−γI
√

1+a0|t|√
1 + a0|t|

− eγI
e−γI
√

4+a0|t|√
4 + a0|t|

]
, (2.63)

where a0 is associated with the correlation length and should be energy independent
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and the parameters αI(s), βI(s), γI(s) and λI(s) must be determined for each energy.

In order to describe correctly the experimental data a real amplitude is necessary. We

assume the same analytical form for the real amplitude, also with 4 real parameters

to be determined. The complete forms of the amplitudes are

TK(s, t) = αK(s)e−βK(s)|t| + λK(s)ΨK(γK(s), t) , (2.64)

with

ΨK(γK(s), t) = 2 eγK(s)

[
e−γK(s)

√
1+a0|t|√

1 + a0|t|
− eγK(s) e

−γK(s)
√

4+a0|t|√
4 + a0|t|

]
, (2.65)

where K = R, I characterize the real and imaginary amplitudes respectively.

In chapter 3 we use this complex amplitude for the analysis of pp scattering

determining the energy dependence of the real and imaginary parameters.



Chapter 3

Description of forward elastic

scattering

In this chapter we deal with the |t| range below 0.02 GeV2, where simple ex-

ponential behavior can be assumed for the imaginary and real amplitudes. Then

the description of dσ/dt is made with four energy dependent parameters: σ, ρ, BI ,

BR. Using the Particle Data Group representation for the total pp and pp̄ cross

sections we apply the exact expressions for DDR to obtain relations between the

real and imaginary parts. We compare the exact results for the ρ parameter with

the approximate forms used in PDG book [49] and with some experimental data.

Using a form of energy dependence for the slope of the imaginary amplitude, we use

DDR to obtain the slope BR of the real part.

We stress the importance of the use of proper connections between real and imag-

inary amplitudes as fixed by DDR, particularly emphasizing the difference between

BI and BR. The Coulomb interference must be used with proper account for the

properties of the amplitudes, so that the parameters of cross sections, ratio ρ and

slopes BR and BI , can be determined with accuracy. For this purpose, more general

expressions for the Coulomb interference phase are obtained.

Some data from ISR (Cern) and Fermilab are analysed in the energy range where

36
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the influence of these treatments is more dramatic.

3.1 Particle Data Group representation for the

total cross section

In order to show that the constraints imposed by DDR must be obeyed in any

model, we study the simple and direct representation of Particle Data Group of

the total cross section. We apply the exact DDR to obtain the ρ parameter and

we compare it with the simplified formula used by PDG. We criticize this formula

specially at low energies.

The Particle Data Group (PDG) [49] gives a parametrization for the total cross

section for pp and pp̄ interaction in the well known form

σp∓p(s) = P +H log2
( s
s0

)
+R1

( s
s0

)−η1 ±R2

( s
s0

)−η2 , (3.1)

where the signs ∓ are related with pp and pp̄ systems respectively.

Given quantities are: proton mass m = 0.93827mb, s0 = (2m + 2.076)2 =

15.6223 GeV2, η1 = 0.412, η2 = 0.5626. The parameters P = 33.73 mb/0.3894,

H = 0.2838 mb/0.3894, R1 = 13.67 mb/0.3894, R2 = 7.77 mb/0.3894 enter with

GeV−2 units to produce dimensionless amplitudes described by Eqs. (2.20) and

(2.21). The conversion constant is (~c)2 = 0.3894 mb GeV2. We define s0 = 2mE0 ,

and then E0 = 8.325 GeV. Including the t dependence in the inputs, the dispersion

relations are written

ImF+(s, t) = s
[
P +H log2

(
s/s0

)
+R1

(
s/s0

)−η1
]
eBI t/2 (3.2)

and

Im F−(s, t) = s
[
R2

(
s/s0

)−η2
]
eBI t/2. (3.3)
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For simplicity we have assumed that all terms of the imaginary amplitude have the

same t dependence, given by the exponential slope BI(s), valid for very small |t|.

We introduce the variables x = E/m ≈ s/2m2, x0 = E0/m ≈ s0/2m
2 , and it is

always x > 1. Then DR’s for the PDG form, Eq. (3.1), become

ReF+(x, 0) = K +
2

π
s xP

∫ +∞

1

[P +H log2(x′/x0) +R1(x′/x0)−η1 ]

[x′2 − x2]
dx′ (3.4)

and

ReF−(x, 0) =
2

π
s P

∫ +∞

1

x′[R2(x′/x0)−η2 ]

[x′2 − x2]
dx′ , (3.5)

We identify inside the integrals, numerators of form x′λ logn(x′), with n integer.

We then define Principal Value (PV) integrals (see Eq.(2.24))

I(n, λ, x) = P

∫ +∞

1

x′λ logn(x′)

[x′2 − x2]
dx′ . (3.6)

Collecting terms, we write

ReF+(x, 0) = K +
2

π
s x

[
I(0, 0, x)

(
P +H log2(x0)

)
+ I(1, 0, x)

(
− 2H log(x0)

)
+I(2, 0, x)

(
H
)

+ I(0,−η1, x)
(
R1x

η1

0

)]
, (3.7)

and for the odd part

ReF−(x, 0) =
2

π
s
[
I(0, 1− η2, x)

(
R2x

η2

0

)]
. (3.8)

The PV integrals can be written as local forms, that are exact representations,

obtained in the study of Derivative Dispersion Relations Ref. [35–37]. We thus have
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the general form (with x > 1, n zero or positive integer and <(λ) ≤ 1)

I(n, λ, x) = P

∫ +∞

1

x′λ logn(x)

[x′2 − x2]
dx′ (3.9)

= − π

2x2

∂n

∂λn
[x1+λ cot

(π
2

(1 + λ)
)
] +

(−1)n

x2
2−(n+1)n! Φ(

1

x2
, n+ 1,

1 + λ

2
) .

The functions Φ in these expressions are the Hurwitz-Lerch transcendents, that

have the series expansions

1

2N
1

x
Φ(

1

x2
, N,

1 + λ

2
) =

x−1

(1 + λ)N
+

x−3

(3 + λ)N
+

x−5

(5 + λ)N
+ ... (3.10)

and the property used above

∂

∂λ
Φ(z,N,

1 + λ

2
) = −N

2
Φ(z,N + 1,

1 + λ

2
) . (3.11)

The function Φ allows exact elegant representations of the PV integrals. Particular

values used directly in this work and more complete information on the properties of

the Φ transcendents and on the solutions of the PV integrals are given in Appendix B.

The proof of Eq.(3.10) and a study of a new representation of the Lerch transcendents

are given in a paper under preparation.

The sums converge rapidly for energies above 10 GeV, and are easily included in

practical computations, requiring only one or a few terms of the series. The use of

Eq.(3.10) is straightforward, except that care must be taken for odd negative integer

values of λ, when singularities occur in both trigonometric and Φ function parts of

the expression, with cancellation in a limit procedure. The details are given in the

Appendix B.

A simple and interesting relation derived using properties of the transcendents

is

∂I(0, λ, x)

∂ log(x)
+ (1− λ)I(0, λ, x) = − 1

x2 − 1
. (3.12)
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Noting that

∂I(n, λ, x)

∂λ
= I(n+ 1, λ, x) , (3.13)

we obtain, taking successive derivatives of the above equation with respect to λ,

∂I(n, λ, x)

∂ log(x)
+ (1− λ)I(n, λ, x) = nI(n− 1, λ, x) . (3.14)

We remark that I(n = 0, λ = 0, x) can be written in terms of elementary func-

tions

I(0, 0, x) = P

∫ +∞

1

[1]

[x′2 − x2]
dx′ =

1

2x2
Φ(

1

x2
, 1,

1

2
) =

1

2x
log

x+ 1

x− 1
(3.15)

The combinations of real parts, even and odd, at t = 0 are connected with the

product of the ρpp̄
pp parameter and the total cross section given by

σρ

(
pp

pp̄

)
=

Re F+(x, 0)∓ Re F−(x, 0)

s
. (3.16)

The subtraction dimensionless constant K is important at low energies. Its

determination can be made using experimental information on the real part at one

low energy for both pp and pp̄ systems (say at 52.8 GeV, where there are data).

Values obtained for K are usually below 1000.

In Fig. 3.1 a) we plot the even and odd combinations of imaginary and real

amplitudes given by the PDG input in Eq. 3.1. To show the influence of the

subtraction constant K in the even combination ReF+(E, t = 0) , we plot lines with

K = 0 (solid line) and K = 1000 (dashed line) against the energy. The even real

amplitude increases fast, and the influence of K is comparatively small for energies

above 100 GeV , becoming negligible in the use of DR at higher energies. At
√
s = 50

GeV the value of the even real amplitude is about 20000, so that the constant K

can contribute with at most 5 % . We give in the next section a criterion for the
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determination of K, that leads to K = 935.

To stress the importance of the use of the exact DDR forms, we compare in plot

b) (not including K) the calculation of quantity 1
2

[
σρ(pp) + σρ(pp̄)

]
using exact

DDR expressions with the simplified form written in the PDG book.

Exact expressions for the ρσ products from the PDG input

The equation written in PDG book for the ratio ρ is based on DDR, but it uses

forms not valid for low energies. The form disagrees with the expressions given above

for the real amplitudes and their consequences. Taking the low energy corrections

up to first order, we write

1

2

[
σρ(pp̄) + σρ(pp)

]
= T1 + T2 + T3, (3.17)

with

T1 = Hπ log
( s
s0

)
, (3.18)

T2 =
K

s
+

4m2

sπ

(
P +H[log2(

s0

2m2
) + 2 log(

s0

2m2
) + 2]

)
, (3.19)

and

T3 = R1

[
−
( s
s0

)−η1 tan
(πη1

2

)
+
( s0

2m2

)η1 2m2

s

(
2/π

1− η1

)]
. (3.20)

and the odd part,

1

2

[
σρ(pp̄)− σρ(pp)

]
= R2(

s

s0

)−η2 cot
(πη2

2

)
+R2

( s0

2m2

)η2
(2m2

s

)2
(

2/π

2− η2

)
.(3.21)

The influence of these changes are shown in the figures, comparing the PDG

book forms with the correct DDR calculations.

Although we believe that the products σρ are more adequate to present and anal-

yse the data on the real part, we form the ratios ρ, that are less directly measured,
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and consequently have larger error bars.

In Fig. 3.2 we show the ratios ρ (pp) and ρ (pp̄) calculated with exact DDR and

with the PDG expression [49]. We show also the analysis of data in an energy range

where the effects here discussed are stronger. We stress that in this thesis we do

not intend to present a final analysis of the low energy data. Actually, we point out

that the determinations of the ρ parameter given in the literature should be revised,

taking into account the behavior of the real amplitude, with BR > BI and proper

treatment of the Coulomb interference, discussed below. Numerical values are given

in Table 3.1.

Eq. (3.12) can be applied to the odd combination. We obtain the exact relation

[
∂

∂ log x
+ η2]

[
σρ(pp̄)− σρ(pp)

]
= − 2

π
R2 x

η2

0

1

x2 − 1
, (3.22)

that has a divergence in the low energy limit x → 1 . The approximate forms for

ρ(pp) and ρ(pp̄) written in the PDG book give zero instead of the expression above.
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Figure 3.1: a) (figure above and on the left) Input imaginary amplitudes
ImF+(E, t = 0) and ImF−(E, t = 0) taken from the PDG representation, Eqs.
(3.2,3.3), and combined even and odd real amplitudes, ReF+(E, t = 0) and
ReF−(E, t = 0), obtained with dispersion relations. The influence of the subtraction
constant K is important only at low energies, as show by the dashed line, drawn
with K = 1000, while the solid line corresponds to K = 0. The odd combinations
are comparatively small, and can be neglected at high energies. In plots b) (figure
above and on the right) and c) (figure bellow) even and odd combinations of the
products σρ obtained with exact DDR (with K=0), are compared with the proposed
parametrization published by PDG.
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√
s( GeV) system ρ (PDG) ρ(DDR) Experimental Data
18.2 pp -0.0349 0.0014 −0.011± 0.020a

pp̄ 0.0222 0.0562 0.067± 0.040a

19.4 pp -0.0260 0.0056 0.019± 0.018a

pp̄ 0.0268 0.0562 0.029± 0.032a

23.5 pp -0.0014 0.0199 0.022± 0.014b

pp̄ 0.0399 0.0600
24.3 pp 0.0025 0.0222 0.014± 0.009d

pp̄ 0.0422 0.0608 0.045± 0.009d

30.4 pp 0.0267 0.0387 0.034± 0.008b

pp̄ 0.0564 0.0679 0.055± 0.029b

30.6 pp 0.0273 0.0393 0.042± 0.011c

pp̄ 0.0568 0.0682
44.7 pp 0.0601 0.0650 0.062± 0.011c

pp̄ 0.0781 0.0828
52.8 pp 0.0718 0.0751 0.077± 0.009b

pp̄ 0.0863 0.0894 0.106± 0.016b

62.5 pp 0.0823 0.0843 0.095± 0.011c

pp̄ 0.0939 0.0959
541 pp

pp̄ 0.135± 0.007e

1800 pp
pp̄ 0.140± 0.070f

7000 pp 0.145± 0.009g

pp̄

Table 3.1: Values of ρ from the PDG input, compared to experiments. The column
ρ(PDG) gives values from PDG book formula, that is wrong at low energies. The
column ρ(DDR) gives values obtained with same imaginary input, using exact DDR
expressions. References : (a)

√
s = 18.17 , 19.418 : L. A. Fajardo et al. , Phys.

Rev. D24, 46 (1981) ; (b)
√
s = 23.5 , 30.6 , 52.8 : N. A. Amos et al., Nucl. Phys.

B262 , 689 (1985); (c)
√
s = 30.6 , 44.7 , 62.5 : U. Amaldi et al., Phys. Lett. B66,

390 (1977) ; (d)
√
s = 24.3 : R. E. Breedon et al., Phys. Lett. B216 , 459 (1989);

(f) N. Amos et al., Phys. Rev. Lett. 68,2433 (1992) ; (g) G. Antchev et al., Totem
Coll., Eur. Phys. Lett. 101, 21002 (2013); see Compilation by J. R. Cudell et al. ,
Phys. Rev. D73, 034008 (2006) , [arXiv:0511073];
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Figure 3.2: Values of the ρ parameter for pp and pp̄ scattering calculated with
exact DDR and with the parametrization given in PDG book, in low and high energy
ranges. The choice of the subtraction constant K = 935 is explained in the analysis
of the DDR for slopes in the next section. Although this work has no purpose of
analysing data at low energies, the plot below shows some data (see Table 3.1) in
an energy range proper for comparison of calculations made with the PDG input.
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3.1.1 Dispersion relations for slopes

For very small |t| we extend the imaginary amplitude of the PDG representation

introducing a factor exp[−BIt/2] , for all terms in the input form, as written above

in Eqs. (3.2), (3.3). This is the simplest choice, in the absence of another specific

model.

BI(s) is parametrized in the form

BI(x) = b0 + b1 log(x) + b2 log2(x) . (3.23)

Using as basis previous determinations at energies 19.4, 23.5, 33.6, 44.7, 546, 1800

and 7000 GeV , we obtain the parameter values for BI in GeV−2

b0 = 12.11 , b1 = −0.09033 , b2 = 0.03081 . (3.24)

Recalling x = s/2m2, we write instead

BI(s) = c0 + c1 log(
√
s) + c2 log2(

√
s) , (3.25)

with
√
s in GeV, and then

c0 = 12.1710 , c1 = −0.2504 , c2 = 0.12324 . (3.26)

Taking derivative with respect to t , we write the dispersion relations for the

derivatives [36] of the even and odd combinations of amplitudes at the origin

∂ReF+(x, t)

∂t

∣∣
t=0

=
2

π
s x × (3.27)

P

∫ +∞

1

[P +H log2(x′/x0) +R1(x′/x0)−η1 ]

[x′2 − x2]

1

2
[b0 + b1 log(x) + b2 log2(x)] dx′ ,
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and

∂ReF−(x, t)

∂t

∣∣
t=0

=
2

π
s × (3.28)

P

∫ +∞

1

x′[R2(x′/x0)−η2 ]

[x′2 − x2]

1

2
[b0 + b1 log(x) + b2 log2(x)] dx′ .

The above equations control quantities observed in forward scattering and should

be used as reference for any phenomenological or theoretical description of pp and

pp̄ forward scattering at high energies. The PV integrations can be performed, as

before. Collecting terms, we write

∂ReF+(x, t)

∂t

∣∣
t=0

=
2

π
s x

1

2
× (3.29)[

I(0, 0, x)
(
P +H log2 x0

)
b0 + I(1, 0, x)

[(
− 2H log x0

)
b0 +

(
P +H log2 x0

)
b1

]
+I(2, 0, x)

[
H b0 − 2H log x0 b1 +

(
P +H log2 x0

)
b2

]
+I(3, 0, x)

[
− 2H log x0 b2 +H b1

]
+ I(4, 0, x) H b2 + I(0,−η1, x)

(
R1x

η1

0

)
b0

+I(1,−η1, x)
(
R1x

η1

0

)
b1 + I(2,−η1, x)

(
R1x

η1

0

)
b2

]
,

and for the odd part

∂ReF−(x, t)

∂t

∣∣
t=0

=
2

π
s

1

2
× (3.30)[

I(0, 1− η2, x)
(
R2x

η2

0

)
b0 + I(1, 1− η2, x)

(
R2x

η2

0

)
b1 + I(2, 1− η2, x)

(
R2x

η2

0

)
b2

]
.

Fig. 3.3 a) gives the quantities ∂ReF+(x, t)/∂t
∣∣
t=0

and ∂ReF−(x, t)/∂t
∣∣
t=0

cal-

culated by DDR using the extended PDG forms given in Eqs. ( 3.2, 3.3 ).

With the derivatives of the even and odd combinations calculated, we may sep-

arate the pp and pp̄ channels. Assuming that the real amplitude in each system

behaves with an exponential form F (x, t) ≈ F (x, 0) exp(BRt/2) for small |t|, the

derivatives can be factorized, leading to triple products σρBR (pp) and σρBR (pp̄).

These quantities are shown in Fig. 3.3, b) and c).
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Explicit expressions for the triple products for energies above 200 GeV , including

only the first term of the transcendents, are

1

s

∂ReF+(x, t)

∂t

∣∣
t=0

=
1

2

[
(σρBR) (pp̄) + (σρBR) (pp)

]
=

2

π

1

2

[
[
(
P +H log2 x0

)
b0]

1

x
+
[(
− 2H log x0

)
b0 +

(
P +H log2 x0

)
b1

]
[
π2

4
− 1

x
]

+
[
H b0 − 2H log x0 b1 +

(
P +H log2 x0

)
b2

]
[
π2

2
log x+

2

x
]

+
[
− 2H log x0 b2 +H b1

](π2

4
[3 log2 x+

π2

2
]− 6

x

)
+H b2

(
π2 log x [log2 x+

π2

2
] +

24

x

)
+R1x

η1

0

(
π

2
x−η1

[
− tan(

π

2
η1) b0 + [− log x tan(

π

2
η1) +

π

2
sec2(

π

2
η1)] b1

+[− log2 x tan(
π

2
η1) + π sec2(

π

2
η1)
(

log x− π

2
tan(

π

2
η1)
)
] b2

]
+

1

x

[ b0

(1− η1)
− b1

(1− η1)2
+

2 b2

(1− η1)3

])]
(3.31)

For the odd combination we have

∂ReF−(x, t)

∂t

∣∣
t=0

=
1

2

[
(σρBR) (pp̄)− (σρBR) (pp)

]
=

2

π

1

2
R2x

η2

0 ×
(
π

2
x−η2

[
cot(

π

2
η2) b0 + [log x cot(

π

2
η2) +

π

2
csc2(

π

2
η2)] b1

+[log2 x cot(
π

2
η2) + π csc2(

π

2
η2)
(

log x+
π

2
cot(

π

2
η2)
)
] b2

]
+

1

x2

[ b0

(2− η2)
− b1

(2− η2)2
+

2 b2

(2− η2)3

])
(3.32)

We remark that the subtraction constant K does not appear explicitly after the

derivation in Eqs.(3.28, 3.29) (as it appears in Eq.(3.21)). Its influence is included

in the values of the σρ factors. It is very important that the triple factor for the pp

system given by DDR from the PDG input has a zero, located at
√
s = 17.7775 GeV.

If the factorization form is assumed, this requires that σρ(pp) must be zero at the

same energy. This requirement fixes the value of the subtraction constant, and we

obtain K = 935, value that has been used in plots in Fig. 3.2.

Given the triple products, we can divide by the real amplitudes at |t| = 0 , and

obtain the real slopes. These quantities were shown before [38] to be very important
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information for the study of forward pp and pp̄ scattering.

It is important to remark that the derivatives depend on the t dependence in

the inputs, as a characteristic feature of each model. In Chapter 4 we study the t

dependence of the forward imaginary amplitude in the SVM model.

The values of the amplitudes and their slopes at |t| = 0 are connected by dis-

persion relations. We have given above the expressions for this connection. It is

well known [36] that values determined from DDR for the slope BR are larger than

those of BI . The remarkable difference between the slopes of imaginary and real

amplitudes is shown by the ratio BR/BI , that is shown in Fig. 3.4.

In both cases the asymptotic value of the ratio is 2.

BR

BI

→ 2 , as
√
s → ∞ . (3.33)

This is a consequence of DR if it is assumed that the input imaginary amplitude

behaves like log2(s) at high energies.

The strong real slope must be a characteristic feature of any realistic model. Nei-

ther phenomenological models nor analysis of data should ignore the basic properties

of the amplitudes in elastic scattering. These are formal, unavoidable properties that

connect the real and imaginary amplitudes at |t|=0. The calculations and figures

presented above with the PDG form of total pp or pp̄ cross section are a simplifica-

tion of the reality, but they indicate universal properties.

Since the slopes BI and BR are different, the real and imaginary amplitudes

do not run parallel in a plot against |t| in the forward range, as if they were just

connected by a constant quantity ρ. Each amplitude has its own slope at the origin,

and vary differently in magnitude, each one looking for its zero [20,50]. These facts

are often ignored in the analysis of forward scattering for the determination of cross

section [51]. They are of crucial importance for the study of Coulomb interference,

and consequently for the determination of total cross section and of the ρ parameter.



50

With this fact, the determinations of ρ given in the literature (PDG) are doubtful,

and should be revised.
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Figure 3.3: a) (figure above and on the left) Derivatives at t = 0 of the even imagi-
nary and real amplitudes dReF+(x, t)/dt

∣∣
t=0

and dReF−(x, t)/dt
∣∣
t=0

as determined
with the extended PDG input of Eqs. (3.2), (3.3) , using exact DDR. The constant
K disappears by derivation. Once the real amplitudes are assumed to have simple
exponential t dependences, like σρ exp(BRt/2) near the origin, the derivatives take
the form of triple products (1/2)σρBR, which do not depend on the subtraction
constant K. These triple products are shown in the b) (figure above and on the
right) and c) (figure bellow) plots. These forms define the real slopes BR for the
pp and pp̄ systems. It is important to observe that σρBR (pp) has a zero, which
is located at

√
s = 17.7775 GeV, and σρ (pp̄) has no zero. With the assumption

of the factorized form (1/2)σρBR for the derivative at the origin, the product σρ
for pp must also have a zero at the same energy. This determines the value of the
subtraction constant, that we find to be K = 935 .
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Figure 3.4: The slopes of real and imaginary amplitudes vary with the energy with
a log2 dependence as given by Eqs. (3.25,3.30). Dispersion relations predict that
at all (high) energies it is BR > BI . The ratio BR/BI is plotted as function of the
energy, indicating the finite asymptotic limit 2.
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3.1.2 Remarks on behavior at high energies

For high energies, the even real part ReF+(E, t = 0) behaves like Hπs log(s/s0)

while the even imaginary goes like Hs log2(s/s0) . The asymptotic behavior of the

ratio of the even combinations is

ReF+(E, t = 0)

ImF+(E, t = 0)
≈ π

log (s/s0)
. (3.34)

The imaginary and real odd combinations run parallel in the log plot, with

ReF−(E, t = 0)

ImF−(E, t = 0)
≈ cot

(πη2

2

)
. (3.35)

In the real part we have ReF+(E, t = 0) ≈ Hπs log(s/s0) and ReF−(E, t = 0) ≈

R2s(s/s0)−η2 cot
(
πη2

2

)
respectively for the even and odd combinations, with

ReF−(E, t = 0)

ReF+(E, t = 0)
≈ R2

Hπ
tan
(π

2
(1− η2)

)(s/s0)−η2

log(s/s0)
. (3.36)

We thus have in general that the odd combinations become negligible at high

energies, putting pp and pp̄ identical in both imaginary and real amplitudes. In

the phenomenological practice, within experimental errors, all possible differences

between the two systems disappear for
√
s ≥ 500 GeV.

The products σρ are natural (more directly measured) quantities to represent

properties of the real amplitudes in pp and pp̄ scattering. However, the ratio ρ is

more commonly used, although forming the ratio implies in larger error bars. For

high energies the pp and pp̄ cross sections and ρ approach common expressions.

We can verify that for large s the PDG parametrization gives that the difference,

ρ(pp̄)− ρ(pp) goes to zero very fast,

ρ(pp̄)− ρ(pp) ≈ 2 cot (η2π/2)
R2 (s/s0)−η2

H log2[s/s0]
. (3.37)
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Comparing with the difference between cross sections

σ(pp̄)− σ(pp) ≈ 2R2

( s
s0

)−η2

, (3.38)

we conclude that the difference of ρ’s falls much faster.

Thus we have that at high energies the differences between pp̄ and pp can be

neglected, for both imaginary and real forward amplitudes, and the information from

DR for energies larger than, say,
√
s = 500 GeV , valid for any phenomenological

description of pp and pp̄ scattering is given by Eq.(2.20) only.

Froissart-Martin bound

In the introduction of this thesis we presented the theorem of Froissart-Martin

bound. This bound guides theoretical and phenomenological models on the descrip-

tion of the rising of the total cross section. Considering the PDG description of pp

scattering, with the high energy behavior in the PDG representation

σtot(s) ≈ H log2(
s

s0

) (3.39)

we obtain the average in the Martin-Roy definition, Eq.(1.9),

σ̄tot(s,∞) = H
[
1 + [1 + log(s/s0)]2

]
(3.40)

and the theorem becomes

H
[
1 + [1 + log(s/s0)]2

]
≤ 4π

t0
[log(s/ssc) + (1/2) log log(s/ssc)]

2 . (3.41)

Taking only the dominant terms at high energies, and assuming for ssc the same
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as the PDG scale s0, we obtain the bound

H ≤ 4π

|t|0
. (3.42)

Using |t|0 = 4m2
π the bound becomes, numerically

H ≤ 4π

m2
π

= 160.28 GeV−2 = 62.41 mb , (3.43)

that is enormously distant from the experimental value H=0.2838 mb .

In QCD the dynamical basis for the proof of a bound relation is affected by the

existence of glueballs [52]. Results from lattice theory and models of nonpertur-

bative QCD [53] seem to confirm the log2(s) behavior of the total cross section at

high energies, giving the external multiplicative constant with a value close to the

experimental reality. We may note that in the external factor π/m2
π obtained in the

theorem for ππ scattering, if we change from pion to gluonium mass (say 1.6 GeV)

the external factor changes by 1/130.6 and the bound becomes H ≤ 0.478 mb. This

is not much higher than 0.2838 mb, and seems interesting as a reference bound for

pp scattering to stimulate further studies.
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3.2 Differential cross section and Coulomb inter-

ference

In the region of small momentum transfer |t|, the intense Coulomb amplitude

added to the nuclear interaction creates an interference that is observable in the

|t| distribution in dσ/dt. This Coulomb interference region of low |t| values goes

typically up to |t| = 0.01 GeV2, but (in view of present data) we show that the form

of dσ/dt in general can actually be described in terms of simple exponential real and

imaginary nuclear amplitudes well beyond this range.

In previous analyses of pp and pp̄ data, the real and imaginary nuclear amplitudes

were considered as having the same exponential dependence exp (Bt/2), where B

is the slope of dσ/dt. This simplifying assumption is not adequate, according to

dispersion relations [38] and according to the theorem of A. Martin [54] that says

that the position of the first zero of the real amplitude is closer and approaches

t = 0 as the energy increases. Both results indicate that the slope of the real

amplitude should be larger than that of the imaginary one, and in the present

work we investigate the description of the Coulomb interference region allowing for

different real and imaginary slopes. We review the scattering data in cases where

this kind of information can be investigated.

We present the forward quantities σ, ρ and the slope B frequently measured by

the experiments.

In elastic pp and pp̄ collisions, the combined nuclear and coulomb amplitudes is

written

T (s, t) = TN(s, t) + TC(t) , (3.44)

where TN(s, t) is the complex nuclear amplitude

TN(s, t) = TNR (s, t) + iTNI (s, t) , (3.45)
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and FC(t) is the real Coulomb amplitude

TC(t) = ∓2α

|t|
F 2

proton(t)eiαΦ(s,t) , (3.46)

with the proton electromagnetic form factor

Fproton = (0.71/(0.71 + |t|))2 (3.47)

associated to a relative phase Φ. The phase Φ was initially considered by H.A.

Bethe [55] and then by West and Yennie [56], followed by different evaluations worked

out by several authors [57–59]. In the present work we extend these investigations

in the very low |t| range, considering the possibility of different slopes for the real

and imaginary amplitudes following the West and Yennie phase.

In the normalization that we use [60] the differential cross section is written

dσ

dt
= π (~c)2

{[ ρσ

4π (~c)2 e
BRt/2 + FC(t) cos (αΦ)

]2

+
[ σ

4π (~c)2 e
BI t/2 + FC(t) sin (αΦ)

]2}
.(3.48)

For small angles we can approximate

TN(s, t) ≈ TNR (s, 0)eBRt/2 + iTNI (s, 0)eBI t/2 . (3.49)

We emphasize that the difference between slopes BR and BI must be respected. The

parameter

ρ =
TNR (s, 0)

TNI (s, 0)
, (3.50)

the optical theorem

σ = 4π(~c)2TNI (s, 0) , (3.51)

and the slopes BR, BI are used to parametrize the differential cross section for small

|t|. In these expressions, σ is in milibarns and the amplitudes TR, TI are in GeV−2.
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For low |t|, many authors approximate Eq. 3.48 to a wrong form

dσ

dt
=
∣∣∣dσ
dt

∣∣∣
t=0
eBt , (3.52)

where

B =
ρ2BR +BI

1 + ρ2
(3.53)

is the usual slope observed in the data of dσ/dt.

3.2.1 Coulomb phase

Here we present a prescription of the phase we made use, to connect the hadronic

amplitudes with the coulomb amplitude described by the proton electromagnetic

form factor. We use as a framework the West Yennie phase [56] making an extension

in order to contain the real slope concept. The starting point is the expression

Φ(s, t) = ∓
[

ln
(
− t

s

)
+

∫ 0

−4p2

dt′

|t′ − t|

[
1− TN(s, t′)

TN(s, t)

]]
(3.54)

where the signs∓ are applied to the choices pp/pp̄ respectively. The quantity p is the

proton momentum in center of mass system, and at high energies 4p2 ≈ s. For small

|t|, assuming that TN(s, t′) keeps the same form for large |t′| (this approximation

should not have practical importance for the results), we have

TN(s, t′)

TN(s, t)
=

TNR (s, 0) eBRt
′/2 + iTNI (s, 0) eBI t

′/2

TNR (s, 0) eBRt/2 + iTNI (s, 0) eBI t/2

=
c

c+ i
eBR(t′ − t)/2 +

i

c+ i
eBI (t′ − t)/2 , (3.55)

where

c ≡ ρeBR−BI t/2 . (3.56)

The calculation is explained in detail in the Appendix C. The integrals that
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appear in the evaluation of Eq. (3.54) are reduced to the form [59]

I(B) =

∫ 0

−4p2

dt′

|t′ − t|
[1− eB(t′−t)/2] (3.57)

that is solved in terms of exponential integrals [61] as

I(B) = E1

[B
2

(4p2 + t)
]
−Ei

[
− Bt

2

]
+ ln

[B
2

(4p2 + t)
]
− ln

[
− Bt

2

]
+ 2γ . (3.58)

The real part of the phase is then written

Φ(s, t) = ∓
[

ln
(
− t

s

)
+

1

c2 + 1
[c2I(BR) + I(BI)]

]
, (3.59)

and this expression is introduced into Eq. (3.46).

With this fact, the determinations of ρ given in the literature (PDG) are doubtful,

and should be revised.

The properties of the real part must be respected. The analysis of the Coulomb

interference without account for the behavior of the real strong amplitude represents

a violation of Quantum Mechanics. Eq.(3.48) should not be used to obtain σ, ρ.

Considering elastic pp and pp̄ scattering at energies above
√
s = 19 GeV, the

real and imaginary amplitudes have zeros located in ranges |t| ≈ (0.1 ∼ 0.3) GeV2

and |t| = (0.5 ∼ 1.5) GeV2 respectively, and the use of exponential forms beyond a

limited forward range leads to inaccurate determination of the characteristic forward

scattering parameters σ, ρ, BI and BR. For a precise description of the elastic

amplitudes we need to use more general expressions valid for all t that are connected

with the exponential behavior as limits.

A program of description of the elastic differential cross sections by unified ana-

lytical forms of the amplitudes in the full t range is important for the identification

of the amplitudes (disentanglement), necessary for the understanding of the involved

dynamics. We have made effort in this direction [20,21,51].
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The data are not rich and uniform enough for this purpose in the whole energy

range of the ISR, Fermlab, SPS experiments, and sometimes it is not possible to

show that the results are model dependent.

We present below an analysis of data for
√
s ≥ 19 GeV in the forward range ,

using pure exponential forms for the real and imaginary parts. The analysis is made

using Eq. (3.48), with full expression for the Coulomb phase.

3.3 Analysis of experiments at ISR and Fermilab

energies

In this section we discuss data at energies from 19 to 540 GeV, including the

slope BR and proper Coulomb phase in the analysis.

An extensive analysis has been done in the Master Degree Thesis [62] with a

determination of the forward parameters for ISR/FERMILAB until LHC energies,

treating both pp and pp̄ scattering. We here do not intend to present the whole

analysis again but summarize the main points and show modified results.

The published data [49] for dσ/dt are used to determine σ and rho, and are

treated with equation for dσ/dt different from Eq.(3.48), or sometimes take some

parameter values (such as the total cross section or ρ) from other experiments.

Independent real and imaginary amplitudes are not always consistently with DR.

To have an independent evaluation of the absolute normalization we analyse the

published data considered as event rate dN/dt, using a free normalization factor a5.

In other words we write the publish data as

[
dN

dt

]
data

= a5
dσ

dt
, (3.60)

with dσ/dt written as in Eq.(3.48), and a5 is determined for each experiment. We

understand that a5 adjusts the data to the Coulomb amplitude that is dominant
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at low |t|, in interference with the strong real amplitude constrained by DDR. We

have used fitting programs (Cern Minuit-PAW, Cern-Root, and Numerical Recipes)

to obtain correlations for the parameters ( σ, ρ, BR, BI and a5 ), for values of energy

where the data seem have more quality. We first concentrate on the low energy

range of ISR and Fermlab, where, due to the small magnitude of the real ratio ρ,

there are discrepancies and non-regularities. We find that results obtained for the

four amplitude parameters may be sensitive to the determination of a5, although

this factor is always nearly 1. At 19.4 GeV the correction of normalization by a5 is

essential, leading to a new value of ρ and matching the data from two experiments.

Below we present some cases, explaining our determination of parameters.

It is important to remark that in some cases the results obtained in the fit-

tings depend on the set of data of low |t| selected for the analysis of the Coulomb

interference region. We indicate the number N of fitted points in the description

below.

In the region from 19.4 to 30.6 GeV , ρ is small, with little influence of the real

amplitude, and it is difficult to determine ρ and BR, while σ and BI are more stable.

For obvious reasons, there is strong correlation between the extracted values of ρ

and BR, and the use of DDR is important to resolve ambiguities.

We may consider thatBI should be the best determined parameter at the energies

up to 30 GeV, as it is less dependent of normalization and of influence of the real

amplitude. We have attempted to control the arbitrariness that occurs at some

energies, assuming for BI a dependence on log s as given in Eq. (3.25).

The whole situation shows that the data collected in these experiments are not

detailed and regular enough to allow precise determination of the amplitudes in the

forward direction. There is ample freedom in the parameters, with correlated ranges

leading to the same χ2. The analysis shows the need for DR and additional tools

(models, or external inputs) to help in ambiguities.

We stress that this thesis does not intend to give the best final values for the
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scattering parameters. We rather wish to call attention to details that must be

taken into account in the treatment of future data from LHC, and we suggest that

a complete revision of the published data be made by experts.

3.3.1 Analysis in the energy range from 19.4 to 30.6 GeV

The energy range from 19.4 to 30.6 GeV is particularly critical for the determi-

nation of parameters, with discrepancies in the information from the experiments.

Measurements at Fermilab explored the region of low |t| at energies from 19.4

to 27.36 [63–66]. The 19.4 GeV and 27 GeV energies were also studied in detail at

higher |t| [67,68].

Cern measurements [66,69,70] were taken at 23.542 , 30.632 , 30.7 and 24.3 GeV

for pp and 30.4 and 24.3 GeV for pp̄ .

For pp̄ there are data [64] at 19.4 GeV on ρ, but not on dσ/dt , and at 24.3 GeV

there are dσ/dt data in the thesis by Breedon [66].

We discuss below some of the data, namely those that are more accessible to the

intended analysis, that requires a regular set of points with |t| ≤ 0.01 GeV2.

Results are compiled in Table 3.2.

The 19.4 GeV discrepancy case

Measurements at
√
s=19.4 GeV have lead to 69 points at very low |t| (from

0.00066 to 0.03 GeV2) by Kuznetsov et al. [63] and 134 points (from |t| = 0.02 to

0.66 GeV2) by Fajardo et al [64] and Schiz et al. [67]. Other measurements, which

we do not analyse here, cover higher |t| ranges and are not adquate for the anal-

ysis. The two experiments give ρ with opposite signs: ρ = −0.0034 ± 0.009 for

Kuznetsov et al [63] and ρ = 0.019± 0.018 for Fajardo et al and Schiz et al [64,67].

The discrepancy can be eliminated with the introduction of a free normalization

factor a5, writing Eq.(3.61) with a5 6= 1 for one or both datasets. The normaliza-

tion factor a5 is fixed by checking the Coulomb interference at low |t|. Using the
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first 52 points of Kuznetsov data, extended up to |t| = 0.01309 GeV2, we find best

fitting with a5 = 1.0063 ± 0.0216, ρpp = 0.014 ± 0.017, σpp = 39.09 ± 0.32 mb,

BI = 12.51 ± 0.56 GeV−2, BR = 23.53 ± 1.42 GeV−2 (five parameters) and χ2 =

0.8597, With the same amplitude parameters and a5 = 1.0, the lowest |t| part of

the Fajardo and Schiz data (that do not reach very small |t|) are compatibly well

reproduced. The Fajardo/Schiz data do not cover the low |t| range necessary for the

precise evaluation of forward parameters with Coulomb interference, so that we here

only test compatibility extending the solution obtained in the low |t| range. This is

shown in Fig. 6.9 , where the Kuznetsov data are shown with corrected normaliza-

tion, representing then the true cross sections. The figure shows then a very good

matching with the other experiment. It is remarkable that this matching is purely

a result of the Coulomb interference condition. This gives support to the method of

using the Coulomb interference structure to check data at low |t| to obtain correct

normalization and determine forward scattering parameters.

The 23.542 - 23.882 GeV case

At 23.542 GeV(CERN ISR experiment) there are 31 experimental points [70],

with 0.00037 ≤ |t| ≤ 0.0102 GeV2. The Fermilab data at 23.882 GeV [63] consist of

61 points in the interval 0.00066000 ≤ |t| ≤ 0.031600GeV2 . The reported ρ values

for the very close energies present strong discrepancy. In order to obtain smaller

values of χ2 and stable values for the parameters, our fitting procedure uses 24 points,

with |t| limited to |t| ≤ 0.00671 GeV2 and 40 points with |t| ≤ 0.00804 GeV2

respectively for the two experiments.

We look for a unified description, allowing for a free normalization a5 in each

experiment. The most favorable datasets use the first N = 24 (|t| ≤ 0.00543 ) and

N = 40 (|t| ≤ 0.00804) points respectively. We find that the Cern dataset has a best

fitting with a5 = 1, namely without change, while for the Fermilab data our result is

a5 = 1.0169 ± 0.0034. The ρ values become compatible with the DDR predictions,
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Figure 3.5: Data from Kuznetsov et al [63] and Fajardo/Schiz et al [64, 67] at
19.4 GeV. The figure shows the 69 Kuznetsov points (normalized with 1/1.0063)
together with Schiz first 61 points up to |t| = 0.2 GeV2. The amplitude parameters
are σ = 39.09 mb, ρ = 0.014, BI = 12.51 GeV−2, BR = 23.53 GeV−2. The log
horizontal scale helps to expand and show in detail the low |t| behavior, and it is
remarkable that the description works very well up to |t| = 0.02, beyond the range
of the fitted data and after the range of the representation of the amplitudes by pure
exponential forms .

with a slight rise with the energy.

The numbers are

√
s = 23.542 GeV , BI = 12.61 GeV−2, ρ = 0.0199± 0.003,

N = 24, a5 = 1, χ2 = 0.3193,

σ = 39.73± 0.08 mb, BR = 22.15 GeV−2

and
√
s = 23.882 GeV , BI = 12.62 GeV−2 , ρ = 0.020± 0.003 ,

N = 40 , a5 = 1.0169± 0.0034 , χ2 = 0.7694,
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Figure 3.6: Data at 23.542 and 23.882 GeV, with the lines fitting respec-
tively the first 24 points up to |t| = 0.00671GeV2 and the first 40 points up to
|t| = 0.00804GeV2 (ranges indicated by vertical dotted lines) using expressions of
Coulomb interference and exponential forms for the amplitudes. The parameters
are given in the text. The 23.882 GeV data is shown multiplied by 1/1.0169.

σ = 39.99± 0.10 mb, BR = 22.10 GeV−2 .

The data (with normalization factor in the 23.882 case) and the lines fitting the

forward points are shown in Fig. (3.6).

24.3 GeV data on pp and pp̄ scattering [66]

This was the CERN UA6 experiment, and the dσ/dt data are taken from R.

Breedon PhD thesis. For pp there are N = 31 points, with 0.00108 ≤ |t|(GeV2) ≤

0.01313. Good fitting with correct Coulomb interference contribution requires a5 =

1.024± 0.002. Parameters are

σ = 39.30± 0.05 mb , ρ = 0.022± 0.012 , BI = 12.63 GeV−2, BR = 23.55 GeV−2

N = 31 , a5 = 1.024± 0.002, χ2 = 0.5590 .

The ρ and BR parameters obey DDR requirements.
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Figure 3.7: Data at 24.3 GeV, for pp corrected with factor 1/1.024, and for pp̄,
and calculated dσ/dt. The parameters are given in the text.

For pp̄ there are N = 32 points, with 0.00108 ≤ |t|(GeV2) ≤ 0.01376 . The fitting

with Coulomb interference does not require change of normalization, and leads to

σ = 41.41± 0.04 mb , ρ = 0.052± 0.002 , BI = 12.63 GeV−2, BR = 18.20 GeV−2

N = 32 , a5 = 1 , χ2 = 0.4787 .

The plots with the data for pp and pp̄ at 24.3 GeV are shown in Fig. (3.7).

pp scattering at
√
s = 30.632 and 30.7 GeV and pp̄ at 30.4 GeV

Two compatible datasets are available at about 30 GeV from ISR/CERN. At

30.632 GeV there are 32 points [70] in the interval |t| = 0.0005− 0.0176 GeV2 and

at 30.7 GeV there are 181 measured points [69] in the large |t| interval from 0.00106

to 5.75 GeV2. We treat the dataset of lower |t| with 32 points [70] at 30.632 GeV,

obtaing parameters

σ = 40.24± 0.05 mb , ρ = 0.034± 0.003 , BI = 12.76± 0.24 ,
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Figure 3.8: The 32 points, of the 30.632 GeV measurements and the 29 points of the
pp̄ for 30.4 GeV are fitted with expressions of Coulomb interference and exponential
forms for the amplitudes. The parameters are given in the text.

BR = 22.11GeV−2 , N = 32 , a5 = 1, χ2 = 0.6038 .

The data, with the fitting curve, based on the Coulomb interference expressions

and exponential amplitudes, are shown in Fig. 3.8. The parameters satisfy our

parametrization and the predictions from DDR.

Now for pp̄ at 30.4 GeV, where there are N=29 points for 0.00067 ≤ |t| ≤ 0.01561

GeV2. The parameters are

σ = 41.43± 0.15 mb , BI = 12.23± 1.08 GeV−2 , BR = 18.45 GeV−2 ,

ρ = 0.086± 0.006, a5 = 1 , χ2 = 1.436

Our suggestions for the low energy range

Table 3.2 shows data [63–66, 70], predictions from DDR, and results of our

analysis of differential cross-section for energies in the range from 19.4 to 30.7 GeV.
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Table 3.2: Our suggestions for forward scattering parameters√
s σ ρ BI BR a5 χ2 N

( GeV) (mb) ( GeV−2) ( GeV−2)
pp 19.4 39.09 0.014 12.51 23.53 1.0063 0.8597 52

23.542 39.73 0.0199 12.61 22.15 1 0.3193 24
23.882 39.99 0.020 12.62 22.10 1.0169 0.7694 40
24.3 39.30 0.022 12.63 23.55 1.024 0.5590 31

30.632 40.24 0.034 12.76 22.11 1 0.6038 32
pp̄ 24.3 41.41 0.052 12.63 18.20 1 0.4787 32

30.4 41.43 0.086 12.23 18.45 1 1.436 29

3.3.2 Energy range from 44.7 to 62.5 GeV

This is an important range to analyse because it has a good statistics (large

number of points) and the experiments reach since very small values of t until large

t values, which permits a better investigation of the forward regime and the transi-

tion from simple exponential forms to a more complete amplitude description in t.

Despite of the large amount of data it is not easy to determine the forward quan-

tities from the data. Another feature of this region is that in 52 GeV both pp and

pp̄ dσ/dt were measured, allowing to compare both processes at equal footing. The

determination of ρ at this energy becomes important to determine the subtraction

constant in the dispersion relations.

At
√
s = 44.699 GeV the dataset is presented in the report by Amaldi and

Schubert [69]. They published 230 data points extending up to |t| = 7.25 GeV2. The

first 40 points of the forward part, up to |t| = 0.01856 GeV2, are well represented by

the Coulomb interference formula, as shown in Fig. 3.9. With amplitude parameters

fixed as suggested by our parameterization of the total cross section and by DDR

predictions.

The plot in the LHS of the figure 3.9 shows data points up to |t| = 0.29 GeV2 , and

it is remarkable that the calculation with simple exponential amplitudes reproduces

well the data much beyond the forward fitting range. The plot in the RHS shows

the deviation from the pure exponential form for large momentum transferred.

Fig. (3.10) shows the forward data [70] at
√
s ≈ 52.8 GeV for pp (34 points
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Figure 3.9: Forward scattering data at 44.699 GeV . The line is obtained using
amplitude parameters suggested by derivative dispersion relations, given in the text,
and the normalization constant is fitted as a5 = 1.0146 using the 40 points with
lowest |t|. In the RHS we plot together the large |t| data exhibiting the peculiar
behavior of the data with of the amplitudes deviating from the simple exponential
dependence.

for 0.00107 ≤ |t| ≤ 0.05546 ) and for pp̄ (28 points for 0.00097 ≤ |t| ≤ 0.03866)

scattering and the lines obtained using amplitude parameters from DDR predictions

and the Coulomb interference expressions. It’s important to remark that fittings

with free parameters do not converge here. We need to fix parameters according the

assumptions above.

For the pp̄ case it is important to introduce a normalization constant a5 = 1.0113

that leads to a minimun average χ2 = 1.080 for the whole dataset of 28 points.

It is important to remark that the calculations with BR = BI lead to larger χ2

values in both pp and pp̄ cases. Thus we here confirm the indication for BR > BI .

Fig. 3.11 shows the data at 62.5 GeV (138 points) [70] and the line representing

the calculation with the forward exponential amplitudes, with 0.00167 ≤ |t| ≤ 6.25.

We present also a plot of the 64 points with lowest |t|, with 0.00167 ≤ |t| ≤ 0.099 with

a vertical dotted line indicating the first 29 points , with 0.00167 ≤ |t| ≤ 0.02931 that

lead to a calculated average 〈χ2〉 = 1.058. We remark that there is free parameters
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Figure 3.10: Data of pp and pp̄ scattering at 52.8 GeV described by exponential am-
plitudes, with parameters fixed by the DDR expressions, and Coulomb interference.
The pp̄ data are modified with a fitted normalization factor a5 = 1.0113.

in the determination of the forward quantities. The parameters were provided by

DR.

With the same fixed quantities for the amplitudes, we may introduce a free

normalization constant for the data, obtaining a5 = 0.9976 and χ2 = 0.8922 with

the same N = 29 points.

Table 3.3: Our suggestions for forward scattering parameters√
s σ ρ BI BR a5 χ2 N

(GeV) (mb) (GeV−2) (GeV−2)
pp 44.699 41.59 0.066 12.49 18.69 1.0146 0.9029 40

52.8 42.40 0.077 12.67 21.00 1 1.322 34
62.5 43.32 0.089 12.85 21 0.9976 0.8922

pp̄ 52.6 43.21 0.092 12.67 21.14 1.0113 1.080 28
62.3 43.98 0.10 12.85 21 1 1.7 17
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Figure 3.11: Data (138 points) and forward 64 points of pp scattering at
√
s = 62.5

GeV [70] shown together with the line representing the calculation with amplitude
parameters taken from DDR expressions. It is interesting that the simple expo-
nential amplitudes and the Coulomb interaction designed for very small |t| describe
(visually) very well the data much beyond this range.

3.3.3 Energy 540 GeV

This is an interesting energy to analyse, first, because at about 540 GeV the

total cross section of pp and pp̄ are expected to be the same, according to Pome-

rochuk theorem and second at these energies the ρ parameter are the same for both

processes.

At 541 GeV, the lowest |t| values reached in measurements of pp̄ elastic scattering

are reported with event rates [71] only, with many (99) points in a range of low |t|

values, 0.000875 ≤ |t| ≤ 0.11875 . According to Durham HEP data basis, the cross-

section values have not been determined otherwise in this low |t| range. To make use

of these valuable data, we made use of our method of finding a normalization factor

by the Coulomb interference, connecting event rate and differential cross-section,

finding a very clear and precise connection.

Our procedure is to describe the dN/dt data with the expression for the Coulomb

interference region, with the parameter a5 explained before, and the four quantities



72

Figure 3.12: Differential cross section at 541 GeV obtained from the event rate [71].
The vertical dotted line indicates the set of 84 points used in the fit to determine
the normalization constant

that describe forward pp̄ scattering according to our parametrization of the total

cross section and to the DDR expressions that determine ρ and the slopes.

These fixed parameters are

σ = 61.78 mb , ρ = 0.142 , BI = 15.15 GeV−2 , BR = 21.20 GeV−2

Then, given the event rate dN/dt we need to determine by fit only a normalization

factor a5 to obtain the cross sections dσ/dt. We define the best set in the sample of

99 points by looking for the smallest χ2 . The selected set takes the first 84 points,

with 000875 ≤ |t| ≤ 0.08125, leading to a5 = 10.892± 0.0126, namely

dσ

dt
=
dN

dt
× 1

10.892± 0.0126
(3.61)

Fig. 3.12 shows the 99 points of the calculated dσ/dt.

In Fig. 3.13 we show the good agreement of dσ/dt at low |t| , obtained from dN/dt
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Figure 3.13: The normalized event rate data at 541 GeV are in good agreement
with the dσ/dt data [72–74] at the same energy and higher |t| values.

by adjustment of the coulomb interference, with the data of G. Arnison et al. [72], of

Bernard et al. [73] and of Abe et al. [74] in |t| ranges that partially superpose with

the dN/dt event rate data. These results give confidence in our method that converts

the event rate into absolute cross sections. We extend the comparison of different

dσ/dt measurements examining the data by Bozzo et al. [75,76]. We observe in Fig.

3.14 that the normalized event rate data at 541 GeV are in good agreement with

the dσ/dt data [72,75,76] at the same energy. We draw also high |t| data to remark

the meaning of the forward scattering amplitudes in relation to higher |t| values.

As a test of consistency of this method of connection between event rate and ab-

solute cross section we compare values of dσ/dt at the Cern/ISR energies, multiplied

by an arbitrary normalization factor, with the Coulomb interference amplitudes. We

find that this normalization factor is actually equal to one in all investigated cases.

To show the influence of value of the ratio BR/BI beyond these limits , we

have studied values with fixed β = BR/BI = 2 obtaining χ2 values that do not

vary strongly, showing that the data can be described, within errors, by scattering

parameters in different ranges.
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Figure 3.14: Looking closely at the normalized cross section obtained from the low
|t| data, represented by continuous dashed line, in confront with the Bozzo et al.
data [75, 76], we observe very good agreement. In the RHS we plot higher |t| data
to point out the meaning of the forward scattering solution by amplitudes with sim-
ple exponential dependences compared to a full |t| shapes that require appropriate
models.

Correlations among parameters are shown in Fig. 3.15 with drawing of level lines

determined for low χ2 values.

We have built a file with a continuous and non superposing set of points, being

the first 59 points from normalized dN/dt (with normalization factor 10.6) and 121

points from Bozzo et al. The 180 points form a regular |t| distribution, which we fit

with formulae from our previous work [48]. The results are shown in Fig. 3.16. The

parameter values obtained in this fitting are σ = 63.06±1.90 mb , ρ = 0.124±0.005,

BI = 13.88± 0.42 GeV−2, BR = 25.79± 0.77 GeV−2, with χ2 = 1.32.
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Figure 3.15: Correlations between the parameters ρ and β = BR/BI and between σ
and β that lead to low values of χ2. In each case the other two parameters are let free
while tables of χ2 are built with specified values for the two plotted parameters. Also
the normalization factor 10.083 is taken as fixed independently from PAW fitting
program.
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Figure 3.16: Data at 541 GeV selected and organized. The dotted line is a fit
described in our previous work [48].
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Chapter 4

Energy dependence of KFK

scattering amplitudes

In Chapter 2 the pp elastic scattering amplitudes based on SVM were written

with complete t dependence. Up to now, the s dependence is still missing. In

this chapter we analyse differential cross sections for pp and pp̄ with our amplitudes

(called KFK from now on) determining the energy behavior of the real and imaginary

parameters. Originally [48] the s behavior of the pp cross section was constructed

through energy dependence of the effective proton radius. More than a decade

ago, Ferreira and Pereira analysed all available elastic scattering data for energies

above 20 GeV [48] and all |t|, identifying properties of the amplitudes (zeros, signs,

magnitudes), with proper attention given to the real part, which plays a critical

role in differential cross sections at mid and large |t| range. Recently, we extended

this analysis [20, 21] to the LHC-Totem elastic scattering at 7 TeV and 8 TeV data

[80], [81], and also the behavior of proposed amplitudes was re-examined in the

whole energy region from 20 GeV to 14 TeV, including the cosmic energy domain,

to determine the precise energy dependence of the model parameters [21]. We gave

special treatment for pp̄ at 1800/1960 GeV [51] where the experimental information

presents strong discrepancies. From these analyses, an analytic representation of

77
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the amplitudes as function of s and t was established.

We also analyse the data with an additional term in the real amplitude dominates

for large t values, where phenomenological contributions of non-perturbative origin

becomes small, and the perturbative calculations due to tri-gluon exchange becomes

relevant [82]. It is remarkable that this tail term does not depend strongly on s. It

is also important to stress that the sign of the tri-gluon exchange amplitude may

have influence on the structure of the dip and the bump for pp and pp̄. Depending

on the sign of the real non-perturbative part for large |t|, the sign of the three gluon

exchange may cause a second dip in dσ/dt (Ref. [51]).

After the extensive analysis including a wide energy range we obtain a complete s

dependence of the model, which allows us to interpolate and extrapolate the results

to regions where the experimental information is poorer or does not exist.

An application of the dispersion relation was made to KFK amplitudes and we

show that the constraints between the real and imaginary parameters comming from

the exact DDR are independently confirmed by free fittings of the amplitudes with

the experimental data.

4.1 Analytic representation of amplitudes of pp

elastic scattering

The differential cross section is written

dσ

dt
= (~c)2 |TR(s, t) + iTI(s, t)|2 . (4.1)

In the following discussion, we use the unit system where σ is in mb (milibarns) and

the energy in GeV, so that (~c)2 = 0.3894 mb GeV2. TR and TI , with dimensions
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GeV−2, contain the nuclear and the Coulomb parts in the forms

TR(s, t) = TNR (s, t) +
√
πFC(t) cos(αΦ) , (4.2)

and

TI(s, t) = TNI (s, t) +
√
πFC(t) sin(αΦ) . (4.3)

The Coulomb scattering amplitude FC(s, t) enters in the pp/pp̄ amplitudes with the

form given by Eq.(3.46) in terms of proton electromagnetic form factor.

The total cross section is given by

σ = 4
√
π (~c)2 TNI (s, t = 0) . (4.4)

Using the same notation as used in the forward scattering chapter, TNR (s, t) and

TNI (s, t) are respectively the real and imaginary parts of the properly normalized

scattering amplitude of the strong interaction. The Coulomb amplitude is relevant

in the very forward range |t| < 10−2 GeV2. We neglect spin effects.

Nuclear amplitudes for all-t values

To obtain precise description of the elastic dσ/dt data for all |t|, we use the

forms that were introduced in chapter 2 and shown to be successful with ISR and

Fermilab data [48], together with the assumption of the perturbative three-gluon

exchange amplitude [82], writing

TNK (s, t) = αK(s)e−βK(s)|t| + λK(s)ΨK(γK(s), t) + δK,RRggg (t) , (4.5)

where ΨK(γK(s), t) are shape functions already described in Chap. 2, and Rggg (t)

represents the contribution from the perturbative three-gluon exchange amplitude.

The label K means either K = R for the real amplitude or K = I for the imaginary

amplitude, and δK,R is the Kronecker’s delta symbol, that is, the last term only
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contributes for the real part.

The dimensions parameters of the real and imaginary amplitudes introduced in

Eqs.(2.64,2.65) are: γK dimensionless, αK , λK and βK are in GeV−2. The fixed

quantity a0 = 1.39 GeV−2 is related to the square of the correlation length a of the

gluon vacuum condensate value, with a = (0.2 ∼ 0.3) fm [42–44].

These expressions are planned to represent the non-perturbative dynamics of

scattering for all |t| and the perturbative term Rggg is built to vanish for small |t|.

The limits at |t| = 0 lead to the values for the total cross section σ, the ratio ρ

of the real to imaginary amplitudes, and the slopes BR,I at t = 0 through

σ(s) = 4
√
π (~c)2 [αI(s) + λI(s)] , (4.6)

ρ(s) =
TNR (s, t = 0)

TNI (s, t = 0)
=
αR(s) + λR(s)

αI(s) + λI(s)
, (4.7)

BK(s) =
2

TNK (s, t)

dTNK (s, t)

dt

∣∣∣
t=0

(4.8)

=
2

αK(s) + λK(s)

[
αK(s)βK(s) +

3

4
λK(s)a0

(
γK(s) +

7

6

)]
.

The determination of each amplitude starts with four energy dependent param-

eters that must be obtained from the data. However, well established s dependence

of the imaginary slope BI (with typical Regge model behavior), connections be-

tween λR + αR and λI + αI and BR with BI constrained by dispersion relations for

amplitudes and for slopes [38] help to control the parameter values.

As discussed before [48], the shape functions in Eq. (2.65) are very convenient

choices for all values of |t|, determining consistently for all energies the zeros, the

formation of dips and bumps, the signs and magnitudes of the two amplitudes and

are able to reproduce with good accuracy all dσ/dt behavior. This description

represents the non-perturbative QCD dynamics that is responsible for soft elastic
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hadronic scattering. They account effectively for the terms of Regge and/or eikonal

phenomenology that determine the process for |t| ranges up to about |t| ≈ 2.5 GeV2.

For higher |t|, perturbative contributions as the three-gluon exchange may become

important.

Universal behavior for large |t| : Faissler measurements at 27.4 GeV

For |t| values beyond the dip and bump characteristic of the differential cross sec-

tions at ISR/CERN and Fermilab energies, namely for |t| > 1.5 GeV2, the differential

cross sections become increasingly independent of the energy. The measurements of

pp scattering at
√
s = 27.4 GeV [68] provides the only large |t| data, covering the in-

terval from 5.5 to 14.2 GeV2. It is known that the points are smoothly and naturally

connected with the lower |t| points at all energies [48]. As shown by Donnachie and

Landshoff [82] this tail corresponds to a perturbative three-gluon exchange mecha-

nism, with real amplitude positive for pp and negative for pp̄ scattering, and dσ/dt

falling as |t|−8. The most remarkable example is given by the data of pp scattering

at
√
s = 52.8 GeV [83] , with measurements up to |t| = 9.75 GeV2 that superpose

well with the 27.4 GeV tail. This indicates that in this region the non-perturbative

real part is indeed positive, and also that the magnitude of the imaginary part is

small compared to the real part. At high energies in pp̄ scattering the negative sign

of the perturbative tail may lead to a marked dip in the transition region from 3 to

4 GeV2 [51].

Based on this expectation for the perturbative tail, we introduce a simple form of

the universal three-gluon contribution amplitude Rggg(t) at large |t|, parametrizing

the Landshoff term of the amplitude as

Rggg(t) ≡ ±0.45 t−4(1− e−0.005|t|4)(1− e−0.1|t|2) , (4.9)

where the last two factors cut-off this term smoothly in the non-perturbative domain,
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and the signs ± refer to the pp and pp̄ amplitudes respectively.

Although the cut-off factors written in Eq. (4.9) have been adequate for all cases

that were examined, their detailed forms in the transition range (2.5 < |t| < 4)

GeV2 must be examined with data in detail.

4.2 Analysis of elastic pp̄ data at 1.8 TeV

There are strong discrepancies on the reported values of total cross section mea-

sured at Fermilab at 1.8-1.96 TeV. We have analyse directly the differential cross

sections data in terms of KFK amplitudes. Our aim is the determination of the en-

ergy dependent parameters, and obtain predictions for the total cross section based

on the non-uniform data.

The available experimental data on differential cross section of pp̄ elastic scat-

tering at 1.8 TeV are

• N = 51 points in the interval 0.00339 ≤ |t| ≤ 0.627 (in GeV2) from the

Fermilab E-710 experiment published by N. Amos et al [77] in 1990.

• N = 26 points in the interval 0.0035 ≤ |t| ≤ 0.285 (in GeV2) from the Fermilab

CDF experiment published by F. Abe et al [78] in 1994.

To these data we may now add the results of a more recent experiment at 1.96

TeV

• N = 17 points in the interval 0.26 ≤ |t| ≤ 1.20 (in GeV2) from the Fermilab

D0 experiment published by V. M. Abazov et al [84] in 2012.

In order to compatibilize the last set together with the former two sets, we we

use the reduction factor (1.8/1.96)0.3232 = 0.973 obtained as correction of energy

effect from 1.96 to 1.8 TeV according to Regge phenomenology [23]. As the |t| range

involved is small we can safely neglect the |t| dependence of this factor. In the

following, we refer to these converted data as ”1.96 TeV data”.
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Figure 4.1: Data of pp̄ scattering at 1.8 and 1.96 TeV [77,78,84], taken in the E-710,
CDF and D0 experiments in Fermilab. The D0 data are multiplied by a reducing
factor 0.973 to take into account the energy difference (see the text). The E-710
data [77] are restricted to the first 35 points (open circles) due to superposition with
the recent D0 data (open triangles) of the same experimental group. The plot in
the RHS, concentrated in the forward part, exhibits clearly the known discrepancy
between the two experiments in the low |t| region. The solid, dashed and dotted
lines represent respectively our best descriptions for datasets I, II and III constructed
from the combination of three data points available, as described in the text. The
dotted line is hidden under the solid line.

The data are shown in Fig. 4.1. They do not cover a low enough |t| range for

a precise treatment in terms of exponential forms for the amplitudes, or, even less,

for the differential cross section. Besides, there is a discrepancy of values in the

data from the two independent experiments, exhibited in Fig. 4.1, that has lead

to a 20 year old duplicity of values for the total cross section, which has seriously

affected the efforts for a global description of the energy dependence of the total

cross section.

We recall values of the scattering parameters that are found in original papers

by experimental groups:

• E-710 experiment [85]: ρ = 0.140 ± 0.069 , B = 16.99 ± 0.47 GeV2 , σ =

72.8± 3.1 mb



84

• CDF experiment [86]: B = 16.98± 0.25 GeV2 , σ = 80.03± 2.24 mb

In this thesis we analyse carefully this ambiguity using KFK amplitudes with help of

the new large |t| data from the 1.96 TeV experiment. As much as possible, we deal

with all experimental information together in a unified analysis. For this purpose,

we group the data in three different sets.

• SET I - The 1.96 TeV data (converted) give a natural and smooth connection

with the E-710 data (basically they come from the same experimental group);

there is some superposition in the extreme ends, where we select the more

recent data, that have smaller error bars. We thus join 35 points with 3.39×

10−2 ≤ |t| ≤ 0.247 GeV2 from E-710 with 17 points from D0, to form a

combined data SET I (called STANDARD), with N = 52 points in the range

0.00339 ≤ |t| ≤ 1.2 GeV2.

• SET II - We observe that there is a good convergence of the large |t| end points

of the CDF spectrum with the beginning of the recent D0 points. This is a wel-

come surprise, and suggests the consistent construction of a combined set from

the two groups, with N = 26 and the N = 17 points, respectively. Actually,

to select points in the range where there is superposition, and simultaneously

to obtain a clearer smooth connection, we exclude the last 5 CDF points, that

present a rather scattered behavior (observe Fig. 1). We thus build SET II

here (called HYBRID), with N = 21 + 17 = 38 points. The assemblage is

shown in Fig. 4.2. The construction of this HYBRID SET II is motivated

by the consideration that the apparently irreconcilable discrepancy between

the E-710 and CDF experiments that exists in the low and mid |t| range need

not imply that they are incompatible for larger |t|. Our description aims at

representations of dσ/dt covering all |t| spectrum, and this hybrid connection

is very important.

• SET III - In a third construction, we investigate what comes out from our
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full-|t| description if we put all data together on the same footing, merging the

N = 52 points of SET I with the N = 26 CDF basis. We thus form a GLOBAL

SET III, with N=78 points.

We fit dσ/dt for the three datasets described above, using Eqs. (4.1),(4.2), (4.3),

(2.64) of our representation. In the fitting procedure, in principle all 8 parameters

are treated independently to minimize χ2, but we find that some parameters can be

chosen with common values to all datasets without sensitive changes in the solutions.

They are :

αI = 11.620± 0.024 GeV−2, βR = 1.10 GeV−2 , ρ = 0.141± 0.002 ,

BI = 16.76± 0.04 GeV−2, BR = 26.24± 0.39 GeV−2 . (4.10)

We remark that the usual quantity B (slope of dσ/dt) is not the same as BI .

The relation is

B =
BI + ρ2BR

1 + ρ2
(4.11)

and we then obtain B = 16.94 GeV−2, remarkably close to the values of the experi-

mental groups (16.99±0.47 and 16.98±0.25 GeV−2 for the E-710 [85] and CDF [86]

groups respectively).

The results of the fittings with respect to the other free parameters are given

in Table 4.1, together with some characteristic features of the solutions. The cor-

responding curves representing these fittings of dσ/dt are shown in Figs. 4.1,4.2,

4.3.

It is important to observe that the discrepancy between the CDF and E-710 data

shown in the RHS of Fig. 4.1 becomes smaller as |t| increases and both sets of data

seem to connect smoothly to the D0 data, as seen in 4.3. That is, the well-known

contradiction between E-710 and CDF data becomes less serious as |t| increases,

and the D0 data helps to point out the connection. Our global |t| analysis helps to

describe this connection.
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Table 4.1: Characteristic quantities of the all-t representation for the amplitudes.
Common values for all sets: ρ = 0.141 ± 0.002 , BI = 16.76 ± 0.04 GeV−2 , BR =
26.24± 0.39 GeV−2 , αI = 11.620± 0.024 GeV−2, and choice of βR = 1.10 GeV−2.
The remaining free parameters are βI , λR, σ. The error bars are given by the CERN
Minuit Program. SET I (N=52 points) is built with E-710 (35 points) and D0 (17
points) data. SET II (N=35 points)is built joining CDF (21 points) and D0 (17
points). The complete SET III (N=78 points) puts together CDF (26 points), E-
710 (35 points) and D0 (17 points) data. |t|infl is the position of the inflection point
in dσ/dt. 〈χ2〉 is the average value of the squared relative theoretical/experimental
deviations.

SET N βI λR |t|infl (dσ/dt)infl σ(el) σ 〈χ2〉
points GeV−2 GeV−2 GeV2 mb/GeV2 mb mb

I 52 3.7785± 0.0078 3.6443± 0.0093 0.745 0.01013 16.67 72.76± 0.13 0.7661
II 38 3.5686± 0.0186 3.8645± 0.0093 0.727 0.01114 18.92 77.63± 0.44 1.4961
III 78 3.7441± 0.0080 3.6784± 0.0096 0.741 0.01029 17.02 73.54± 0.20 2.6591

Figure 4.2: Hybrid SET . Combination of N=21 points from CDF (open squares)
with 17 points from D0 (open triangles). The last 5 points of CDF data (see Fig.
4.1) are excluded, to exhibit more clearly a smooth connection, and this is done
also numerically in fittings with SET II (38 points). The E-710 points do not enter
in this SET II. Solid line: fit of SET I, for comparison; dashed line: fit of SET II.
Although the lines of the two solutions are visually very close, the limits |t| → 0
lead to different values of σ, given in Table 4.1 and shown in closeup in Fig. 4.3.
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Figure 4.3: Data of SET II (21 points from CDF and 17 points from D0 experiment),
with plots that enhance the forward range. Note the smooth connection of the
highest |t| CDF points with the recent D0 data. The solid and dashed lines refer
to the fitting solutions obtained with sets I and II respectively, with parameters
given in Table 4.1. In spite of the apparent proximity, the lines lead to remarkably
different values for the total cross section. The solution for SET III falls between
these two drawn lines (see dotted line in Fig. 4.1) and is not included here to keep
clarity.

We recall that the above analysis is based on analytical expressions for the scat-

tering amplitudes applied to all |t|. In the present 1.8 TeV case, the integrated use

of all-|t| data is crucial since there are no data points in the very forward range, 10−3

to 10−2 GeV2, and the pure exponential forms are not at all reliable. Due to the very

large energy gaps in the experimental data, this energy region
√
s = 1.8/1.96 TeV

is extremely important for the determination of the energy dependence of the total

cross section, σ(s) and hence for its extrapolation for ultra-high energies treated by

fundamental theorems.

To show the importance of the use of the full-|t| amplitudes and full-|t| data

together, we test toy fits of the forward data of E-710 (35 points) and CDF (21

points) experiments. The E-710 data are fitted with essentially the same parameters

as the full SET I, and this shows their nearly perfect coherence, with the E-710 and

D0 data matching very well when described by our full-|t| amplitudes. However,
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the separate treatment of the 21 points of the CDF data leads to values of βI =

3.7280 GeV−2, λR = 3.3060 GeV−2 and σ = 79.00±0.57 mb that are different from

those of SET II in Table 4.1, and this solution has a disastrous behavior for large

|t|. Thus, we conclude that, in our model, the use of the pure CDF points for the

determination of the very forward quantities seems not reliable, if it is not controlled

by the D0 points of the larger |t| domain. Thus in our analysis the construction of

SET II is essential for the treatment of the CDF data.

Properties of 1.8 TeV Amplitudes

It is general property of our approach that the non-perturbative amplitudes

fall-off rapidly after |t| ≈ 1.5 GeV2, with the magnitude of the positive real part

becoming dominant over the negative imaginary part for |t| larger than about 2.5

GeV2. The imaginary amplitude has only one zero, located near the inflection point

of dσ/dt, while the real part has a first zero at small |t|, obeying Martin’s theorem

[54], and a second zero located after the imaginary zero. As the non-perturbative

real part decreases, the perturbative tail remains, giving to the differential cross

section the characteristic shape 1/|t|8, discussed by Donnachie and Landshoff [82].

Such a general aspect of the scattering amplitudes have been well verified at ISR

and LHC energies [20,48]. The present analysis at 1.8 TeV data repeats this general

behavior, as exhibited in Fig. 4.4.

Role of Perturbative Tail in pp̄ scattering

The universal (energy independent) perturbative 3-gluon exchange process [82],

given by Eq. (4.9), contributes in pp̄ scattering with a negative sign, which leads to

an interesting prediction. As mentioned above, the non-perturbative real amplitude

is positive in the transition region, and the inclusion of the negative tail amplitude

leads eventually to its cancellation and the creation of a third real zero (see Table

4.2). This mechanism is shown in the RHS of Fig. 4.4, where we draw two curves
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Figure 4.4: Amplitudes in pp̄ elastic scattering at
√
s = 1.8 TeV shown in different

ranges and scales, described by Eqs. (4.2), (4.3), (2.63) with parameters determined
by phenomenology. The solid lines drawn refer to the solutions for TR and TI
obtained for SET I. In the |t| range up to about 2 GeV2 the amplitudes are governed
by non-perturbative dynamics and are qualitativelly similar for pp and pp̄, with one
zero for TI and two zeros for TR. TI remains negative and goes fast to zero, while at
|t| ≈ 3 GeV2 the non-perturbative TR is positive and dominates. In pp̄ scattering the
negative contribution of the 3-gluon exchange term inverts the sign of TR, forming a
third zero and a marked dip in dσ/dt, with locations and depths dependent on the
detail of the βR parameter, as shown in Table 4.2.

for the real amplitude, with solid line and dashed line, corresponding respectively

to presence and absence of perturbative contribution.

As the imaginary part is not dominant in this region, a marked dip may be

observed in dσ/dt. This is shown in Fig. 4.5. In this figure (RHS), we also show

in dotted line the behavior of cross section with non-pertubative amplitudes only,

without the effect of pertubative tail.

The precise form of this dip-bump structure created by the perturbative tail

depends sensitively on the values of model parameters (such as βR) that govern

the properties of the transition domain. Unfortunately, the existing data stops at

about |t| = 1.2 GeV2, leaving the higher |t| region without information to fix the

connection with the range of the perturbative tail. Thus the parameter βR cannot
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SET βR λR ZI ZR(1) ZR(2) ZR(3) |t|dip |t|bump ratio
GeV−2 GeV−2 GeV2 GeV2 GeV2 GeV2 GeV2 GeV2

I 1.10 3.6443 0.6253 0.1771 1.4336 3.8827 3.9456 4.8631 5.4567

I 1.40 3.6328 0.6253 0.1776 1.5884 3.0605 3.4839 4.1212 1.3086

II 1.10 3.8645 0.6156 0.1792 1.2986 4.3159 4.3520 5.3314 8.4118

II 1.40 3.8492 0.6156 0.1799 1.4217 3.3047 3.6434 4.2920 1.3761

III 1.10 3.6784 0.6231 0.1776 1.3987 3.9781 4.0312 4.9580 6.2212

III 1.40 3.6662 0.6231 0.1781 1.5452 3.1181 3.5111 4.1609 1.3442

Table 4.2: Positions of zeros of the real and imaginary amplitudes, locations of
the dip and bump at large |t| predicted by the introduction of the perturbative
tail of negative sign, and the ratio characterizing the shape of this structure. The
parameter βR, that determines the behavior of the real part at the end of the non-
perturbative region, is not tightly determined by the data (that ends at 1.2 GeV2),
and has important role for the location and depth of the large |t| dip. We present
results for two choices of βR. The parameter λR varies in the fits, following the
choice of βR. The quantities ρ, BI , BR , αI are universal, as in Table 4.1. The
quantity ratio is [dσ/dt]bump/[dσ/dt]dip.

be fixed accurately, and as its value is crucial for the prediction of the position and

depth of a dip in the transition region for pp̄ scattering at 1.8 TeV, we present in

Table 4.2 two alternative choices, with βR = 1.10 and 1.40 GeV−2.

In Table 4.2 are given the values of |t| at the zeros of the amplitudes, and the

locations of the dip and bump in dσ/dt at large |t| that are due to the contribution of

the three-gluon exchange term. The quantity ratio = (dσ/dt)bump/(dσ/dt)dip that

informs about the shape of the structure depends strongly on the values of the

parameter βR, that must be determined by experiment, necessarily with extension

of the measured range to higher |t| values. The common parameters are given in

Eq. (4.10). The fitting of each solution is needed only to evaluate λR.
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Figure 4.5: The plots show the predictions for the contributions of real dσR/dt
and imaginary dσI/dt parts of dσ/dt in the presence of the real perturbative tail
due to 3 gluon exchange. In pp̄ scattering the negative sign of the tail causes a
zero in dσR/dt and a dip in dσ/dt located in the range 3-5 GeV2. The RHS figure
shows two examples of the dip structure, formed with βR = 1.10 GeV−2 (solid) and
βR = 1.40 GeV−2 (dashed) as given in Table 4.2. We suggest that the analysis of
data from the Fermilab experiment at 1.96 TeV be extended to investigate this dip
region.



92

Figure 4.6: Analytic representation for the data on dσ/dt for elastic pp scattering
at 7 TeV, together with the experimental data [79]; triangles are for subset A and
open squares for subset B. The values of the parameters are given in Eqs. (4.12),
(4.13). The inset at the up-right corner shows in close up a gap between the datasets
A and B, that seems to be at the limit of the error bars.

4.3 Analysis of elastic pp data at 7 TeV

The Totem Collaboration has published data of differential elastic cross section

[79] in two separate tables, in the ranges 0.00515 ≤ |t| ≤ 0.371 (referred to as

dataset A ) and 0.377 ≤ |t| ≤ 2.443 (referred to as dataset B ) GeV2, with 87 and

78 points respectively. Rather large systematic errors are informed in the dataset B.

The representation of these data with the analytical forms of Eqs. (4.5) and (2.63)

is shown in Fig. 4.6. The averaged square deviation for the datasets A + B (165

points) is 〈χ2〉 = 0.3105.

The values of the quantities that also enter in the forward scattering amplitudes
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Figure 4.7: Data for elastic pp scattering at 7 TeV ( [79], 165 points) and 52.8
GeV ( [83], 97 points). The lines represent the parameterizations with Eqs. (4.5)
and (2.63), with average squared deviations 〈χ2〉 = 0.3105 and 0.8328 respectively.
Numerical characteristic values and description of features of the data and of the
amplitudes are given in the text and in Tables 4.3 and 4.4 .
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Table 4.3: Amplitude parameters for the 52.8 GeV and 7 TeV data.

√
s N σ ρ BI BR αI βI λR βR 〈χ2〉

GeV points mb – GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

52.8 97 42.49 0.078 13.04 19.07 5.9561 2.3477 1.1307 1.1436 0.8328
7000 165 98.65 0.141 19.77 30.20 13.730 4.0826 4.7525 1.4851 0.3105

treated with exponential functions as in Eq.(3.48) are

σ = 98.65± 0.26 mb , ρ = 0.141± 0.001 ,

BI = 19.77± 0.03 GeV−2, BR = 30.2± 0.7 GeV−2 , (4.12)

and the other independent quantities that enter in the full-t forms are (in GeV−2 )

αI = 13.730± 0.030 , βI = 4.0826± 0.0093 ,

λR = 4.7525± 0.0155 , βR = 1.4851± 0.0318 . (4.13)

Here we have 8 independent values, that are collected in Table 4.3. 1 Other quan-

tities are related to these through Eqs. (4.6, 4.7, 4.8). Plots and features of the

amplitudes are given in the next section.

Characteristic values of the differential and integrated cross sections for the 7

TeV data given by this representation are

σel. = 25.5418 mb ; σ inel. = 73.1082 mb ; σel./σ = 0.2589 ;

|t|dip = 0.4847 GeV2 ; (dσ/dt)dip = 0.01532 mb GeV−2;

|t|bump = 0.6488 GeV2; (dσ/dt)bump = 0.02816 mb GeV−2 ;

ratio(bump/dip) = 1.8383. (4.14)

In a closeup examination of the graph, shown in the inset in Fig. 4.6, we observe

1Because the present data stops at about 2.5 GeV2, the quantity βR is difficult to fix uniquely.
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a discontinuity in the magnitudes of dσ/dt in the junction of the two sets of data.

We estimate that a renormalization factor 0.86 would adjust the higher |t| to the

more forward data in this region.

It is very interesting to compare the 7 TeV data with the similar behavior of

the 52.8 GeV data [83], that are available in the ranges 0.107 × 10−2 ≤ |t| ≤

0.5546 × 10−2 GeV2 with 34 points and 0.825 ≤ |t| ≤ 9.75 GeV2 with 63 points.

This comparison is shown in Fig. 4.7 and in Tables 4.3 and 4.4, and the behavior of

the amplitudes is discussed in Sec. 4.3

Properties of the 7 TeV amplitudes

The amplitudes obtained in the analysis of the data, based on Eq. (4.5), are

shown in Fig. 4.8 and numerical information is given in Tables 4.3 and 4.4. Their

general features are common to the lower energies from ISR and the Tevatron,

with regular variation of the parameters. The results agree with requirements from

dispersion relations for amplitudes and for slopes [38], as we will see in the end of

this chapter, and the Coulomb interference accounts for the necessary generalization

of the Coulomb phase, presented in the Appendix A. Near t ' 0, the real part obeys

the theorem by A. Martin [54] about its first zero, decreasing quickly and crossing

zero at small |t| , before the imaginary part becomes small. The |t| dependence of

the amplitudes for all |t| is shown in part (b) of Fig. 4.8.



96

F
ig

u
re

4.
8:

(a
)

F
or

w
ar

d
sc

at
te

ri
n
g

am
p
li
tu

d
es
T
R

an
d
T
I

at
√
s

=
7

T
eV

in
lo

g
sc

al
e,

n
or

m
al

iz
ed

to
on

e
at
|t|

=
0,

sh
ow

in
g

th
ei

r
sl

op
es

,
B
I

=
19
.7

7
an

d
B
R

=
30
.2

G
eV
−

2
,

an
d

th
ei

r
cu

rv
at

u
re

s,
an

d
in

d
ic

at
in

g
p

os
it

io
n
s

of
th

e
fi
rs

t
ze

ro
s
Z
R

(1
)

an
d
Z
I
;

(b
)

L
on

g
t

d
ep

en
d
en

ce
of

th
e

re
al

an
d

im
ag

in
ar

y
sc

at
te

ri
n
g

am
p
li
tu

d
es

sh
ow

in
g

th
e

co
m

p
le

te
se

t
of

ze
ro

s;
(c

)
t

d
ep

en
d
en

ce
of

th
e

re
al

an
d

im
ag

in
ar

y
sc

at
te

ri
n
g

am
p
li
tu

d
es

at
√
s

=
52
.8

G
eV

.
C

om
p
ar

in
g

w
it

h
th

e
fi
gu

re
fo

r
7

T
eV

,
w

e
ob

se
rv

e
th

at
al

l
ze

ro
s

m
ov

e
to

w
ar

d
s

sm
al

le
r
|t|

va
lu

es
as

th
e

en
er

gy
in

cr
ea

se
s.



97

The imaginary part starts dominant over the real part, crosses zero at higher

|t|, then remains negative and asymptotically tends to zero from the negative side,

while the real part crosses zero again near |t| = 0.8 GeV2 , becoming positive. After

the second real zero, namely for |t| larger than about 1.0 GeV2 , the real amplitude

stays positive, without further oscillation, and for |t| ≥ 2 GeV2 becomes increasingly

dominant over the imaginary part. Important qualitative feature of our description

of the data is that for large |t| the magnitude of the imaginary part is smaller than

the positive real part.

This behavior is consistent with a regular continuation of the results obtained for

the ISR energies, and as an example we show in part (c) of Fig. 4.8 the amplitudes

for 52.8 GeV. At this and higher energies [48] the ZI zero occurs between ZR(1) and

ZR(2). The magnitude of TI(s, t) is in general dominant over the real part between

ZR(1) and ZR(2), so that the dip is located near ZI . As the energy varies, while the

first zero of TR(s, t) stays almost constant in the |t| range from 0.15 to 0.3 GeV2,

the positions of both ZI and ZR(2) move to the left. The relative proximity of real

and imaginary zeros influences the shape and depth of the dip. At 540 and 1800

GeV the imaginary zero is distant from both real zeros, so that no dip is formed,

and only an inflection is observed.

Table 4.4 gives the positions of the zeros of the amplitudes and the characteristic

observable quantities in pp elastic scattering at 7 TeV and 52.8 GeV.
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The details of the dip-bump structure carry information on the scattering ampli-

tudes, and are particularly sensitive to their relative behavior near their zeros [48].

Thus, a marked dip appears when one of the amplitudes (real or imaginary) crosses

the zero in the interval where the other amplitude stays nearly constant with mag-

nitude small compared to the variation of the former. In a domain where one of the

amplitudes is dominant, the zero of the amplitude with smaller magnitude does not

affect the observable differential cross section, as happens in the region of the first

real zero (≈ 0.15− 0.3 GeV2).

The parts dσR/dt and dσI/dt of the differential cross section due to the real and

imaginary amplitudes are shown in Fig. 4.9.

Differently from lower energies, the dip at |t| ≈ 0.5 GeV2 is more influenced by

the proximity of the imaginary zero (≈ 0.5 GeV2) and the first real zero ZR(1) (at

0.2 GeV2 ). Due to the increasing proximity of the imaginary and real zeros at

higher energies, the dip/bump structure becomes more marked, and this is expected

to happen at 14 TeV.

At 7 TeV the bump that follows the dip is formed by the TI and the TR amplitude

that have there similar magnitudes, with TI becoming more strongly negative while

TR quickly becomes zero. This explains the ratio nearly 2 (actually 1.838) between

bump and dip heights. After the bump the fall is faster because it is only determined

by the dominant magnitude of the imaginary amplitude, that decreases fast in |t|. TR

is small positive, but of long range, surviving until it meets the expected perturbative

tail after |t| = 2 GeV2.
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Figure 4.9: Partial cross sections dσI/dt and dσR/dt as functions of |t| as calculated
with the analytic forms of Eqs. (4.5) and (2.63). The dip in the sum dσ/dt (at 0.485
GeV2) is close to the zero of the imaginary part (at 0.467 GeV2).
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4.4 Full energy dependence

An extensive analysis of all pp elastic scattering data for
√
s from 20 GeV to 7

TeV leads to a separate identification of the real and imaginary parts contributing

to Eq. (4.1). We made use also of the pp̄ data at 540 and 1800 GeV. At these

energies pp and pp̄ cross sections are the same obeying the Pomeranchuck theorem

and the ρ parameter also converges to the same value as shown before. The energy

dependence of the eight parameters is given below, with
√
s in TeV, and GeV−2 in

the units of the parameters αK , βK and λK , (γK are dimensionless)

αI(s) = 11.0935 + 1.35479 log
√
s, (4.15)

βI(s) = 4.44606586 + 0.3208411 log
(√

s/30.4469
)

+0.0613381
[

log2
(√

s/30.4469
)

+ 0.5
]1/2

, (4.16)

αR(s) = 0.208528 + 0.0419028 log
√
s , (4.17)

βR(s) = 1.1506 + 0.12584 log
√
s+ 0.017002 log2

√
s , (4.18)

γI(s) = 10.025 + 0.79097 log
√
s+ 0.088 log2

√
s , (4.19)

γR(s) = 10.401 + 1.4408 log(
√
s) + 0.16659 log2(

√
s) , (4.20)

λI(s) = 14.02008 + 3.23842 log
√
s+ 0.444594 log2

√
s , (4.21)

λR(s) = 3.31949 + 0.743706 log
√
s . (4.22)

In fig. 4.4 we show the real and imaginary parameters in GeV−2 unit as function

of the center of mass energy. In fig. 4.4 we show the imaginary and real dimensionless

parameters γK with their energy dependence.

The peculiar (not so simple) expression for βI(s) is constructed in order to satisfy

both the low-energy phenomenology and unitarity constraints at all energies. For

very high energy and considerations for asymptotic behavior, it is useful to use
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simpler form for βI(s).

βI(s) = 3.14055 + 0.382179 log
√
s . (4.23)

Using the energy dependence given by Eqs. (4.15-4.19) and the forward ex-

pression Eqs.(4.6,4.7,4.8) we can write the practical formulas for the four quantities

σ(s) = 69.3286 + 12.6800 log
√
s+ 1.2273 log2

√
s , (4.24)

BI(s) = 16.2472 + 1.53921 log
√
s+ 0.174759 log2

√
s , (4.25)

BR(s) = 22.835 + 2.862 log
√
s+ 0.329721 log2

√
s , (4.26)

and

ρ(s) =
3.528018 + 0.7856088 log

√
s

25.11358 + 4.59321 log
√
s+ 0.444594 log2√s

, (4.27)

where
√
s is in TeV, σ in milibarns, BI and BR are in GeV−2; ρ is dimensionless,

passes through a maximum at about 1.8 TeV, and decreases at higher energies, with

asymptotic value zero. The parameters σ , BI and BR are shown in Fig. (4.12). The

ratio BR/BI is always larger than one, as expected from dispersion relations [38].

The ratio BR/BI as function of the energy is shown in Fig. (4.13). There is a finite

asymptotic value BR/BI → 1.887.
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Figure 4.13: The slopes of real and imaginary amplitudes vary with the energy
with a log2 dependence as given by Eqs. (4.25,4.26). At all energies it is BR > BI ,
as predicted by dispersion relations [38]. In the figure, the ratio BR/BI is plotted
as function of the energy, indicating the finite asymptotic limit.
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Table 4.5: Values of parameters that build the amplitudes for all |t|, for the energies
of LHC pp collisions.

imaginary amplitude real amplitude√
s σ BI αI βI ρ BR λR βR

TeV mb GeV−2 GeV−2 GeV−2 GeV−2 GeV−2 GeV−2

1.8 77.21 17.17 11.8898 3.7175 0.1427 24.63 3.7566 1.2304
2.76 83.47 17.96 12.4689 3.8293 0.1431 26.08 4.0745 1.2959

7 98.65 19.90 13.7298 4.0745 0.1415 29.65 4.7667 1.4599
8 101.00 20.21 13.9107 4.1100 0.1411 30.21 4.8660 1.4858
13 109.93 21.35 14.5685 4.2409 0.1392 32.35 5.2271 1.5852
14 111.34 21.53 14.6689 4.2612 0.1389 32.68 5.2822 1.6011

4.5 Observables in the range from 1.8 to 14 TeV

In Fig. 4.14 we show the predictions for dσ/dt for the LHC energies 2.76 , 8 , 13

and 14 TeV. We first observe that the dip and the bump peak displace to the left

as the energy increases and in this figure these displacements follow almost straight

lines, as indicated by marks with black circles and open squares. For the sake of

convenience, we list the values of parameters for these energies in Table 4.5, where

γI , λI , αR and γR are substituted by more commonly used quantities σ, ρ together

with the slope parameters BI and BR. In Table 4.6 we show the values of several

quantities obtained in the numerical calculation of the amplitudes and of observables

in the elastic process. Some characteristic features are exhibited below in plots.
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Figure 4.14: The lines show the values of dσ/dt obtained for energies of LHC
experiments. The 7 TeV case, presented before [20], is obviously very close to the
8 TeV curve. The positions of dips and bump peaks at different energies, marked
with dots and squares, can be connected with straight lines. The inset shows the
low |t| range, with Coulomb interaction effects included.
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In Fig. 4.15 we use the energy
√
s = 8 TeV as an example to show the imaginary

and real amplitudes TNI (s, t), TNR (s, t) as functions of |t| as predicted by Eq.(4.5).

For all energies the characteristic features are the two zeros of the real part, and the

single zero of the imaginary part appearing in the plotted range (a second zero of TNI

would appear in a much larger |t|, outside experimental visibility). The interplay

of the imaginary and real amplitudes at mid values of |t| is responsible for the dip-

bump structure of the differential cross section, that was shown before [20] for
√
s = 7

TeV, and is shown for 8 TeV in the next section, with accurate description of the

preliminary data in the whole |t| range. For |t| ≥ 1.5 GeV2 the real part becomes

dominant, with positive sign. The inset shows the small |t| range, in log scale,

normalized to one at |t| = 0. The straight exponential slopes are shown in dashed

lines, with the dramatic difference between the real and imaginary amplitudes. Soon

the amplitudes leave the straight line and curve down, searching for their respective

zeros. The consequence to the behavior of dσ/dt is observed at 8 TeV for |t| larger

than about 0.15 GeV2.

The difference in slopes BR and BI that is required by dispersion relations [38],

is often neglected. The real part is small for small |t|, due to the small value of ρ,

but becomes influential or dominant for mid and large |t|. The amplitudes must be

treated as functions for the whole |t| range. Our unique analytical form connects all

regions and controls the behaviour both at small and large |t|. Thus, for example,

the value of ρ is very important for the shape of the dip-bump structure.

The regular energy dependence of the positions of the zeros and of dips and peaks

of bumps is shown in Fig. 4.16. We see that all these characteristic quantities move

towards smaller |t| with increasing energy, following forms like

A+
1

a+ b log
√
s+ c log2√s

, (4.28)

possibly with finite asymptotic limits A. Particularly interesting is the displacement
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of the first real zero Z
(1)
R , that at very high energies behaves as above, with A = 0

and c = 0, according to a theorem by A. Martin [54]. This behaviour is obviously

connected with a fast increase of the slope BR.

It is interesting to observe the relative positions of the dip and the peak of the

bump in dσ/dt and the zeros of the imaginary and real parts, shown in Fig. 4.16.

This question has been discussed a long time ago [48]. The figure shows that ZI and

the dip position tend to the (apparently) common finite limit. Dips and peaks are

always located between ZI and Z
(2)
R . All energy dependences are simple and can be

easily parameterized.

It is interesting to note that the ratio between the maximum of the mid-|t| bump

(called peak) and the dip minimum

R = [dσ/dt]peak/[dσ/dt]dip (4.29)

increases with energy rather rapidly (see Fig. 4.16-b) like ∼ ln2√s, while the dis-

tance |t|peak − |t|dip remains practically constant (Fig. 4.16-a).

In Fig. 4.17 we plot dσ/dt for 2.76 and 8 TeV, showing that the characteristic

dip/bump structure of dσ/dt occurs in the interval between the imaginary zero and

the second real zero.
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Figure 4.15: Plots of the real and imaginary parts of elastic pp scattering amplitude
at 8 TeV, as functions of |t|. The general behaviour is the same for all energies, with
one and two zeros respectively for the imaginary and real parts. The behaviour for
small |t| is shown in the inset, indicating the difference of slopes BR and BI at the
origin, and the deviations of the exponential forms that occur as |t| increases, each
amplitude going towards its zero. A second zero of the imaginary part occurs at
much higher |t|.
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Figure 4.16: a) Positions of the zeros of the amplitudes, and of the dip and peak at
the bump of dσ/dt. There appears one zero in the imaginary and two in the real am-
plitude. A second imaginary zero occurring at very large |t| is outside the physically
accessible range. All quantities move towards small values with increasing energies.
The dips tend to coincide with the imaginary zero at high energies. The remarkable
dip/bump structure in pp scattering occurs in the interval between the imaginary
zero and the second real zero. The first real and the imaginary zero move towards
smaller |t|, indicating the log2√s increase of the real and imaginary slopes. The
dots are put to help the connection of values of the quantities for different energies.
b) There is a regular and fast increase of the ratio R = [dσ/dt]peak/[dσ/dt]dip, with
increasing sharpness of the dip/bump structure although the distance |t|peak − |t|dip

between them varies very little. These symptoms come from the increasing proxim-
ity of |t|dip and ZI , and to the convergence to finite asymptotic limits of both |t|peak

and |t|dip.
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Figure 4.17: The dip-bump structure in the differential cross section is determined
by the interplay of the regularly increasing modulus (magnitude) of the imaginary
part and the regularly decreasing modulus (magnitude) of the real part. At all

energies both dip and peak of the bump are located between ZI and Z
(2)
R . This

behaviour is shown in this figure for the energies 2.76 and 8 TeV. As the energy
increases |t|dip approaches ZI from the right to the left. Fig. 4.16 illustrates these
properties again, in another way.
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Comparison with data and predictions for 8 TeV

Our description [20] of the elastic scattering data at 7 TeV from the Totem

Collaboration [80] reproduces N=165 points in dσ/dt with an impressive squared

average relative deviation 〈χ2〉 = 0.31. Characteristic quantities at this energy,

shown in Tables 4.5 and 4.6 are σ = 98.65 mb, σel = 25.39 mb , B = 19.90 GeV−2,

that compare extremely well with the values published by Totem [80], σ = 98.6±2.2

mb, σel = 25.4± 1.1 mb , B = 19.9± 0.3 GeV−2.

After the successful description of the 7 TeV data [20], we now present compar-

ison and predictions for other LHC energies.

For the inelastic cross section we assume the difference σinel = σ − σel and then

we have 73.26 mb at 7 TeV.. Published values of the Totem Coll. using different

methods are 73.15 ± 1.26 [80], 73.7 ± 3.4 [87] and 72.9 ± 1.5 [88]. Alice Coll. [89]

gives σinel = 73.2 ± 5.3 mb , and Atlas Coll. σinel = 69.4 ± 2.4 ± 6.9 mb [90]. We

are not able to understand the CMS results [91] in terms of pure σinel due to non-

informed missing contributions. In these measurements there are extrapolations to

using Monte Carlo models to include diffractive events of low mass. Of course all

these results are compatible with our calculations.

A measurement to be compared with our predictions is the
√
s = 2.76 TeV value

of Alice Coll., that gives σinel = 62.8± 4.2 mb , while our tables give the compatible

value 63.11 mb.

The analysis of compatibility for the 1.8 TeV measurements of σinel by CDF and

E811 in Fermilab [92] suggests the value (1 + ρ2)σinel = (60.3 ± 2.3 mb, that with

with our ρ value gives σinel = (59.1± 2.3 mb. Our table gives 58.89 mb for 1.8 TeV,

once more in very good agreement.

Finally, at 57 TeV the Auger Cosmic Ray experiment [27], using other models

for the pp input, evaluates σinel = 92± 14.8 mb , while our extrapolation gives 101

mb. We have discussed this measurement [93] together with other CR Extended Air

Showers (EAS) experiments, using our amplitudes as inputs and a basic Glauber
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method to connect pp and p-air processes. Our calculation reproduces well all CR

data for p-air cross sections with
√
s (in the pp system) up to 100 TeV.

For 8 TeV we have predictions σ = 101.00 mb , σel = 26.18 mb , σinel = 74.82

mb , σel/σ = 0.26 shown in the tables. The measurements by Totem [94] give for

the same quantities σ = 101.7± 2.9 mb , σel = 27.1± 1.4 mb, σinel = 74.7± 1.7 mb

, σel/σ = 0.266 ± 0.006. Of course these numbers are very encouraging, indicating

also good expectations for dσ/dt at this energy.

The data and our curve for σinel(s) are shown in Fig. 4.18. All this informa-

tion shows that our formulae for the energy dependence of σ(s) and σinel(s) in pp

scattering work very well.

Expected data for dσ/dt at 8 TeV

The preliminary data for dσ/dt at 8 TeV, shown in talks by members of the

Totem Collaboration [95], are encouraging for the application of our method of

analysis. We recall that in the treatment of the 7 TeV data, we obtained precise

description, with average 〈χ2〉 = 0.34 for 165 data points in the whole |t| interval of

measurements.

If Fig. 4.19 we shown our calculation for dσ/dt covering the whole |t| range of the

preliminary information, using the amplitudes defined in Sec. 4.5. The characteristic

features of the forward peak and of the dip/bump structure are expected to represent

accurately the angular dependence. Numerical values for characteristic features are

given in Tables 4.5 and 4.6.

This is the description of the global dσ/dt data at 8 TeV, that promises to be

more complete and regular than the 7 TeV data, except for not reaching larger |t|

values. In the following we discuss the forward region in more detail.

In Fig. 4.20 we plot the calculations in the small |t| range , including the influence

of the Coulomb phase [20]. The calculation with Coulomb phase put equal to zero

is represented by the dashed line, showing that its influence is small. Our specific
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calculation of the Coulomb phase takes into account the difference in values of the

BR and BI slopes. Other calculations for the interference phase [96] also show that

its influence is small, reducing dσ/dt by a few percent.

Our values for BI and BR given in Table 4.5 lead to the dσ/dt effective slope at

8 TeV equal to B = 20.405 GeV−2.

Our predictions seem to be in accordance with the eye-guided reading of the

preliminary data of dσ/dt that appear in presentations of the Totem group in work-

shops, at least at the qualitative level. At 7 TeV our expressions perform extremely

well when compared to the published experimental information, and we expect that

the same will happen at 8, 13 and 14 TeV .
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Figure 4.18: Our calculations for pp inelastic cross sections and the data above√
s = 1 TeV , that cover the energies 1.8 TeV [92], 2.76 TeV [89], 7 TeV [80,87–90],

8 TeV [94] and 57 TeV [27].

Figure 4.19: Preliminary experimental data and predicted representation for dσ/dt
in the whole |t| range of observations at 8 TeV made in LHC by the Totem Collab-
oration [95].
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Figure 4.20: Calculation of dσ/dt in the forward range at 8 TeV. The solid lines
correspond to the full calculation with our amplitudes. a) In the LHS a log |t| scale
is used to represent in detail the forward range; the dashed line is obtained with
Coulomb phase put equal to zero; the dotted line represents the hadronic interaction.
b) In the RHS The dashed line represents the calculation with pure exponential
amplitudes, with the real and imaginary parts entering with their corresponding
slopes; the dotted line shows the usual description of the foreword peak in the form
dσ/dt = dσ/dt|t=0 exp (−B|t|) .
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4.6 Use of dispersion relations in KFK

Once we have the proposed s dependence of KFK we are able to apply the

DDR to the scattering amplitudes and study the connections between the real and

imaginary parameters. The amplitudes in t space are written as in Eq.(4.5)

As we mentioned before, the explicit t dependence of the amplitudes, that is

characteristic of this model, is able to describe with precision the differential cross

sections in the whole t range in high energy scattering (above 19 GeV).

The normalization of the TNK (s, t) amplitude is defined by the optical theorem in

Eq.(4.6), and the differential elastic cross section

dσ(s, t)

dt
= (~c)2[T 2

I (s, t) + T 2
R(s, t)] =

dσI(s, t)

dt
+
dσR(s, t)

dt
. (4.30)

At |t| = 0 we define the ρ parameter through the product

σρ = (~c)2 4
√
πTNR (s, 0) = (~c)2 4

√
π[αR(s) + λR(s)] , (4.31)

corresponding to the real amplitude at t = 0, with [αR(s)+λR(s)] related to [αI(s)+

λI(s)] by dispersion relations.

Attention must be given to a conversion factor to use σ in mb , as the amplitudes

TNI , TNR and parameters are given in GeV−2.

The non-trivial t dependence of the amplitudes is characteristic fundamental of

the model, entering as variables in two different functions that build the amplitudes.

As mentioned before, for small |t| the imaginary an real slopes, BI and BR are given

by

BK(s) =
2

TNK (s, t)

∂TNK (s, t)

∂t

∣∣
t=0

=
2

αK(s) + λK(s)

[
αK(s)βK(s) +

3a0

4
λK(s)

(
γK(s) +

7

6

)]
. (4.32)
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The products

σBI = 2× 4
√
π (~c)2 ∂T

N
I

∂t

∣∣
t=0

= 2× 4
√
π (~c)2

[
αI(s)βI(s) +

3a0

4
λI(s)

(
γI(s) +

7

6

)]
(4.33)

and

σρBR = 2× 4
√
π (~c)2 ∂T

N
R

∂t

∣∣
t=0

= 2× 4
√
π (~c)2

[
αR(s)βR(s) +

3a0

4
λR(s)

(
γR(s) +

7

6

)]
(4.34)

are connected by dispersion relations, as explained below.

The energy dependence of the parameters is given by simple forms in terms of

log s as [20,21]

αK(s) = αK0 + αK1 log
√
s , (4.35)

βK(s) = βK0 + βK1 log
√
s+ βK2 log2

√
s ,

λK(s) = λK0 + λK1 log
√
s+ λK2 log2

√
s ,

γK(s) = γK0 + γK1 log
√
s+ γK2 log2

√
s .

To apply DDR we use the imaginary amplitude in the low |t| rangeas an input,

with parameters extracted from data. We show below the constraints imposed on

the real part by DDR.

In this chapter we are concerned only with higher energies, above 500 GeV, in

phase with the present importance of the analysis of LHC experiments. Thus we do

not deal with distinction between pp and pp̄ amplitudes (Pomeranchuk Theorem).

Also, we use s ≈ 2mE and x = s/(2m2) . Correspondingly, the term with the

subtraction constant K, that is not important at high energies, will be excluded.

The correspondence between the scattering amplitude in DDR expressions and



122

the amplitudes in our model is

Im F (s, 0)

s
= 4
√
π TI(s, 0) . (4.36)

In order to work with simpler mathematical expressions for dispersion relations

we define the variable x = s/2m2 and change notation TNK (s, t) → TNK (x, t). Then

the energy dependence of the parameters is written in a generic mathematical ex-

pression

η̄K(x) = η̄K0 + η̄K1 log +η̄K2 log2 x , (4.37)

where η̄K = {ᾱK , β̄K , γ̄K , λ̄K} with the obvious correspondence of parameters

η̄K0 ≡ ηK0 +
ηK1

2
log(2m2) +

ηK2

4
log2(2m2) ,

η̄K1 ≡
ηK1

2
+
ηK2

2
log(2m2) , (4.38)

η̄K2 ≡
ηK2

4
.

The values of the parameters on the right side of equations above are given in

Eq.(4.15).The numerical values of the parameters of the imaginary part, that serve

as input for the dispersion relations, and were obtained in the analysis of data, are

ᾱI(x) = 2.063762 + 0.681500 log x , (4.39)

β̄I(x) = 0.608653 + 0.191089 log x ,

λ̄I(x) = 14.905103− 1.790311 log x+ 0.128825 log2 x ,

γ̄I(x) = 9.408298− 0.134066 log x+ 0.020195 log2 x .
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The DR of the amplitudes is written

Re F (x, t = 0)

2m2 x
= 4

√
π

2

π
x P

∫ +∞

1

TNI (x′, t)

x′2 − x2
dx′

= 4
√
π

2

π
x P

∫ +∞

1

ᾱI(x
′) + λ̄I(x

′)

x′2 − x2
dx′ . (4.40)

Since the parameters are in GeV−2, to obtain the product σρ in mb units we multiply

the above equation by the factor (~c)2 = 0.3894. Then (~c)2Re F+/s = σρ, and we

writte

σρ = (~c)2
[
4
√
π

2

π
x[(ᾱI0 + λ̄I0)I(0, 0, x) + (ᾱI1 + λ̄I1)I(1, 0, x) + λ̄I2I(2, 0, x)]

]
,(4.41)

where the function I(n, λ, x) is defined in Eq.(2.24). Taking only the first contribu-

tion of the Lerch transcendent terms Φ we have the result

σρ = (~c)2
{

4
√
π
[
(ᾱI1 + λ̄I1)

π

2
+ λ̄I2π log x

]
(4.42)

+
1

x

[
4
√
π

2

π
(ᾱI0 + λ̄I0 − ᾱI1 − λ̄I1 + 2λ̄I2)

]}

For
√
s ≥ 100 GeV , with x of the order 104 , the term in 1/x is less than 1% of the

first part. We can neglect this term for the energies of our interest. The expression

for the σρ product then becomes

σρ = (~c)24π3/2
[ ᾱI1 + λ̄I1

2
+ λ̄I2 log x

]
. (4.43)

Figures 4.21 show the σρ product and the parameter ρ . Experimental data are

included for comparison.

In the LHS of the DR, Eq. (4.41), the form of the real amplitude TR(s, 0) gives

σρ = 4
√
π (~c)2

[
ᾱR0 + λ̄R0 +

(
ᾱR1 + λ̄R1

)
log x

]
(4.44)
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Table 4.7: Comparison of parameters between DDR calculations applied to TI am-
plitudes and direct fitting results for all examined energies.

DDR KFK

-1.741716 -1.676787
0.404716 0.392804

Comparing this expression with with the DDR results obtained above, collecting

coefficients with the same x dependence in the expressions Eqs. (4.43,4.44) we have:

(
ᾱI1 + λ̄I1

)π
2
⇐⇒ ᾱR0 + λ̄R0 (4.45)

π λ̄I2 ⇐⇒ ᾱR1 + λ̄R1 (4.46)

In table 4.7 we present the numerical comparison between the DDR results and

the real part parameters obtained in fittings of dσ/dt.

Dispersion Relation for the slopes

We now use the explicit t dependence of the KFK amplitudes. Here we have

important difference with the t dependence used in chap 3, whose simple extension

of the PDG form is introduced. Taking the derivative of the real amplitude we

obtain

∂Re F (x, t)

∂t

∣∣
t=0

= 4
√
π

2

π
s x P

∫ +∞

1

|∂TNI (x′, t)/∂t|0
x′2 − x2

dx′ . (4.47)
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Substituting the expressions for the inputs, we have

∂Re F (x, t)

∂t

∣∣∣
t=0

= 4
√
π

2

π
s x

{[
ᾱI0β̄I0 +

3a0

4
λ̄I0

(
γ̄I0 +

7

6

)]
I(0, 0, x)

+
[
ᾱI0β̄I1 + ᾱI1β̄I0 +

3a0

4

(
λ̄I0γ̄I1 + λ̄I1(γ̄I0 +

7

6
)
)]
I(1, 0, x)

+
[
ᾱI1β̄I1 +

3a0

4

(
λ̄I0γ̄I2 + λ̄I1γ̄I1 + λ̄I2(γ̄I0 +

7

6
)
)]
I(2, 0, x)

+
3a0

4

[
λ̄I1γ̄I2 + λ̄I2γ̄I1

]
I(3, 0, x) +

3a0

4
λ̄I2γ̄I2 I(4, 0, x)

}
. (4.48)

The contributions from the Φ functions in exact solutions of the PV integrals are

very small for large x and the above expression becomes

∂Re F+

∂t

∣∣∣
t=0

= 4
√
π s

{[
ᾱI0β̄I1 + ᾱI1β̄I0 +

3 a0

4

(
λ̄I0γ̄I1 + λ̄I1(γ̄I0 +

7

6
)
)]π

2

+
[
ᾱI1β̄I1 +

3a0

4

(
λ̄I0γ̄I2 + λ̄I1γ̄I1 + λ̄I2(γ̄I0 +

7

6
)
)]
π log x (4.49)

+
3a0

4

[
λ̄I1γ̄I2 + λ̄I2γ̄I1

] π
2

(
3 log2 x+

π2

2

)
+

3a0

4
λ̄I2γ̄I2 2π log x

(
log2 x+

π2

2

)}
.

For the real slope we use the definition

BR =
2

Re F (s, 0)

∂Re F (s, t)

∂t

∣∣∣
t=0

. (4.50)

To obtain the physical quantities from the second DDR in units of mb GeV−2

we multiply the previous equation by 2(~c)2 and (1/s). We have

BR σ ρ = 2 (~c)2 1

s

∂Re F

∂t

∣∣∣
t=0

(4.51)

As the first DDR, the second DDR provide constraint equations between the real

and imaginary parameters. To obtain the relations, we write the derivative of the
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real amplitude at t = 0

∂Re F (x, t)

∂t

∣∣∣
t=0

= 4
√
π s

[
αR βR +

3a0

4
λR

(
γR +

7

6

)]
= 4
√
π s

{
ᾱR0β̄R0 +

3a0

4
λR0

(
γ̄R0 +

7

6

)
+
[
ᾱR0β̄R1 + ᾱR1β̄R0 +

3a0

4

(
λ̄R0γ̄R1 + λ̄R1(γ̄R0 +

7

6
)
)]

log x

+
[
ᾱR1β̄R1 + ᾱR0β̄R2 +

3a0

4

(
λ̄R0γ̄R2 + λ̄R1γ̄R1

)]
log2 x

+
[
ᾱR1β̄R2 +

3a0

4
λ̄R1γ̄R2

]
log3 x

}
, (4.52)

and we follow the same procedure of collecting terms of x dependence

The several terms give

1) constant term

[
ᾱI0β̄I1 + ᾱI1β̄I0 +

3a0

4

(
λ̄I0γ̄I1 + λ̄I1γ̄I0 +

7

6
λ̄I1

)]π
2

+
3a0

4

[
λ̄I1γ̄I2 + λ̄I2γ̄I1

] π3

4

m

ᾱR0β̄R0 +
3a0λ0

4

(
γ̄R0 +

7

6
)
)
, (4.53)

2) log x term

π
[
ᾱI1β̄I1 +

3a0

4

(
λ̄I0γ̄I2 + λ̄I1γ̄I1 + λ̄I2(γ̄I0 +

7

6
) + λ̄I2γ̄I2π

2
)]

(4.54)

m[
ᾱR0β̄R1 + ᾱR1β̄R0 +

3a0

4

(
λ̄R0γ̄R1 + λ̄R1(γ̄R0 +

7

6
)
)]

,

3) log2 x term

9π a0

8

[
λ̄I1γ̄I2 + λ̄I2γ̄I1

]
m[

ᾱR1β̄R1 + ᾱR0β̄R2 +
3a0

4

(
λ̄R0γ̄R2 + λ̄R1γ̄R1

)]
(4.55)
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Table 4.8: Comparison of parameters between DDR calculations applied to KFK
∂TI/∂t amplitude and direct fitting results for all examined energies.

DDR KFK

-18.897808 -15.715451
6.726881 4.286346
-0.262464 -0.292835
0.017041 0.016234

4) log3 x term

3a0

4
2πλ̄I2γ̄I2 ⇐⇒ ᾱR1β̄R2 +

3a0

4
λ̄R1γ̄R2 . (4.56)

For the second DDR we have 4 equations of constraints for the real and imaginary

parameters. In table 4.8 we compare numbers of the real amplitude from fittings

with the above DDR calculations. We observe that for high powers of log x the

constraint equations are more approximately obeyed.
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Figure 4.21: The figure on the left shows the product σρ obtained by exact form of
DDR applied to KFK amplitude. The experimental points at 0.546, 1.8 and 7 TeV
are show with the respective error bars. The figure on the right show the ratio ρ
compared with the experimental points at the same energy as the figure on the left.
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4.7 Connection with Pomeron framework

A characteristic aspect in our approach is that there is no explicit use of Pomeron-

type phenomenology. In Pomeron framework the total cross section is written [22]

as

σPom = A+B (s/s0)0.096. (4.57)

where
√
s0 is the unit of energy used in determining the coefficients.

On the other hand, the energy dependence of the total cross section obtained

from KFK amplitude has the form

σ = C0 + C1 ln

√
s

s0

+ C2 ln2

√
s

s0

, (4.58)

and for
√
s0 = 1 TeV, we have

C0 = 69.3286, C1 = 12.6800, C2 = 1.2273.

After a short algebra, we can rewrite Eq.(4.58) as

σ = C0 −
1

2

C1

C2

+
1

2

C2
1

C2

(
1 + x+

1

2
x2

)
(4.59)

where

x =
C2

C1

ln
s

s0

. (4.60)

As far as x� 1 (in our case,
√
s < 104 TeV), we can write in a limited energy range

σ ' C0 −
1

2

C2
1

C2

+
1

2

C2
1

C2

(
s

s0

)C2/C1

, (4.61)

where we have used ex ∼ 1 + x+ x2/2 for x� 1. Inserting the numbers, we get the
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Pomeron type expression for our total cross section as

σ(s) ' 3.8259 + 65.5026 (s/s0)0.09679, (4.62)

From this, we identify the correspondence of our amplitude with that of Pomeron

phenomenology as A = 3.8259 and B = 65.5026 in Eq.(4.57). The power exponent

0.096 obtained from KFK total cross section agrees with the Pomeron model (4.57)

remarkably well.

The above analysis shows that, numerically speaking, the two approaches are

perfectly compatible. However, there are few caveats. First of all, the Pomeron

amplitude in the power form violates the unitarity, in contrast to our amplitude (that

is not power like, but of log2 s form). Next, the numerical values of the coefficients

in Eq.(4.58) depends on the unit of the energy. If we change the value of s0, the

total cross section has the same energy dependence as the second order polynomial

in ln s/s0, with different values of C ′
i s. Thus. the condition x � 1 leads to the

different energy domain, and also the parameters in Eq.(4.62) change. In other

words, we always can obtain the Pomeron-like structure for the energy dependence

of the total cross section as an effective expansion around certain energy scale.

In Regge phenomenology, in addition to the energy dependence of the total

cross section, the Pomeron trajectory specifies also the t dependence, that is the

differential cross section. In our case, this is related to the parameters of the forward

scattering amplitudes. For sake of simplicity, we neglect the real part, writing

TI (s, t) ' TI (s, 0) eBeff(s)t/2, (4.63)

where

Beff (s) = 2
∂

∂t
lnTI (s, t)

∣∣∣∣
t=0

. (4.64)

Using the same technique to convert the polynomial in ln s/s0 into a power form,
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we can estimate the Pomeron trajectory, in an approximate way. We will not enter

in detain into this, but we find that the Pomeron feature in our amplitude as an

effective expression, obtained from an expansion of the amplitude around certain

energy scale. Unfortuntely, the domain where there appear evidences of deviation

of the power behavior with a fixed exponent from the quadratic polynomical in ln s

is not yet reachable in the present accelerators (104 TeV). Perhaps measurements

of pp from future cosmic rays experiments can go beyond the energy limit of va-

lidity of Pomeron-like models and shows aspects of what is the dynamics of strong

interactions due to the ’physical’ vacuum.



Chapter 5

Amplitudes in geometric space

In this chapter we describe the b-space amplitudes, discussing their energy depen-

dence. The eikonal representation of KFK amplitudes simplifies the interpretation

of the unitarity constraints. We also show that the ratios of integrated cross sections

(elastic, inelastic, total) are consequences of the large b behavior of the imaginary

amplitude in this space. The behavior depends on the asymptotic form of the SVM

which behaves like an Yukawa term. We show that the interpretation of the inter-

action range is naturally related with the imaginary slope.

5.1 Amplitudes in b-space

The Fourier transform of the momentum transfer ~q amplitudes to the b-space

defines the impact parameter (or simply b-space representation). Since the impact

parameter variable ~b is not observable, the treatments of data are made in (s, t)

space, except for integrated cross sections. However the b-space description gives

insight in geometric aspects of the collision, since in the classical limit the variable b

reduces to the physical impact parameter. Besides, it plays an important role in the

eikonal representation, where unitarity constraints become simpler. On the other

hand, the dispersion relation (causality) constraint is properly dealt in t-space. In

the following discussion, we do not consider effects of spin or polarization.

132
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As mentioned before the analytic representation of our nuclear amplitude (except

for the perturbative three-gluon exchange contribution for large |t| range) has a

simpler form in terms of impact parameter space through the Fourier transform,

T̃K(s, b) =
1

2π

∫
d2~q e−i~q.

~b TNK (s, t = −q2),

which is given in closed form as

T̃K(s,~b) =
αK
2βK

e−b
2/4βK + λKψ̃K(s, b) , (5.1)

with the characteristic shape function

ψ̃K(s, b) =
2eγK−

√
γ2
K+b2/a0

a0

√
γ2
K + b2/a0

[
1− eγK−

√
γ2
K+b2/a0

]
. (5.2)

Once again, the label K = R, I in Eqs.(5.1,5.2) indicates either the real or the

imaginary part of the complex amplitude.

The first term in Eq. (5.1) is like the usual Regge-like term [23]. The second term,

referred to as shape function represents contributions from the perturbed vacuum

structure around the protons. The shape function ψ̃ normalized as

1

2π

∫
d2~q ψ̃K (s, b) = 1 . (5.3)

Although b is not exactly the physical impact parameter, the b-space represen-

tation permits a geometrical interpretation of the behavior of the amplitude. For

large b, which corresponds to peripheral collisions, the amplitudes fall down with a

Yukawa-like tail,

∼ 1

b
e−b/b0 , (5.4)

that reflects the effects of virtual partons (the modified gluon field) at large distance

in the Stochastic Vacuum Model. Another feature of the b -space representation is
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that it can be directly related to the eikonal formalism, as shown in another section.

In Figs 5.1 we show the complete and separate contributions (Gaussian and

shape) to the real and imaginary amplitudes in b-space. It is remarkable the soft

and continuous behavior with the energy. As the energy increases the imaginary

amplitude at b = 0 approaches the unitarity boundary
√
π,reaching saturation. We

can observe that this displacement to the unitary boundary is due to the Gaussian

contributions. This fact constrain the parameters αI and βI with the relation
√
π =

αI/(2βI), which is needed to extrapolate our model to extremely high energies.

However, with increasing energy the shape contributions tend to diffuse in impact

parameter space. The saturation limit also requires additional constraints between

the shape function parameters γI and λI , but this bound appears in a more involved

way. The real part also presents a regular behavior with the energy, but no restriction

from unitarity is made.
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Figure 5.1: The figures on the left show the imaginary amplitude in b-space. The
first figure shows the complete imaginary function and the last two show the gaussian
and shape contributions respectively. The figures on the right show the real parts,
with the first figure being the total contribution and the last two the gaussian and
shape respectively.
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5.2 Profile functions

The integrated elastic cross section is obtained by integration of elastic differen-

tial cross section

σel =

∫
dt

dσel

dt
= (~c)2

∫
|T (s, t)|2 dt . (5.5)

The momentum transfer integration variable is written

c2d2~q → 2πc2qdq = πc2dq2 = πdt . (5.6)

Using the above equation and writing the Fourier transform of the complex ampli-

tude the elastic cross section is

σel = (~c)2 1

π

∫
c2d2~q

∣∣∣ 1

2π

∫
d2~b eic~q.

~b T̃ (s,~b)
∣∣∣2 (5.7)

= (~c)2 c
2

π

1

(2π)2

∫
d2~b d2~b′

∫
d2~q eic~q.(

~b−~b′)T̃ (s,~b)T̃ ∗(s,~b′)

=
(~c)2

π

∫
d2~b |T̃ (s,~b)|2

=

∫
d2~b

d2σ̃el

d~b2
,

where we have changed the order of integration between d2~q and d2~b and made use

of the identity
∫
d2~q eic~q.(

~b−~b′) = (2π/c)2δ2(~b− ~b′). It is then natural to identify the

integrands and write

d2σ̃el

d~b2
=

(~c)2

π
|T (s,~b)|2 . (5.8)

(~b is expressed in GeV−1). Using the same procedure to write the total cross section,

we write Fourier transform of the imaginary amplitude writing σtot as
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σtot = 4
√
π(~c)2 TI(s, t = 0) (5.9)

=
2√
π

(~c)2

∫
d2~b T̃I(s,~b)

=

∫
d2~b

dσ̃tot

d~b2
,

and the equality between the integrands gives

d2σ̃tot

d~b2
=

2(~c)2

√
π

T̃I(s,~b) . (5.10)

The inelastic cross section is obtained simply by the subtraction

σinel = σtot − σelas (5.11)

= (~c)2

∫
d2~b

(
2√
π
T̃I(s,~b)−

1

π
|T̃ (s,~b)|2

)

=

∫
d2~b

d2σ̃inel

d~b2
,

with

1

(~c)2

d2σ̃inel

d~b2
=

(
2√
π
T̃I(s,~b)−

1

π
|T̃ (s,~b)|2

)
. (5.12)

The above equation commonly defines the inelastic profile function

G(s,~b) =
2√
π
T̃I(s,~b)−

1

π
|T̃ (s,~b)|2 . (5.13)

There is no fundamental basis to define d2σ̃/d~b2 functions as genuine differential

cross sections in b-space, but, since they behave monotonically and continuously in

b, it is natural to relate these profile functions with the geometric dependence of the

interaction. In Fig. 5.2 we show the profile functions for a few energies in the LHC

domain and up to 57 TeV.
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Figure 5.2: In these figures we show the energy evolution of the profile functions,
from LHC energy range up to cosmic ray energies. Notice that, as the energy
increases, the profile functions tends to saturate. This saturation limit is imposed
by unitarity.



139

5.3 Eikonals

The eikonal treatment is useful for processes involving small scattering angles and

very large incoming momentum. This approach is useful because it simplifies the

analysis of unitarity as we will see shortly. Another aspect is that many microscopic

dynamical models for hadronic scattering are built using this framework. In this

sense we can extract the eikonal function from our amplitude in b-space.

We introduce the eikonal function χ (s, b) through

i
√
π (1− eiχ(s,~b)) ≡ T̃ (s,~b) = T̃R(s,~b) + iT̃I(s,~b), (5.14)

where
√
π is our normalization and the complex function χ is

χ(s,~b) = χR(s,~b) + iχI(s,~b) . (5.15)

Separating real and imaginary parts, we have

1− cosχR e
−χI =

1√
π
T̃I(s,~b), (5.16)

sinχR e
−χI =

1√
π
T̃R(s,~b). (5.17)

From Eq. (5.17) we have immediately the inequality

e−2χI ≥ 1

π
T̃ 2
R(s,~b), (5.18)

and thus the general unitarity constraint is written as

T̃ 2
R

π
≤ e−2χI(s,~b) ≤ 1 , (5.19)

or

0 ≤ χI ≤ −
1

2
log(T̃ 2

R/π) .
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Models with only imaginary amplitude have no superior limit for the imaginary

eikonal. In our case, as can be seen in Fig.5.3, our solutions for all energies, obey

the bound condition imposed by the real part. Satisfying a monotonic behavior of

the scattering amplitudes, our solutions are restricted to the branch where χR ≥ 0,

and thus, in turn, we have

0 ≤ T̃I(s,~b) ≤
√
π , ∀ s, b . (5.20)

Under these conditions, our analysis shows that for a fixed
√
s, the function T̃I(s,~b) is

monotonically decreasing in b. As mentioned before, the maximum of the imaginary

amplitude, T̃I(s,~b = 0) tends to its limiting value
√
π for asymptotic large energies

[21]. In Table 5.1 we present characteristic values of amplitudes and eikonals at

b = 0 for different energies.

In terms of the eikonal function, we write

d2σ̃el

d~b2
(s,~b) = 1− 2 cosχRe

−χI + e−2χI , (5.21)

d2σ̃tot

d~b2
(s,~b) = 2

(
1− cosχRe

−χI
)

(5.22)

d2σ̃inel

d~b2
(s,~b) = 1− e−2χI . (5.23)

The functions above are useful because of its soft evolution with the energy and the

simplicity of the analytical forms. They do not present complicated structures of

dips or bumps as the amplitudes in t-space do, as can be seen in Fig. 5.2. We will

see in the next section that the way these functions go to zero for large b is directly

associated with the asymptotic behavior of the integrated cross sections.
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Table 5.1: Characteristic values of b-space amplitudes and eikonal functions. These
quantities are related to the saturation of unitarity bounds. Thus T̃I(b = 0) ap-
proaches the bound

√
π = 1.77 as

√
s increases.

√
s (TeV) T̃I(b = 0) T̃R(b = 0) χI(b = 0) χR(b = 0)

1.8 1.5992 0.0947 2.1945 0.5004
2.76 1.6281 0.0969 2.3219 0.5910

7 1.6849 0.0993 2.5939 0.8482
8 1.6923 0.0995 2.6299 0.8927
13 1.7176 0.0997 2.7460 1.0678
14 1.7212 0.0997 2.7611 1.0958
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5.4 Geometric scaling and ratio of cross sections

In Fig. 5.4-a, we plot d2σinel/d~b
2 defined in Eq. (5.23) as function of b for

√
s =

2.76 and 14 TeV. The behavior at very high energies (
√
s = 104, 105 and 106 TeV)

is also shown. We clearly see the increase of effective radius of the interaction range

with increasing energy. One can observe that for extremely high energies the profile

functions keep form unchanged. This is the scaling behavior advocated by J. Dias

de Deus [97] long time ago. In Fig. 5.4-b, we plot the same quantities with respect

to the combined variable

x ≡ b√
σ (s) /2π

, (5.24)

which we call scale variable. This figure shows clearly that there exist a universal

function ξ (x) such that

d2σinel

d~b2
(s, b)→ ξ (x) (5.25)

for
√
s � 104 TeV. An important point is that ξ (x) is far from the Heaviside step

function, rather possessing a diffused skin. In this asymptotic limit, we can safely

set cosχR → 1 so that the ’partial’ total cross section is [21]

d2σ

d~b2
(s, b)→ 2

(
1−

√
1− ξ(x)

)
. (5.26)

Note that 0 ≤ ξ ≤ 1 means (1− ξ) ≤
√

1− ξ, so that ξ (x) ≥ 1−
√

1− ξ (x) for all

x where the equality sign holds if and only if ξ = 0 or ξ = 1. Therefore, whenever

the function ξ is different from a sharp-cut Heaviside theta function θ (1− x) , we

have ∫∞
0
x ξ(x) dx

2
∫∞

0
x
(

1−
√

1− ξ(x)
)
dx

>
1

2
. (5.27)

For our amplitudes, as shown in Fig. 5.4, ξ clearly does not converge to a sharp-

cut θ function, preserving an appreciable diffused surface for asymptotic energies.
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Therefore, we have

σinel(s)

σ (s)
>

1

2
, (5.28)

or

σel (s)

σ (s)
<

1

2
. (5.29)

This means that our amplitudes do not show the black disk behavior at very large

energies, deviating from the result for a black disk σel(s)/σ (s) → 1/2. From the

above discussion, we can also easily see that the more extended the diffused surface

ξ (x) is, the smaller the ratio σel (s) /σ (s) becomes. In fact, in our case this ratio is

close to 1/3 (see also [25]). Note that this is somewhat different scenario compared

to [97], where ξ (x) does not have surface diffuseness.

Analytical scaled form of KFK amplitude at high energies

Above, we made use of KFK scaled form to analyse the ratio of integrated cross

sections for asymptotic energies. In order to work with an analytical scaled form at

high energies we need to make a few approximations. It is know that the integrated

quantities are dominated by the forward part of the scattering amplitudes. From

Eq.(2.65) we can approximate the imaginary part as

ΨI(γI(s), t) = 2 eγI(s)

[
e−γI(s)

√
1+a0|t|√

1 + a0|t|
− eγI(s) e

−γI(s)
√

4+a0|t|√
4 + a0|t|

]
' 2 eγI(s)

[
e−γI(s)(1+

a0
2
|t|)

(1 + a0

2
|t|)

− eγI(s) e
−γI(s) 2 (1+

a0
8
|t|)

2(1 + a0

8
|t|)

]
, (5.30)

where we expand the square root terms for small a0|t|. In the denominators in

Eq.(5.30) we approximate respectively (1+a0|t|/2) ' exp(a0|t|/2) and (1+a0|t|/8) '

exp(a0|t|/8) and we re-write the shape function as

ΨI(γI(s), t) ' 2 e−[γI(s)+1]
a0
2
|t| − e−[2γI(s)+1]

a0
8
|t| . (5.31)
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Besides the shape function, the imaginary amplitude given by Eq.(2.64) has a Gaus-

sian term and we write the approximated forward form of Eq.(5.1) in b-space as

T̃I(s,~b) '
αI
2βI

e−b
2/4βI +

2λI
a0

[e−b2/[2(γI+1)a0]

γI + 1
− 2

e−2b2/[(2γI+1)a0]

2γI + 1

]
. (5.32)

In order to treat very high energies we use only the highest powers in log s of the

parameters αI(s), βI(s), λI(s) and γI(s) given by Eqs.(4.15), (4.16), (4.21) and

(4.19), and write

T̃I(s,~b) ≈
αI1
2βI1

e−b
2/(4βI1 log(

√
s))

+
2

a0

λI2
γI2

[
e−b

2/[2γI2 log2(
√
s)a0] − e−b2/[γI2 log2(

√
s)a0]
]
, (5.33)

with
√
s in TeV. Defining the scaling variable

y ≡ b√
2γI2a0 log

√
s
, (5.34)

(which is proportional to the variable x at high energies) we re-write Eq.(5.33)

T̃I(s, y) ≈ αI1
2βI1

e
−a0γI2

2βI1
log
√
s y2

+
2

a0

λI2
γI2

[
e−y

2 − e−2y2
]
. (5.35)

We still have an energy dependent term in Eq.(5.35), but the shape contribution part

coming from SVM is completely scaled. For very high energies, say s > s̄0 (where s̄0

is a very high energy value to be chosen), the first part of Eq.(5.35) becomes stable.

In this sense we write the above equation

T̃I(y) ≈ αI1
2βI1

e
−a0γI2

2βI1
log
√
s0 y2

+
2

a0

λI2
γI2

[
e−y

2 − e−2y2
]
, (5.36)

as a completely scaled function. In Fig. 5.5 we show d2σinel/d~b
2(s, y) function given

by Eq. (5.23) obtained by the replacement of Eq.(5.35) in Eqs.(5.16) and (5.17). It

is clear that for very high energies Eq.(5.36) becomes exact.
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Figure 5.4: a) Plots of d2σinel/d~b
2 as function of b for

√
s = 2.76, 14 TeV and

for three very high energies; b) the same functions plotted with scaled variable
x = b/

√
σ (s) /2π, showing the convergence to a unique function, ξ (x) which has a

finite surface diffuseness.
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Figure 5.5: Plots of d2σinel/d~b
2(s, y) analytical form as function of the scaled variable

y. It is remarkable that as the energy increases the function approaches the universal
scaling form, and for extremely high energies we can safely write d2σinel/d~b

2(y) as
an analytical function of a single variable defined as y ≡ b/(

√
2γI2a0 log

√
s).
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5.4.1 Integrated quantities, ratios and asymptotic limits

In the forward regime, we write the differential cross section in terms of real and

imaginary contributions separately as

dσRel

d|t|
' σ2ρ2

16π
e−BR|t| ,

dσIel

d|t|
' σ2

16π
e−BI |t| . (5.37)

Although these formulas are valid only in limited range in t, they account for most

of the integrated contributions when we integrate them from 0 to infinity. Dividing

the results by the total cross section, we obtain:

σRel

σ
' σρ2

16πBR

,
σIel

σ
' σ

16πBI

. (5.38)

The integrated elastic cross section due to the imaginary amplitude can be repre-

sented by

σIel(s) =

∫ ∞
0

dt TI(s, t)
2 dt = 15.3366 + 4.15903 log

√
s+ 0.43405 log2

√
s , (5.39)

with
√
s in TeV and σIel(s) in mb. The accuracy of this representation is very good,

particularly for energies equal and above 7 TeV . The ratio with the total cross

section has a finite asymptotic limit at high energies

σIel/σ → 0.354 . (5.40)

This result is very important for a geometrical description of pp scattering, as it

means that pp collision does not follows a black disk form at high energies (see

below).

For the contribution of the real part to the elastic cross section the quantity that

is related to the exponential behavior in the forward direction, and that presents a

finite asymptotic ratio with σ, requires an extra factor 1/ρ2. We have the represen-



148

tation

1

ρ2
σRel(s) =

1

ρ2

∫ ∞
0

dt TR(s, t)2 dt = 10.2037 + 2.47691 log
√
s+ 0.23108 log2

√
s .

(5.41)

The asymptotic ratio is now

(1/ρ2)(σRel/σ)→ 0.188 . (5.42)

These ratios participate in the geometric interpretation in b-space representations.

The ratio of the imaginary part σ/(16πBI) is studied to investigate the occur-

rence of black disk behavior (assuming zero real part), where the ratios σIel/σ and

σ/(16πBI) are both equal to 1/2. As shown in Fig. 5.6 our solutions lead to values

about 1/3 for the imaginary part case, which is a more realistic expectation [25]

than the black disk hypothesis.



149

Figure 5.6: Ratio between integrated (imaginary part) elastic cross section and
total cross section and ratio between total cross section and imaginary slope as
function of energy. On the RHS, the same for the real sector. The asymptotic
limits are approached very slowly : observe the extended energy scale. For each
part (Imaginary or Real) the two kinds of ratio would be the equal if the amplitudes
were of purely exponential form. We may observe that the ratio of ratios in each
sector (I or R) ir about the same, namely 0.359/0.354 ≈ 0.190/0.188 ≈ 1.01.
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5.5 Interaction range and slope BI(s, t)

In impact parameter representation th imaginary slope plays an important role

in the interpretation of the interaction range. The imaginary slope is defined as

BI(s) = −

[
2

TI(s, t)

d

dt
TI(s, t)

]
t=0

. (5.43)

The corresponding amplitude is written as Fourier transform in b space

TI(s, t) =

∫
b db J0(

√
tb) T̃I(s,~b) . (5.44)

Taking the first derivative with respect to the momentum transfered we obtain

d

dt
TI(s, t) =

∫
b db

d

dt
J0(
√
tb) T̃I(s,~b) (5.45)

=

∫
bdb
−b
2
√
t
J1(
√
tb) T̃I(s,~b) .

The Eq. (5.43) needs to be calculated at t = 0, so we approximate J1(
√
tb) to first

order in t

d

dt
TI(s, t) =

∫
b db

−b
2
√
t

(
b
√
t

2

)
T̃I(s,~b) (5.46)

= −1

4

∫
db2 b2 T̃I(s,~b) .

Inserting the Eq. (5.46) into Eq. (5.43) we have

BI(s) =
1

2

1

TI(s, t = 0)

∫
db2 b2 T̃I(s,~b) . (5.47)

On the other side by Eq. (5.10) we can identify T̃I(s,~b) as a kind of distribution of

total cross section in b-space. So, Eq. (5.47) can be interpreted as a average of b2

with weight function 1
(~c)2

dσtot
d2~b

.
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Using Eq. (5.9) we can write Eq.(5.47) as

BI(s) =
1

2

(∫
db2 b2 dσtot

d2~b

)/(∫
db2 dσtot

d2~b

)
=

1

2
〈b2〉. (5.48)

In other words, we can identify the imaginary slope as a measurement of the average

impact parameter squared, which is related with the interaction range. The total

cross section grows with log2√s and by geometric arguments σtot(
√
s) should be

proportional to 〈b2〉 what means that 〈b2〉 should also be proportional to log2√s at

high energies. So, it is natural to expect for large energies the behavior BI(s) ∼

log2√s. This behavior will be important for cosmic ray energies where one can

estimate the pp total cross section by extracting the information from p-air collisions

using the Glauber formalism. This formalism uses as an input the total cross section

and the slopes. In general this slope is assumed to behave as BI(s) ∼ log
√
s which

clearly will provide a wrong estimation for the pp total cross section.
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Proton-air scattering

Proton-nucleus collisions occurs when extremely energetic particles coming from

somewhere in the universe enter in the atmosphere. It is well known that the at-

mosphere is composed of 70% nitrogen and 20% oxygen approximately. We focus

this chapter in the collisions between protons and these abundant elements. The

collision between protons and nuclei at high energies gives rise to an Extensive Air

Shower (EAS) of hadrons and leptons that reach the ground, being observed by

the detectors of the experiments [27–34] . From these measurements the forward

inelastic p-air cross sections are estimated.

Previously we have established a full F (s, t) elastic scattering amplitude of pp

that allows safe interpolations and extrapolations required in the present era of

expansion of the energy frontier. After successful reproduction of the data in the

energy frontier of accelerator physics at the
√
s = 7 TeV and 8 TeV energies of

LHC, we direct our efforts to the examination of the cosmic ray data extracted from

studies of EAS, where there is access to pp center of mass energies of up to 100 TeV.

We feel that we start to approach the asymptotic regime where we hope to find

the simplified dynamical description of elastic and diffractive processes in which the

proton enters as a global object, determining the main features of the observables

through its size and the modification of the QCD vacuum around it. In this high

152
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energy regime we may find the ideal conditions for the application of our amplitudes.

We want to compare the p-air production cross section, calculated by Glauber

model, with our representation of pp scattering as input, to the experimental values

obtained from the available cosmic ray data. We are mainly concerned with the

energies beyond the LHC experiments but also present results for EAS experiments

in the region below 1 TeV.

We also study the behavior expected for the p-air interaction at ultra-high ener-

gies, both as continuous extrapolation based on the region of the present data and

as consequence of the known properties of the pp amplitudes in b-space.

As mentioned above, our proton-proton scattering amplitudes have been carefully

determined, permitting identification of the properties of the real part which is often

neglected in calculations at high energies. We here stress again the importance of

the difference between the slopes BI and BR of the imaginary and real parts. In the

present work this detail enters in the application of Glauber formalism to evaluate

the connection between p-air and pp cross sections.

Our analysis of energy dependence of amplitudes and observables in pp collisions

shows that the total cross section has a neat log2 s form [21], as already indicated

in several analyses [49]. As an important feature of our results, we obtain for the

slopes, both for BI and BR, also a log2 s dependence. This is new and important

finding. Generally accepted idea is that the slope of the differential cross sections

varies like simple linear log s, as in Regge phenomenology. Our new result has a

crucial effect for the use of Glauber formalism in the analysis of p-air extended

showers at the high energies of our concern, since the value of the slope BI , together

with the value of the total cross section, are the basic and strongly influent inputs

of the calculation.

For the application of Glauber approach, we basically require information on the

amplitudes in forward scattering. In our model these features are easily obtained

taking small t limit [20, 21] in our full-|t| treatment. In these conditions the am-
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plitudes take simpler exponential forms, and the relevant parameters are confined

only to the total cross section σ, the ratio ρ between real and imaginary parts at

t = 0, and the slopes BI and BR of each of the two parts. We provide the energy

dependence of these quantities with simple analytical forms that are appropriate

for the whole energy range from 50 GeV to 100 TeV. With these forms at hand,

we investigate the behavior of quantities that are meaningful for the investigation of

important features of the interaction in the forward region, and can make predictions

for asymptotic energies.

6.1 Glauber formalism

Glauber method [98] provides the basic principles for the calculation of strong

interactions with composite systems. It assumes the collision hadron-nucleus as

an incoherent sum of individual hadron-hadron scattering. The method first intro-

duced in the treatment of scattering by deuterons was extended to more general

nuclei, where the complexity of rescattering processes lead to considerations about

the importance of intermediate diffracted states [99] not given as known external

inputs. The application of the method to the analysis of proton-air collisions in the

EAS [100] gives the basic connection between the cosmic ray data and the hadronic

scattering properties. As the basis of Glauber formalism is well know in its standard

form, we present here the essential points giving the connection between pp and

p-air processes, emphasizing the new features that arise from our treatment of pp

amplitudes.

The information on the parameters given in the previous section for the pp

interaction enters in the calculation of production cross section σprod
p−air that is obtained

from the analysis of EAS.

Our forward amplitudes T (s, t) show different t behavior in the imaginary and

real parts, with different slopes BI and BR. By Fourier transform the amplitudes in
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b space are

T̂pp(s,~b) = T̂R(s,~b) + iT̂I(s,~b) =
σtot

pp

4π(~c)2

[
ρ

BR

e
− b2

2BR + i
1

BI

e
− b2

2BI

]
. (6.1)

In terms of the eikonal function χ(s,~b) this is written

−i T̂pp(s,~b) = 1− eiχpp(s,~b) ≡ Γpp(s,~b) . (6.2)

The term eiχpp(s,~b) represents the S-matrix function in b-space. The optical theorem

for pp scattering appears as

σtot
pp (s) = 2 (~c)2 Re

∫
d2~b Γpp(s,~b) . (6.3)

Analogously, for elastic scattering in the p-air system, we define a quantity Γp−air(s,~b)

that satisfies the optical theorem for the p-air total cross section

σtot
p−air(s) = 2 (~c)2 Re

∫
d2~b Γp−air(s,~b) . (6.4)

Glauber theory introduces a structure to express Γp−air(s,~b) in terms of pp scattering

amplitudes and reaction matrix elements.

To describe the phenomena in the EAS in Cosmic Ray (CR) observations we

need to evaluate the quantity

σprod
p−air = σtot

p−air − (σel
p−air + σq−el

p−air) (6.5)

that is determined experimentally.

For elastic and quasi-elastic processes characterized by momentum transfer |t|, a

transition matrix element between states i and f , defined with nucleon coordinates
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(~r1, ..., ~rA) is written

T fip−air(s, q
2) =

1

2π

∫
d2~b eic~q.

~b

∫
ψ∗f (~r1, ..., ~rA)× (6.6)

Γp−air(s,~b, ~s1, ..., ~sA) ψi(~r1, ..., ~rA)
A∏
j=1

d3~rj ,

with ~b the p-A impact parameter, ~ri the position of the nucleon inside the nucleus,

~si the projection of ~ri in the perpendicular collision plane.

Assuming that the i and f states are similar bound nuclei with nucleon densities

ρj(~rj) , and that there is no correlation between the nucleons in the collision process,

we write

ψ∗i (~r1, ..., ~rA)ψi(~r1, ..., ~rA) =
A∏
j=1

ρj(~rj) , (6.7)

where ρj(~rj) is the density of the nucleon i in the nucleus.

For atoms with atomic numbers A less than or equal 18 typically present in the

atmosphere the nuclear densities can be described by harmonic potentials with s

and p orbitals ρs(~b) and ρp(~b) that are introduced explicitly [101] as

ρs(~r) =
1

π3/2b3
0

e−r
2/b20 (6.8)

ρp(~r) =
2r2

3π3/2b5
0

e−r
2/b20 ,

normalized to unity ∫
d3~r ρs,p(~r) = 1 . (6.9)

The b0 quantity is related with the averaged radius of the Nucleus target. In this

work, for nitrogen and oxigen atoms the parameters are b0 = 1.7069 fm and b0 =

1.8133 fm respectively.

Glauber method introduces for p-A scattering the expression based on product
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of S-matrix factors of A independent elementary scattering processes

Γp−air(s,~b, ~s1, ..., ~sA) = 1−
A∏
j=1

[
1− Γpp(s, |~b− ~sj|)

]
. (6.10)

This is the assumption of a factorization property for the p-A system..

Then the expression for the transition matrix element becomes

T fip−air(s, q
2) =

1

2π

∫
d2~b eic~q.

~b

∫
ψ∗f (~r1, ..., ~rA)× (6.11)[

1−
A∏
j=1

[
1− Γpp(s, |~b− ~sj|)

]]
ψi(~r1, ..., ~rA)

A∏
j=1

d3~rj

The quantity that enters Eq. (6.4) for the evaluation of the total p-air cross

section is

Γp−air(s,~b) = 1−
A∏
j=1

∫
d3~rj ρj(~rj)

[
1− Γpp(s, |~b− ~sj|)

]
. (6.12)

The sum of elastic and quasi-elastic processes is given by

σel
p−air + σq−el

p−air = (~c)2

∫ ∑
f

|T fip−air(s, q
2)|2 d2~q (6.13)

= (~c)2

∫
d2~b

∫ ∣∣∣1− A∏
j=1

(1− Γpp(s, |~b− ~sj|))
∣∣∣2 A∏
k=1

ρk(~rk) d
3 ~rk .

The last line of Eq. (6.13) makes use of the orthogonality condition

∫
ψ∗f (~r1, ..., ~rA)ψi(~r1, ..., ~rA)

A∏
j=1

d3~rj = 0 , (6.14)

and the completeness relation

A∑
f

ψ∗f (~r1, ..., ~rA)ψf (~r1, ..., ~rA)
A∏
j=1

d3~rj = 1 . (6.15)
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Taking the product of Eq.(6.13) over the nuclear densities, with 4 nucleons in s shell

and A-4 in p shell, we have

σel
p−air + σq−el

p−air = (~c)2

∫
d2~b × (6.16){

1− 2Re

[[ ∫
d3~r(1− Γpp(~b− ~s))ρs(r)

]4 [ ∫
d3~r(1− Γpp(~b− ~s))ρp(r)

]A−4
]

+
[ ∫

d3~r(1− 2Re Γpp(~b− ~s) + |Γpp(~b− ~s)|2)ρs(~r)
]4

×[ ∫
d3~r(1− 2Re Γpp(~b− ~s) + |Γpp(~b− ~s)|2)ρp(~r)

]A−4
}
.

We thus follow Glauber formalism [98] in general lines, extended with the inclu-

sion of the real part of pp amplitude, where the slopes BR and BI are independent.

We consider also the effect of the contributions of intermediate diffractive states

according to Good-Walker [99], taking to account only the single diffractive channel

as the simplest source of inelastic screening as in [27]. The assumption is made

that the single diffractive amplitude squared, normalized by the single diffractive

integrated cross section is equal the elastic scattering amplitude squared, divided by

the integrated elastic cross section,

1

σSD
pX(s,M2)

|ΓpX(s,~b)|2 =
1

σelas
pp (s)

|Γpp(s,~b)|2 , (6.17)

with ΓpX(s,~b) the single diffractive scattering amplitude, σSD
pX(s,M2) the single

difractive cross section and M2 is the upper mass limit of the single particle dissoci-

ated from the proton. The ratio between single diffractive and elastic cross sections

defines the parameter λ2 ≡ σSD
pX(s,M2)/σelas

pp (s) which will be usefull to characterize

the diffractive states contribution. In spite that the elastic profile function is differ-

ent from diffractive profile function especially for high energies, the assumption that

they are equal is justified when we consider only the low mass diffractive states. To
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incorporate the diffractive states one can consider the nucleon states

|p〉 =

(
1

0

)
, |p∗〉 =

(
0

1

)
, (6.18)

corresponding to proton state and proton excited intermediate state respectively.

The elastic scattering amplitude is promoted to a matrix of the form

Γ̂pp(s,~b) =

1 λ

λ 1

Γpp(s,~b) . (6.19)

To apply this expression in the p-air amplitude we diagonalize it and replace the

result in Eq.(6.10) and we obtain

Γp−air(s,~b, ~s1, ..., ~sA) = (6.20)

1− 1

2

A∏
j=1

[
1− (1 + λ)Γpp(~b− ~sj)

]
− 1

2

A∏
j=1

[
1− (1− λ)Γpp(~b− ~sj)

]
,

and consequently modify Eqs.(6.4) and (6.16).

The parameter λ is tested with values 0 and 0.5 [27]. The effects of both are

not very large, and are compared in Table 6.1 where values obtained at 57 TeV are

presented.

Fig. 6.1 shows the influences of the difference of values BR 6= BI and of the

quantity λ that represents the presence of diffractive intermediate states. As we see,

the effects do not appear as large in the plots, increase with the energy, and may

become more important as experimental errors and oscillations decrease.

Table 6.1 shows comparative numbers for several cases at the energy 57 TeV,

where we see that the effects on values of the p-air cross section are under 1 percent.

In the BR case the weak influence is due to the small ρ value.

Stressing that we provide reliable information on cross sections and amplitude

slopes for the pp scattering input, and a proper, although simple, treatment of
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Table 6.1: Influences of the quantities λ and BR in Glauber calculations of σp−air

at
√
s = 57 TeV. The input parameters are σ = 140.66 mb, BI = 25.33 GeV−2 ,

BR = 39.80 GeV−2 and ρ = 0.132 . Some data points are included to provide a
scale for the importance of the effects in comparison to experimental errors. The
effects increase with the energy, and may become important as experimental errors
decrease.

λ BI BR σprod
p−air

0.5 25.329 39.796 539.225
0.5 25.329 25.329 536.617
0.0 25.329 39.796 537.547
0.0 25.329 25.329 537.333

Glauber strategy, we believe that our calculations of σprod
p−air are worth as a study

of the EAS data. Actually, we show in the next section that there is very good

coherence between our calculations and the data.
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Figure 6.1: Effects of the values of the parameter λ of the Good-Walker concerns
with intermediate states and of the difference of values between imaginary and real
slopes in Glauber calculation. The solid line represents the standard, supposed to
be the best calculation, with λ = 0.5 . The dashed and dotted lines, very close
to each other, represent modified calculations putting λ = 0, in dotted line, and
putting BR = BI , in dashed line. Some data points are shown together to help the
information on the magnitude of the effects.
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6.2 Comparison with data

Fig. 6.2 shows our calculation of σprod
p−air with a solid line, together with the

data points from experiments with Extensive Air Showers [27–34] . We stress that

the calculation is straightforward and unique, without free parameters, made with

inputs given by Eqs. (4.24-4.27), that are determined by the elastic differential

cross sections at the energies from 20 GeV to 7 TeV. The theoretical curve follows

Eq.(6.21) that gives a simple and convenient representation for the calculations and

a good reproduction of the data at all energies

σprod
p−air = 383.474 + 33.158 log

√
s+ 1.3363 log2

√
s , (6.21)

with
√
s in GeV.

We observe that the data and our calculations of σprod
p−air increase with the energy

with log2√s dependence as the pp cross sections , but more slowly than the pp total

cross section. Looking for the comparison of the two rates and for more evidence of

regularity in the behavior of the data, we show in Fig. 6.2 the ratio σprod
p−air/σ for a set

of selected data (chosen by regularity reasons) together with the energy dependence

of our calculations. We observe a regular decrease in the ratio, with a tendency

to a finite and distant asymptotic limit, 1.3363/1.2273 = 1.089 (see Eqs.(6.21) and

(4.24)). The importance of the existence of a finite asymptotic limit for this ratio

and its numerical value are discussed in a geometric approach in the next section.

We hope that this observation of regularity and interesting energy dependence

will estimulates more measurements to identify properties of the hadronic interac-

tions in cosmic ray experiments.
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6.3 Geometric view and asymptotic approach

One of the interesting questions of pA collision cross section is its energy de-

pendence compared to that of pp collision. In this section we use our knowledge of

pp amplitudes in b−space [21] to estimate this relation. The elastic pp scattering

amplitude is

−i T̂pN(s,~b) = 1− eiχ(s,~b) , (6.22)

where χ is the eikonal function, and the last term is essentially the S−matrix in b

space. For high energies, b represents essentially the angular momentum, so that

χ is (a twice of) the phase shift. In the presence of inelastic channels, χ becomes

complex, χ = χR + iχI , and we can define the impact parameter representation of

partial cross sections in terms of these functions as

d2σel
pp

d2~b
= 1− 2 cosχRe

−χI + e−2χI , (6.23)

d2σinel
pp

d2~b
= 1− e−2χI , (6.24)

d2σtot
pp

d2~b
= 2

(
1− cosχRe

−χI
)
. (6.25)

At high energies, for the calculation of total and integrated cross sections, we can

safely take χR → 0, so that

σel
pp(s)→

∫
d2~b

(
1− e−χI

)2
, (6.26)

σinel
pp (s)→

∫
d2~b

(
1− e−2χI

)
, (6.27)

σtot
pp (s)→ 2

∫
d2~b

(
1− e−χI

)
. (6.28)

The Glauber approximation writes the pA S-matrix as a simple product of inde-
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pendent scattering centers inside the nucleus,

eiχpA '

〈
A∏
j=1

eiχpNj

〉
(6.29)

where 〈〉 denotes the average over all nucleon states inside the nucleus and the

product
∏

i is taken over the nucleons Nj. Thus, the pA scattering amplitude is

−iT̂pA(~b) = 1− eiχpA ' 1−

〈
A∏
j=1

eiχpNj

〉
= 1−

〈
A∏
j=1

(
1 + iT̂pN(~b)

)〉
, (6.30)

that leads to equations of last section. Glauber approach gives essentially

1

2

d2σtot
pA

d2~b
(s,~b) =

〈
1−

A∏
i=1

(
1− 1

2

d2σtot
pp

d2~bi
(s,~b−~bi)

)〉
, (6.31)

and

d2σel
pA

d2~b
(s,~b) =

〈[
1−

A∏
i=1

(1−
d2σtot

pp

d2~bi
(s,~b−~bi))

]2
〉
. (6.32)

At extremely high energies, where σtot
pp becomes much larger than the target nucleus,

geometrical cross section σgeo
A ≡ πR2

A , where RA is the nuclear radius, for example

with σtot
pp ≥ 5 σgeo

A , we may neglect the variation in position of each nucleon, so that

1

2

d2σtot
pA

d2~b
(s,~b) ' 1−

(
1− 1

2

d2σtot
pp

d2~b

(
s,~b
))A

, (6.33)

and
d2σel

pA

d2~b

(
s,~b
)
'

[
1−

(
1−

d2σtot
pp

d2~b

(
s,~b
))A]2

. (6.34)

Such situation occurs in our case, for example, at
√
s ∼ 1012 TeV, that corresponds

the highest energy observed in cosmic ray experiments. In our study of the pp

amplitudes in b-space space, we have found for very large energies an approximate
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geometric scaling law

1

2

dσtot
pp

d2~b
(s,~b) → ζ (x) , (6.35)

where

x ≡ b

beff (
√
s)
, (6.36)

valid for all b at large s, so that

σtot
pp (s)→ 4πb2

eff

(√
s
) ∫ ∞

0

x ζ (x) dx . (6.37)

If we introduce another function

ξ(x) = 1− [1− ζ(x)]2 , (6.38)

we obtain

σinel
pp (s) → 2πb2

eff

(√
s
) ∫ ∞

0

x ξ (x) dx , (6.39)

where we have used Eqs. (6.27, 6.28). From Eqs.(6.37, 6.39), we obtain

σinel
pp (s)

σtot
pp (s)

→
∫∞

0
x ξ(x) dx

2
∫∞

0
x ζ (x) dx

= const. (6.40)

Usually, ζ and ξ are functions having a common property,

ζ(x) , ξ(x)→

 1,

0,

x → 0

x→∞
, (6.41)

When we have the case of a tail as in a black disk

ζ (x) = θ (1− x) , (6.42)
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then ξ(x) becomes identical with ζ(x) , and we have the ratio

lim
s→∞

σinel
pp (s)

σtot
pp (s)

=
1

2
, (6.43)

that is a well known result for the black disk.

Generally, ζ(x) is not a sharp-cut theta function as in Eq. (6.42) but stays unity

up to a certain value of x (that is x=1, b = beff (
√
s) ), then monotonically decreases

to zero with a tail form. We can then choose to write

ζ (x) =

 1,

Φ (x) ,

x ≤ 1

x > 1
, (6.44)

where Φ (x) is a positive and monotonically decreasing function with Φ (1) = 1.

Let us now turn to the pA case. From Eqs. (6.33, 6.34), we have

1

2
σtot
pA(s) = 2πb2

eff

(√
s
) ∫ ∞

0

x dx
[
1− (1− ζ (x))A

]
, (6.45)

and

σel
pA(s) = 2πb2

eff

(√
s
) ∫ ∞

0

x dx
[
1− (1− ζ (x))A

]2

, (6.46)

so that, taking the difference σtot
pA − σel

pA ,

σinel
pA (s) = 2πb2

eff

(√
s
) ∫ ∞

0

x dx
[
1− (1− ζ (x))2A

]
(6.47)

= 2πb2
eff

(√
s
)(

1 +

∫ ∞
1

x dx
[
1− (1− Φ (x))2A

])
.

Since 0 ≤ 1− Φ ≤ 1 for all x, we have (1− Φ)2A ≤ 1− Φ, for A ≥ 1. Thus we have

the inequality

∫ ∞
1

x dx
(

1− (1− Φ(x))2A
)
≥
∫ ∞

1

x dx Φ (x) . (6.48)
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From this consideration, we arrive at the conclusion that

σinel
pA

σtot
pp

(s) =

∫ ∞
0

x dx
[
1− (1− ζ (x))2A

]
/

∫ ∞
0

x ζ (x) dx

≥ 1/2 , (6.49)

for
√
s→∞. Note that in the black disk case ζ (x) = θ (1− x) , we obtain the well

defined limit

σinel
pA (s)/σtot

pp (s)→ 1/2 .

As mentioned before, our phenomenological pp solution does not correspond to

the black disk , and the actual pp ratio is σinel
pp /σ

tot
pp → 2/3 . With this information

at hand, we look for the value of

σinel
pA (s)/σtot

pp (s)

using a tail form proper for the realistic pp amplitudes.

6.3.1 Yukawa and exponential tail

The asymptotic behavior of stochastic vacuum model predicts the tail as that of

Yukawa type. So, we may choose

ζ (x) =

 1,

exp(−α(x− 1))/x,

x ≤ 1

x > 1
(6.50)

so that

1

2
σtot

pp = 2πb2
eff

(√
s
)(1

2
+

1

α

)
, (6.51)

and

ξ(x) =

 1,

2e−α(x−1)/x− e−2α(x−1)/x2,

x ≤ 1

x > 1
(6.52)
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to obtain

σinel
pp = 2πb2

eff

(√
s
)(1

2
+

2

α
−
∫ ∞

0

e−2αx

x+ 1
dx

)
(6.53)

The relation σinel
pp /σ

tot
pp = 2/3 that determines the value of α is then

4

(
1

2
+

1

α

)
= 3

(
1 +

2

α
−
∫ ∞

0

e−2αx

x+ 1
dx

)
, (6.54)

leading to

α ' 1.61073 . (6.55)

With this, for A = 15, for example, we obtain

σinel
pA = 2πb2

eff

(√
s
)(

1 +

∫ ∞
1

x dx

(
1− e−α(x−1)

x

)2A
)

(6.56)

' 2πb2
eff

(√
s
)
× 2.30764 ,

giving
σinel

pA

σtot
pp

∣∣∣∣∣
Yukawa

' 1.1858 (6.57)

for very large s.

This value depends sensitively on the choice of the tail function Φ. The slower the

decay of the tail, the bigger the ratio becomes. If we choose Φ as a pure exponential

Φ = e−α(x−1) , (6.58)

which has longer tail than the Yukawa type, then using the same procedure we get

α ' 2.1583 and the corresponding value of the ratio becomes

σinel
pA

σtot
pp

∣∣∣∣∣
Exponential

' 1.798 (6.59)

This value can be compared with the energy dependence of the ratio shown in

Fig. 6.4
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We remark that the quantity beff that determines the interaction range drops off

in the calculated ratios.

6.3.2 Asymptotics is far away

To show how the asymptotic range is approached, Fig. 6.4 shows the calculated

(p-air)/pp ratio at extremely high energies, up to
√
s = 1020 TeV, where the values

are still decreasing. To see the tendency, we use the values of σinel
p−air at 1012, 1016

and 1020 to obtain the form

σinel
p−air(s) = 490.883 + 19.7119 log

√
s+ 1.8178 log2

√
s . (6.60)

Dividing this function by the log2 form of the pp total cross section in Eq. (4.24),

we obtain the dashed line shown in the figure. We see that the representation of

the ratio looks very good above 106 TeV. In this parametrization the predicted

asymptotic limit is 1.8178/1.2273 = 1.4811 . We would obtain somewhat different

limit, had we taken a different set of three energies to construct the form in Eq.

(6.60), but the result would remain in the interval 1.4 - 1.5 . The slow convergence

of the ratio towards a finite limit at high energies is an important fact.

It is remarkable that there is an impressive confirmation of the limit 1.1858 given

in Eq. (6.57), that was determined using as input the 2/3 ratio of inelastic to total

pp cross sections and assumption of the Yukawa-like shape in the b dependence of

the pp amplitudes.

Eq. (6.60) gives a proper representation of σinel
p−air(s) to be used for energies higher

than
√
s ≈ 106 TeV. Used at the highest CR experimental energy

√
s = 96.85 TeV

it gives a value 10% too high : thus not too bad.

On the other hand, the form given for σinel
p−air(s) in Eq. (6.21) is based on the

three points
√
s = 96.85 , 103 and 104 TeV , and gives very good representation of

the exact values from 10 GeV to 106 TeV. However, this form is not adequate for
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the asymptotic limit.

The good coherence of different evaluations of these finite asymptotic ratios is

remarkable. They point out to what can be expected for CR experiments at ultra

high energies.
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Figure 6.4: Ratio of p-air and pp cross sections at ultra-high energies. Calculations
are marked with dots and connected with a continuous line. The line is given
analytically by the fraction of log2 forms for σinel

p−air(s) and σtot
pp (s), given in the text.

It gives good representation of the points for energies above 106 TeV and tends to
the asymptotic limit 1.48, as explained in the text.



Chapter 7

Comparative analysis of models

In this chapter we present different models in comparison with our calculations

through the point of view of the predictions for the amplitudes, showing similarities

and differences.

7.1 BSW

The Bourrely, Soffer and Wu model (BSW model) [102–104] (introduced more

than 30 years ago) is an s-channel model built in the geometric b-space within the

eikonal framework. The scattering amplitude is written as

M(s, t) =
is

2π

∫
d2~b e−i~q·

~b
(

1− e−Ω(s,~b)
)
, (7.1)

where Ω is the opacity function (eikonal χ) defined in term of phase shift, Eq.(2.26)

as Ω(s,~b) = 2iδ(s,~b). The main feature of the model is the factorization between

the energy and the geometric dependence in the eikonal function for high energies

Ω(s,~b) = S(s)F (b) . (7.2)

174
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For low energies (ISR energy range) the Regge background contributions must be

taken into account, and the eikonal is no longer factorized. The s dependence of

S(s) comes from the perturbative field theoretical calculation studies by Cheng-

Wu. Working in a massive quantum electrodynamics framework they found that

the asymptotic behavior of the scattering amplitude is

s1+ε(ln s)−3/2 , (7.3)

where ε is a positive quantity depending on the coupling constant of the theory.

Motivated by this result, BSW incorporate this form in the opacity function using

the crossing symmetry of quantum field theory, and write the s dependence term as

S(s) =
sc

(log s)c
′ +

uc

(log u)c
′ , (7.4)

where s and u are in GeV2 and the approximation log u = log s− iπ is valid for high

energies.

The geometric function is obtained by Fourier transform of the modified eletro-

magnetic form factor of proton

F (b) =

∫ ∞
0

dq qF̃ (−q2)J0(q b) , (7.5)

with

F̃ (t) = fG2(t)
a2 + t

a2 − t
and G(t) =

1

(1− t/m2
1)(1− t/m2

2)
. (7.6)

The BSW model assumes the charge distribution inside the proton as proportional

to the matter distribution and the interaction term is due to the S(s) function which

gives the real and imaginary amplitudes.

This model uses small number of parameters. There are six energy independent

quantities c, c′, m1, m2, a and f that are given in Table 7.1.
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c = 0.167 m1 = 0.577GeV a = 1.858GeV
c′ = 0.748 m2 = 1.719GeV f = 6.971GeV−2

Table 7.1: Parameters for the BSW model. Extracted from reference [103].

7.2 HEGS model

The High Energy General Structure (HEGS) model was developed by O. V.

Selyugin [105–107] for the description of elastic pp and pp̄ scattering, giving a quan-

titative description of the data in a wide energy range 9.8 ≤
√
s ≤ 8000GeV using a

small number of fitting parameters. It uses the proton electromagnetic form factors

calculated from the General Parton Distributions (GPDs) and assumes, similarly to

the BSW model, that the matter distribution is proportional to the charge distribu-

tion on the proton.

The hadronic amplitudes are calculated through a unitarization procedure and

are written, similarly to Eq. 2.31 and 7.1, in the form

FH(s, t) =
is

2π

∫
d2~b e−i~q·

~b
(

1− eχ(s,~b)
)
, (7.7)

with the correspondence Ω(s,~b) = −χ(s,~b) (see Eq. 7.2). The microscopic contri-

butions are taken into account in t-space through so-called Born terms FBorn
h (s, t),

which are used to form the complex quantity

χ(s, b) =
i

2π

∫
d2~q ei

~b·~q FBorn
h (s,−q2) . (7.8)

The Born amplitude, in the extended version [106] of the model, is written as

the sum of three main contributions, two cross-even parts and one possible Odderon

term

FBorn
h (s, t) = h1 F

2
1 (t)Fa(s, t)

(
1 +

R1

ŝ0.5

)
+ h2A

2(t)Fb(s, t)

± hodd(t)A2(t)Fb(s, t)

(
1 +

R2

ŝ0.5

)
(7.9)
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where the + (−) sign is used to compute pp (pp̄) scattering and

hodd(t) = i h3 t/(1− r2
0 t)‘. (7.10)

The first two terms in Eq. (7.9) are interpreted by the author, respectively, as a

possible Pomeron and a cross-even part of non-pertubative three gluon exchange.

There may also be added a fourth contribution due to spin-flip, which is not relevant

in the high-energy domain and is not included here. F1(t) and A(t) are hadronic

form factors, parametrized as

F1(−q2) =
4m2

p + µ q2

4m2
p + q2

(
1

1 + q/a1 + q2/a2
2 + q3/a3

3

)2

,

A(−q2) =
Λ4

(Λ2 + q2)2
, (7.11)

where mp = 0.93827GeV is the proton mass; Fa(s, t) and Fb(s, t) are Regge-like

terms

Fa(s, t) = ŝε eB(s, t) t, Fb(s, t) = ŝε eB(s, t) t/4 (7.12)

with the slope 1

B(s,−q2) =

(
α + k

q

q0

e−k q
2 log ŝ

)
log ŝ (7.13)

where q0 = 1GeV and s0 = 4m2
p set the momentum and energy scale.

The energy dependence appears here and in Eq. (7.9) through the complex

quantity

ŝ = s e−iπ/2/s0 . (7.14)

This last version of the HEGS model contains seven energy-independent fitting pa-

rameters, given in Table 7.2. The parameters kept fixed are given in the same

table. The fit is performed simultaneously with the data in the energy range of

1The slope here does not refer to the traditional definition of the slope in the final hadronic
amplitude responsible for the exponential behavior at small−t. Here, it accounts for non-linear
aspects in the Regge-like terms Fa(s, t) and Fb(s, t) present in the Born amplitude.



178

9.8 ≤
√
s ≤ 8000GeV.

fitted parameters

h1 = 3.67 GeV−2 h2 = 1.39 GeV−2 h3 = 7.51 GeV−4 k = 0.16GeV−2

R1 = 4.45 R2 = 53.7 r2
0 = 3.82 GeV−2

fixed parameters

a1 = 16.7 GeV a2
2 = 0.78 GeV2 a3

3 = 12.5 GeV3 µ = 2.79
ε = 0.11 Λ2 = 1.6 GeV2 α = 0.24 GeV2

Table 7.2: The first two rows show fitting parameters for the extended version of
HEGS model. The second two rows give the fixed parameters in data fit of the
extended version of HEGS model. These parameters are extracted from reference
[106].

7.3 Dynamical Gluon Mass - DGM

Dynamical Gluon Mass [108] is an eikonal model that incorporates semi-hard

interaction ingredients as, the microscopic gg → gg cross section

σ̂gg(ŝ) = (7.15)(3πᾱs
2

ŝ

)[12ŝ4 − 55M2
g ŝ

3 + 12M4
g ŝ

2 + 66M6
g ŝ− 8M8

g

4M2
g ŝ[ŝ−M2

g ]2
− 3 ln

( ŝ− 3M2
g

M2
g

)]
,

where ŝ is the energy fraction of the proton carried by the gluon and

α̂s(ŝ) =
4π

β0 ln[(ŝ+ 4M2
g (ŝ))/Λ2]

(7.16)

is the running coupling constant (derived by Cornwall [109]) with β0 = 11− 2
3
nf (nf

is the number of flavours) and Λ = ΛQCD = 284 MeV. The dynamical gluon mass is

written

M2
g (ŝ) = m2

g

[
ln((ŝ+ 4m2

g)/Λ
2)

ln(4m2
g/Λ

2)

]−12/11

, (7.17)
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where mg is the mass scale that regularizes the infra-red sector of the gluon propaga-

tor. The above formulas transit in two regimes, perturbative and non-perturbative.

For large energies ŝ� Λ the mass Mg goes to zero.

The pp and pp̄ elastic scattering eikonals are described in terms of even and odd

complex functions

χpp̄ =
1

2
(χeven + χodd) , χpp =

1

2
(χeven − χodd) (7.18)

composed by the microscopic sub-processes, quark-quark, quark-gluon and gluon-

gluon contributions, each of them with the associated overlap function coming from

the proton dipole form factor. The even and odd eikonals are respectively

χeven(s, b) = χqq(s, b) + χqg(s, b) + χgg(s, b)

= i[σqq(s)W (b;µqq) + σqg(s)W (b;µqg) + σgg(s)W (b;µgg)] , (7.19)

and

χodd(s, b) = κCodd
mg√
s
eiπ/4W (b;µodd) , (7.20)

with the overlap function

W (b;µ) =
µ2

96π
(µb)3K3(µb) , (7.21)

where µ and Codd are free fit parameters and K3 is the modified Bessel function of

second kind. The constant κ is defined as κ ≡ 9πᾱ2
s(0)/m2

g .

The quark-quark and quark-gluon energy dependent contributions are respec-

tively

σqq(s) = κCqq
mg√
s
eiπ/4 (7.22)
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and

σqg(s) = κ
{
Cqg + C ′qg

[
ln
( s

m2
g

)
− iπ

2

]}
, (7.23)

where Cqq, Cqg and C ′qg are the free fit parameters. The gluon-gluon contribution

σgg in the eikonal is obtained by the convolution of the gluon distribution function

and the partonic gluon-gluon cross section

σgg(s) = Cgg

∫ 1

4m2
g/s

dτFgg(τ)σ̂gg(ŝ) , (7.24)

where τ = ŝ/s, Cgg is a fit parameter and Fgg is the convoluted gluon distribution

function

Fgg(τ) = [g ⊗ g](τ) =

∫ 1

τ

dx

x
g(x)g(τ/x) , (7.25)

where g(x) is written in a phenomenological parametrized form

g(x) = Ng
(1− x)5

xJ
, (7.26)

where Ng = (6 − ε)(5 − ε)...(1 − ε)/240, ε = 0.08 is associated with the Pomeron

intercept and J = 1 + ε. The dispersion relation is applied to σgg to obtain the real

part in order to work with an analytical closed form for gg amplitude. In this sense

it is written as

Re σgg(s) '
π

2

d

d ln s
σgg(s) . (7.27)

Combining all the ingredients above the scattering amplitude is written

A(s, q) =
i

2π

∫
d2~b e−i~q·

~b(1− eiχDGM (s,b)) , (7.28)
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where χDGM represents either pp or pp̄ processes. In table 7.3 we present the fit

parameters that describe the model obtained with mg = 400 MeV and ε = 0.08.

mg (MeV) 400

Codd 3.03± 0.4
Cqq 10.07± 1.4
Cqg 0.874± 0.059
C ′qg 0.0451± 0.0062
Cgg 0.00379± 0.00017
µodd 0.41± 0.17
µgg 0.651± 0.066
µqq 1.32± 0.16
µqg 0.838± 0.044

Table 7.3: We show the dimensionless fit parameters Codd, Cqg, Cqq and Cgg together
with µodd, µqg, µqq and µgg that are in GeV (see [108]).

7.4 Comparison of the models

The three models, BSW, HEGS and DGM, calculate the (s, t)-amplitudes by

Fourier transform of the eikonal functions Ω(s,~b), χ(s,~b) and χDGM(s,~b), as shown

in Eqs. (7.1), (7.7) and (7.28) respectively. The eikonals are related to the amplitude

in the impact parameter representation of the KFK model (Eq. 5.14) through

1− e−Ω(s,~b) = 1− eχ(s,~b) = 1− eiχDGM (s,~b) = − i√
π

[
T̃R(s,~b) + i T̃I(s,~b)

]
(7.29)

A comparison of the t-amplitudes is shown for 7 TeV in Fig. 7.1. Their nor-

malizations are defined by differential cross-section dσ/dt and the total cross section

σ(s) through

1

(~c)2

dσ

dt
= |T (s, t)|2 =

π

s2
|M(s, t)|2 =

π

s2
|FH(s, t)|2 = π|A(s, t)|2 (7.30)



182

and

σtot(s)

(~c)2
= 4
√
π TI(s, 0) =

4π

s
MI(s, 0) =

4π

s
(FH)

I
(s, 0) = 4π AI(s, 0) . (7.31)

Figure 7.1: a) Real and imaginary amplitudes (top left) and b) differential cross-
section (top right) of KFK (solid), BSW (dotted), HEGS (dashed) and DGM
(dashed-dotted) models for

√
s = 7 TeV; c) differential cross-section for HEGS

model with imaginary and real contribution for
√
s = 7 TeV (bottom left), indicat-

ing the presence of a second zero in the imaginary amplitude, that does not occur in
KFK; d) the differential cross-section predictions for

√
s = 14 TeV (bottom right).

The Coulomb interaction is not included here. Fig. 7.1 displays the differential
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cross-section of the four models for
√
s =7 TeV compared to Totem data, and shows

the predictions for 14 TeV. In spite quite different microscopic construction, HEGS

and KFK models describe well the available data since the forward region until

large t values and it is not possible to discriminate which one agrees better with the

data. DGM has a good agreement with both KFK and HEGS models in the region

around the dip. Although BSW fairly disagrees with the others for almost the whole

t range, it gives a consistent energy dependence of the forward quantities. BSW has

an historical importance as being one of the first elastic scattering hadron-hadron

model that predicts the rise of the total cross sections. This rise was predicted first

by Wu, who calculated microscopic reactions in a massive quantum electrodynamics.

As shown in Fig. 7.1 for the HEGS model, the magnitude of imaginary am-

plitudes in the plots between zeros are larger than the real magnitudes in the four

models. These amplitudes oscillate in dσ/dt producing dips near TI zeros. It is

difficult to confirm the oscillatory behavior beyond the first imaginary zero as they

occur for larger −|t|. In KFK model, the amplitudes TR(s, t) and TI(s, t) in t-space

have simple analytical forms, with only one imaginary zero and two real zeros (at

least for |t| < 30 GeV2).

The similarities of KFK, BSW, HEGS and DGM models only occur up to the

location of the second real zero, namely up to |t| ≤ 3 GeV2 at
√
s =7 TeV. Fig. 7.2

shows the zeros of the real and imaginary amplitudes in the four models. We observe

that the first real zero and the first imaginary zero are in good agreement among

the four models. This teaches us that t values beyond the dip should be measured

with high precision in order to locate better signs and zeros of the amplitudes.

A common feature of these four models with full |t|-description of the amplitudes

is that they all agree that BR 6= BI , in particular, with BR > BI at all energies above.

This behavior is shown in Fig. 7.2 and must be taken into account in the analysis of

the forward scattering data for the estimates of the total cross-sections σtot(s) and

of the ρ(s) = TR(s, t = 0)/TI(s, t = 0) paramteres [107].
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Figure 7.2: Positions of zeros of the amplitudes of KFK, HEGS, BSW and DGM
models as a function of energy (left); real and imaginary amplitude of the models
for small |t| for

√
s = 7 TeV, with the slopes at t = 0, stressing that BR > BI in all

cases.



Chapter 8

Diffractive processes at LHC

Up to now we have concentrate on the elastic scattering amplitudes studding

the topic as a non-perturbative process. Nevertheless there are diffractive processes

which can be studied by perturbative methods. In this chapter we study the Pomeron

structure in diffractive hadron-hadron collisions.

8.1 Theoretical formulation

Diffractive events in hadronic collisions were first observed at HERA [110, 111]

and at the Tevatron [112,113] more than 20 years ago, and since then, a large effort

has been devoted to understand QCD dynamics involved in these processes. The

description of diffractive processes in QCD had been challenging for decades, but

the presence of a large momentum transfer in these events brought hope that one

could be able to understand them with weak-coupling methods.

During many years the Regge phenomenology pointed to the existence of a col-

orless object called Pomeron exchanged in the t channel, which is responsible for the

diffractive events in hadronic collisions. However the understanding of hard diffrac-

tion in QCD and the description of the Pomeron as a structure composed of quarks

and gluons remains a challenge.

In the case of deep inelastic scattering (DIS) γp → X, where leptons collide

185
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with protons at high energies through the exchange of a high-virtuality photon, the

situation has reached a satisfactory level. Due to several years of experimental efforts

at HERA, the diffractive part of the deep inelastic cross-section, which corresponds

to about 10% of the events, has been measured with good accuracy [114–116]. On

the theoretical side, the collinear factorization of the DIS cross section also holds for

it’s diffractive component [9], which allows to separate the short-distance partonic

cross section computable in perturbation theory, from non-perturbative dynamics

encoded in diffractive parton distribution functions (pdfs).

By contrast, the description of hard diffraction in hadron-hadron collisions still

poses great theoretical problems. Indeed, Tevatron data provided evidence that even

at very large momentum scales, collinear factorization does not apply in such cases

[117]. In order to estimate hard diffractive cross sections when factorization does not

hold, (a modern version of) the resolved Pomeron model RPM [24] is being widely

used. It makes use of the diffractive parton distribution extracted from HERA,

which give the distribution of quarks and gluons inside the Pomeron depending on

the x (Bjorken variable) and Q2 (transverse momentum scale) kinematical variables,

while modelling the additional soft interactions that violate factorization. To better

test the validity of this model, and to better understand the Pomeron structure,

it is essential to find sensitive observables to be measured in the current colliders

experiments.

One way to constrain quarks and gluons inside the Pomeron is to measure prompt

photons in diffractive p+p collisions, as was suggested in [118]. However, this study

relied on leading-order matrix-elements, since the Forward Physics Monte Carlo

generator [119] was used. Subsequent works also relied on LO matrix elements [120].

In this thesis, we want to investigate the effects of higher-order corrections, and their

impact for a center-of-mass energy of 13 TeV at the LHC, and we shall use instead

the JetPhox Monte Carlo [121] to compute the matrix elements at leading order

(LO) and at next-to-leading order (NLO).
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Figure 8.1: Leading-order diagrams for prompt photon production in double-
Pomeron-exchange events in p+p collisions. Left: the annihilation partonic sub-
processes are only sensitive to the quark content of the Pomeron. Right: the Comp-
ton partonic sub-processes are sensitive to the gluon content of the Pomeron as
well.

On the theoretical side, prompt photons refers to high-pt photons created in

a hard process, either directly (direct photons) or though the fragmentation of a

hard parton (fragmentation photons) [122]. On the experimental side, inclusive

and isolated photons denote prompt photons measured without or with an isolation

cut, respectively. These are two observables that shall estimate for double-Pomeron-

exchange (DPE) events - meaning diffractive p+p collisions from which both protons

escape intact - taking into account the kinematical constraints of the forward proton

detectors of the CMS-TOTEM collaborations, or those to be installed by the ATLAS

collaboration in the future.

8.1.1 Resolved Pomeron model

The resolved Pomeron model is a long-distance/short-distance collinear factor-

ization framework commonly used to calculate hard single-diffraction and DPE pro-

cesses. In this work, we focus on DPE prompt photon production at the LHC. In

the case of direct photons, the leading-order diagrams for this process are pictured
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in Fig. 8.1, and the cross section in the resolved Pomeron model reads:

dσpp→pγXp = SDPE
∑
i,j

∫
fDi/p(ξ1, t1, β1, µ

2)fDj/p(ξ2, t2, β2, µ
2) ⊗ dσ̂ij→γX (8.1)

where dσ̂ is the short-distance partonic cross-section, which can be computed order

by order in perturbation theory (provided the transverse momentum of the photon

is sufficiently large), and each factor fDi/p denotes the diffractive parton distribution

in a proton. These are non-perturbative objects, however their evolution with the

factorization scale µ is obtained perturbatively using the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi [123] evolution equations.

In (8.1), the variables ξ1,2 and t1,2 denote, for each intact proton, their fractional

energy loss and the momentum squared transferred into the collision, respectively.

The convolution is done over the variables β1,2, x1 = ξ1β1 and x2 = ξ2β2 being the

longitudinal momentum fractions of the partons i and j respectively, with respect to

the incoming protons. However, hard diffractive cross sections in hadronic collisions

do not obey such collinear factorization. This is due to possible secondary soft

interactions between the colliding hadrons which can fill the rapidity gap(s). Formula

(8.1) is reminiscent of such a factorization, but it is corrected with the so-called gap

survival probability SDPE which is supposed to account for the effects of the soft

interactions. Since those happen on much longer time scales compared to the hard

process, they are modelled by an overall factor, function of the collision energy only.

This is part of the assumptions that need to be further tested at the LHC.

In our computations, we shall use diffractive parton distributions extracted from

HERA data [124] on diffractive DIS (a process for which collinear factorization does

hold). These are decomposed further into Pomeron and Reggeon fluxes fP,R/p and

parton distributions fi/P,R:

fDi/p(ξ, t, β, µ
2) = fP/p(ξ, t)fi/P(β, µ2) + fR/p(ξ, t)fi/R(β, µ2) . (8.2)
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The secondary Reggeon contribution is important only at large values of ξ, at the

edge of the forward proton detector acceptance, and therefore we do not take it into

account in the following. Measurements at the LHC will allow to test the validity

of this further factorization of the diffractive parton distributions into a Pomeron

flux and Pomeron parton distributions, as well as the universality of those Pomeron

fluxes and parton distributions.
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8.1.2 Effective diffractive parton distribution functions (pdfs)

with experimental constraints

In the following, we assume the intact protons in DPE events to be tagged in

the forward proton detectors of the CMS-TOTEM collaborations, or those to be

installed by the ATLAS collaboration in the future [125], called ATLAS Forward

Proton (AFP) detectors. The idea is to measure scattered protons at very small

angles at the interaction point and to use the LHC magnets as a spectrometer to

detect and measure them. We use the following acceptances [126]:

• 0.015 < ξ < 0.15 for ATLAS-AFP

• 0.0001 < ξ < 0.17 for TOTEM-CMS .

Let us now explain how the diffractive pdfs (8.2) are constrained by those detector

acceptances. We denote the diffractive quark and gluon distributions integrated over

t and ξ by qD(x, µ2) and gD(x, µ2) respectively. These effective pdfs are obtained

from the Pomeron pdfs qP(β, µ2) and gP(β, µ2), and from the Pomeron flux fP/p(ξ, t).

Let us first integrate the latter over the t variable:

fP(ξ) =

∫ tmax

tmin

dt fP/p(ξ, t) with fP/p(ξ, t) = AP
eBPt

ξ2αP(t)−1 . (8.3)

The parameters of Eq.(8.3) are the slope of the Pomeron flux BP = 5.5−2.0
+0.7 GeV−2,

and Pomeron Regge trajectory αP(t) = αP(0) +α′P t with αP(0) = 1.111± 0.007 and

α′P = 0.06+0.19
−0.06 GeV−2. The boundaries of the t integration are tmax = −m2

pξ
2/(1−ξ)

(mp denotes the proton mass) and tmin = −1 GeV2. The normalization factor AP

chosen such that ξ×
∫ tmax

tmin
dt fP/p(ξ, t) = 1 at ξ = 0.003. The above parameters were

given in Ref. [124].

Next, to obtain the constrained diffractive pdfs, we convolute the Pomeron flux

with the Pomeron pdfs while imposing a reduction in the phase space of ξ, according
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Figure 8.2: These plots represent diffractive parton distribution of the proton for
three values of µ2, with the constraint that the intact proton fall into a forward
detector. As a result the distributions vanish for z > ξmax, and feature a kink when
z crosses ξmin. Left: diffractive gluon distribution gD ≡ fDg/p with ATLAS-AFP
(top) and TOTEM-CMS (bottom) constraints. Right: the sum of the valence quarks
distribution qD ≡

∑
val f

D
q/p with ATLAS-AFP (top) and CMS-TOTEM (bottom)

constraints.

to the experimental acceptance of the forward detectors:

fDi/p(x, µ
2) =

∫ max(x, ξmax)

max(x, ξmin)

dξ

ξ
fP(ξ) fi/P(x/ξ, µ2) . (8.4)

For the Pomeron pdfs, we make use of the HERA fit B in [124]. In Fig. 8.2, we show

the resulting effective diffractive pdfs for both the ATLAS-AFP and TOTEM-CMS

constraints. These distributions are built in a way to be easily incorporated into the

LHAPDF library [127] in the grid format.
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8.1.3 Computing Double-Pomeron-Exchange (DPE) prompt

photon production using JetPhox

JetPhox is a Monte Carlo generator built to compute hadronic cross sections for

the process pp→ γX using the collinear factorization framework. Cross sections

are calculated as a convolution of short-range matrix elements, computed at LO

and NLO, and long-range (non-perturbative) parton distribution and fragmentation

functions. Therefore, within the resolved Pomeron model (8.1), this program can

also be used to compute the cross-sections pp→ ppγX in DPE events. In order to

do this, we must substitute the regular pdfs by our effective diffractive pdfs:

fi/p(x, µ
2) −→

∫
dξdtdβ δ(x− βξ) fDi/p(ξ, t, β, µ2) ≡ fDi/p(x, µ

2) , (8.5)

and multiply the resulting cross sections by the gap survival probability SDPE.

JetPhox produces both inclusive and isolated photons with momentum pt and

rapidity y. In case of the inclusive cross section, it sums the direct and the fragmen-

tation contribution in the following way:

dσ

dp2
tdy

=
dσ̂γ

dp2
tdy

+
∑
a

∫
dz

dσ̂a

dp2
tadya

(pt/z, y)Dγ
a(z, µ2), (8.6)

where dσ̂a is the hard cross section for producing a parton a=(q,q̄,g) which will then

radiate a high-pt photon during its fragmentation into a hadron. Dγ
a is the fragmen-

tation function, the z variable is z ≡ pγ/pa, and we have chosen the fragmentation

scale to be µ. In case of isolated photons, an additional criterion is imposed on the

hadronic activity surrounding the high-pt photon, as is discussed later.

In the following, we use JetPhox to compute the direct and the fragmentation

contributions in (8.6), replacing, as explained previously, the regular pdfs by the

diffractive pdfs extracted above. Technically, this program calls the parton distribu-

tions from the LHAPDF library [127]; we replaced one of those pdfs in grid format
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Figure 8.3: These figures show, for DPE direct photon production, the relative
contributions of the Compton and annihilation processes at a function of photon
pt. Left: at LO, the Compton process represents about 90% of the differential
cross section; the contribution of the annihilation process is slightly increasing with
increasing pt. Right: at NLO, the Compton process dominates around 95% of the
differential cross section for all the pt range analysed.

by our diffractive pdf constrained with the kinematical cuts.

8.2 Numerical results

In this section, we detail the future measurements to be performed at the LHC,

in order to test the resolved Pomeron model and to constrain the quark and gluon

content of the Pomeron, using photon production in DPE processes. We use the

Monte Carlo program JetPhox (version 1.3.1) to simulate the results, with 2 × 108

events per channel.

8.2.1 DPE inclusive photons

In the inclusive mode, there are significant contributions from both direct and

fragmentation photons; let us first focus on the direct photons. At LO (αemαs), both

annihilation processes qq̄→ gγ, and Compton processes q(q̄)g → q(q̄)γ, contribute.

Going to NLO (αemα
2
s) opens an additionnal partonic sub-process, gg→gγ, but this

channel contributes only to 1% of the events. Analysing the relative contributions
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Figure 8.4: These figures show the pt spectrum (left) and the rapidity distribution
(right) of DPE inclusive photons (pp → ppγX) computed by summing the direct
and fragmentation contributions for a center of mass energy of 13 TeV, for both
ATLAS-AFP and TOTEM-CMS detector acceptances. The squares and the trian-
gles represents respectively the LO and NLO calculations, the latter giving cross
section about 20% greater than the former.

between these two channels in DPE events represents a direct way to constrain the

quark and gluon structure of the Pomeron. This is done in Fig. 8.3, as a function of

the photon transverse momentum and using ATLAS-AFP acceptance (very similar

results are obtained in the TOTEM-CMS case). We observe a large dominance of

the Compton processes, which could be expected considering the relative magnitude

of the diffractive gluon and quark distribution shown in Fig. 8.2.

This means that extracting Pomeron quark distributions from DPE inclusive

photon measurements will first require that the Pomeron gluon content is well con-

strained (for instance using DPE dijet measurements [118]). This is even more so,

since fragmentation photons (which contribute to almost half of the inclusive cross

section as we will see below) also come mostly from gluon-initiated process. We

display in Fig. 8.4 (left) the differential cross section for the production of DPE

inclusive photons as a function of the photon pt, summing all the channels and com-



195

paring the results at LO and NLO. We show predictions for both ATLAS-AFP and

TOTEM-CMS detectors at 13 TeV. In Fig. 8.4 (right), we show the photon rapid-

ity distribution (for pt > 20 GeV), and we note that the difference in magnitude

between the LO and NLO calculation is about 20%. Obviously, NLO corrections

are not negligible, they must be taken into account in order to extract correctly the

Pomeron structure from future data. Note that due to the vanishing of the effective

diffractive pdfs (8.4) for x > ξmax, there are no photons produced at very forward

or very backward rapidities.

Finally, to compare these cross sections with the future data from the experi-

ments, we note that the gap survival probability factor may have to be readjusted.

We have assumed SDPE ' 0.1 [128], but the actual value is rather uncertain and

must first be measured.

8.2.2 DPE isolated photons

Using the inclusive photon measurement discussed above in order to constrain the

quark content of the Pomeron is not optimal, because this observable is contaminated

by fragmentation photons, which mostly come from gluon-initiated process. In order

to suppress the contribution from fragmentation processes, one can use an isolation

criteria that will disregard the photons that are surrounded by too much hadronic

activity. Indeed, generically a direct photon will be isolated from a large hadronic

activity while a fragmentation photon won’t. The isolation criteria we use is to

require that the hadrons measured within a cone of radius R = 0.4 have a maximum

of 4 GeV of transverse energy. This is one of the options available in JetPhox [121],

we checked that our conclusions are independent of this particular choice for the

isolation criteria.

Let us now compare the inclusive and isolated photon production. In Fig. 8.5

we show in both cases, the relative contribution of the direct and the fragmentation

processes at NLO. The relative contribution of fragmentation processes is decreasing
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Figure 8.5: These figures show, for DPE prompt photon production at NLO, the
relative contributions of the direct and fragmentation processes at a function of
photon pt. Left: in the inclusive case, the direct and fragmentation contributions
are equal at pt ' 20 GeV, and the relative contribution of direct processes increases
with increasing pt. Right: in the isolated case, the direct processes dominate; at
pt ' 20 GeV they represent about 75 % of the cross section, and that percentage
increases with increasing pt.

with increasing pt, but it remains always large in the inclusive case: between 20 and

150 GeV, it goes from 50% to 25%. In the isolated case however, it is clear that

the fragmentation contribution is strongly suppressed by the isolation criteria, and

as the transverse momentum of the photon increases, this contribution eventually

becomes negligible. In Fig. 8.6, we display our predictions for the pt spectrum (left)

and the rapidity distribution (right) of DPE isolated photons, for both ATLAS-AFP

and TOTEM-CMS detectors at 13 TeV. Comparing the LO and NLO results, we

note that the NLO cross sections are about 50% greater than the LO ones, which

is a much bigger difference than in the inclusive case. In order to extract correctly

the Pomeron structure from future data, NLO corrections are not even more crucial

when the isolation criteria is applied.
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Figure 8.6: These figures show the pt spectrum (left) and the rapidity distribution
(right) of DPE isolated photons for a center of mass energy of 13 TeV, for both
ATLAS-AFP and TOTEM-CMS detector acceptances. The differential cross sec-
tions at LO (squares) or NLO (triangles) are obtained by summing the direct and
fragmentation contributions while requiring that the hadrons measured within a
cone of radius 0.4 around the photon have transverse energy no greater than 4 GeV.
The NLO cross sections are about 50% greater than the LO ones when such isolation
criteria is applied.



Chapter 9

Comments and conclusions

Elastic scattering of hadrons at high energies are basic physical processes in

the investigation of the dynamics of strong interactions. In most of this thesis

we study soft processes, in which perturbative treatments are not applicable. In

this regime the physical vacuum of QCD is seen to play an important role. The

strong interactions between hadrons are mainly dominated by the vacuum correlators

which are non-perturbative objects. As shown along this thesis, in spite of many

attempts to explain the peripheral collisions, there is no complete and satisfactory

solution to the soft QCD problem, and the physical vacuum of QCD still remains

a challenge. Our purpose is to propose a bridge between the experiments and the

theory, exploring and analysing the available pp and pp̄ data with amplitudes first

proposed in Ref. [48], originated in the Stochastic Vacuum Model. The goal is

to determine as precisely as possible the complex amplitudes behind the data and

provide to the high energy physics community a tomography of pp and pp̄ elastic

scattering. In our analysis, analytic and explicit representation of the amplitudes,

in both t and b spaces as function of s are proposed. The resulting amplitudes are

constructed satisfying the general requirements of the S-matrix, namely, dispersion

relations and the unitarity conditions.

The theoretical basis of the model shows that the vacuum expectation values of

198
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Wilson-loop operators (correlation functions) play an important role. As described

in Chapter 2, the hadronic scattering amplitudes are expressed as the convolution

of the quark/antiquark transverse distribution functions inside the hadrons and the

eikonal amplitude that represents loop-loop scattering. In Ref. [48], an analytic

ansatz of the final form of the amplitude is proposed interpolating the asymptotic

behavior of the vacuum correlator and the known phenomenological exponential

behavior in the forward region. While SVM describes the interactions between

loops through the physical vacuum of QCD, the distribution of quarks inside the

incident hadrons should be determined considering the structure of hadrons. As

known from the behavior of the parton distribution function, the density of partons

(color sources) inside the hadron is not a fixed quantity, depending on the energy

scale involved in the process. In this work, we assume that the form of ansatz given

in Ref. [48] is preserved for any energy, while the parameters contained there should

be considered as energy dependent in order to account for virtual quark-antiquarks

fluctuations within the hadron. This assumption should be verified in comparison

with the data.

In Chapter 3 we perform a careful analysis of the experimental data which deter-

mines the behavior of the forward scattering amplitudes in a framework considering

the amplitudes as simple exponential forms. The forward scattering amplitudes are

essentially determined by the value at the origin (t = 0) and its derivative in t, and

hence by the four real parameters (σ, ρ, BI and BR). However, these parameters

are not completely independent due to the constraints given by dispersion relations,

whose application depends on the knowledge of the energy dependence of the total

cross section and of the imaginary slope. Some parameters are directly related to

the experimental data measured in the forward region. We propose to the experi-

mental collaborations a re-analysis of the forward parameters respecting the basic

quantum mechanical principles such as the necessity of the real amplitude behaving

differently from the imaginary part namely (BR 6= BI). The dispersion relations for
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slopes predict that the real slope is larger than the imaginary one. Many experi-

mental analyses make use of the parameter ρ coming from approximated dispersion

relations forms that uses as an input a parametrized form for pp total cross section.

We propose the use of the exact forms of derivative dispersion relations which have

an important influence for low energies, where the differences between the pp and

pp̄ quantities are not negligible. In our studies we analyse the correlation between

forward parameters, searching the minimum value of χ2 between ρ and the defined

quantity β ≡ BR/BI . This correlation method shows somehow the quality of the

forward data of differential cross sections. We also introduce a free normalization

parameter to adjust the dN/dt data to dσ/dt using the interference of the realistic

real with the Coulomb amplitude as the regulator. This method was extended to

check in each dataset whether the normalization of dσ/dt is correct or wrong relative

to the Coulomb amplitude.

In Chapter 4, we perform the analysis of KFK amplitudes for the full t domain.

As mentioned before, our amplitude has a unique analytical form in t-space for

all energies, with the parameters representing the distribution of scattering sources

carring the energy dependence. The amplitudes are described in SVM formalism as

a geometric structure at a given energy. In the b-space representation the amplitudes

are defined as a superposition of a Gaussian (similar to Pomeron exchange) and the

shape function obtained from SVM. The normalization constants of these two terms

are directly related to the total cross section (See Eq.(4.6) ) through the optical

theorem. In the case of pure Gaussian, this term corresponds to the factorized

eikonal models with Gaussian profile function. In this case, the asymptotic energy

dependence of the cross section would lead to ∼ ln
√
s, so that we expect that

the normalization factor αI should be linear in ln
√
s. On the other hand, in the

slope term Ψ (γ (s) , t) , this is not the case. However, it is interesting to note that

the determination of the parameters performed independently for each energy leads

to very smooth and regular behavior of the parameters αI and λI as function of
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energy. Note that a simple factorized eikonal model with power law of the parton

distribution in
√
s leads to the general idea that when the matter distribution has

a Gaussian tail the total cross section goes with ln
√
s and for the part with long

range exponential tail, it goes with ln2√s [129].

The fact that the fittings of complete data at all energies for each energy lead

to the above behavior of αI and λI indicates that the variation with respect to

√
s of the amplitudes as function of t help to disentangle the contributions from

the Gaussian and the Yukawa terms. In fact, it is observed that the position and

shape of the dip-bump structure in the differential cross section is very sensitive

to the entanglement of the real and imaginary parts of the amplitudes. It seems

that this sensitivity is responsible for the separation of the energy dependence of

the Gaussian and the shape functions. We analyse the amplitudes for large t range

where we believe that the pertubative three gluon exchange process will dominate.

This term may have influence on the depths and slopes of the dips for low energies.

Along the present work we have learned many general properties of the complex

scattering amplitudes, as the number of zeros, their positions, details in the shrinkage

of the forward peak and the evolution of these quantities with the energy. We

understand that the real amplitude plays a crucial role in the determination of the

observables in the differential cross section in the full t range.

Although our model is not built in a form based explicitly in the Pomeron ex-

change mechanism, we can find relations with our amplitudes. We show that when

we write the energy dependence of the total cross section in a Pomeron-like form,

we obtain the intercept 0.096, which is exactly as given in Ref. [22]. However in t

channel the Pomeron model is characterized by a trajectory being exchanged and it

is interesting to write the t-dependence in a trajectory-like form. This can be made

with an appropriate expansion of the terms of the imaginary amplitude for small

t. Furthermore, when we write our amplitudes in the forward regime we may iden-

tify that the exponential part of KFK amplitude contains the Pomeron information
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combined with terms due to vacuum structure.

In Chapter 5 we study geometric properties of the KFK amplitudes. It is shown

that the amplitudes satisfy the unitarity constraint, and exhibit a remarkable geo-

metric scaling behavior [97] in the asymptotic region, in the sense that

dσ

db

(
b,
√
s
)
→ f (x) ,

√
s

s0

> 1,

where f is a function of the single scaling variable,

x =
b√

σ (
√
s)
,

and
√
s0 is an energy scale where the scaling law starts to be valid. This asymptotic

region occurs at extremely high energies, such as
√
s0 ∼ 105 TeV.

Another interesting finding is that

d2σ

db2

(
b,
√
s
)
,
dσel

db2

(
b,
√
s
)

(9.1)

in b-space have shapes very different from a black disk, presenting an appreciable

semi-transparent halo around the core. This is so also for the asymptotic form f (x) ,

so that the black disk picture never occurs in our model, not even aymptoticaly

as a consequence, the ratio, σel/σ does not converge to 1/2 as is the case of the

black disk, even in the asymptotic energy region. Since it is know that if a simple

factorized eikonal ansatz is used, the black disk behavior in asymptotic energy region

seems to be unavoidable, the non-black-disk nature of our amplitudes is due to its

non-factorizable form. From the phenomenological side the measurement of the

interaction range is contained in the imaginary forward slope which is related with

second moment in impact parameter. We show that this slope should be quadratic

in log
√
s.

The above point may become particularly important in discussion of the scatter-
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ing amplitude for more complex systems, such as in p-A, or A-A reactions. As we

see, the scattering amplitudes depend crucially on how the colliding system ”sees”

the distribution of scattering centers as the modification of the physical vacuum in

the corresponding scale associated to the incident energy. In Chapter 6, we apply

our amplitudes to p-air collisions in order to compare with the data from cosmic

ray experiments. We applied the Glauber approach [98] to obtain the scattering

amplitude for p-air collisions as the superposition of scattering amplitudes from p-p

(nucleon-nucleon) collisions. Comparison with experiments is made. The calculated

cross sections are found to be fairly consistent with the observed data up to the

energy
√
s . 100 TeV (in correspondinf pp system), with remark to the recent Tele-

scope Array experiment at
√
s = 95 TeV [130]. However, as pointed above, the

correct cross sections should be calculated using the distribution of partons which

participate in the collision, and this is not a simple superposition of independent

nucleons inside a nucleus, since at very high energy, the partons of different nucle-

ons start to overlap. In such a situation, a simple Glauber approximation based on

the nucleon multiple scattering may fail. Thus, we need to know the wavefunction

of partons inside a nucleus at high energy. Some techniques to calculate the par-

ton distribution for the initial state of the relativistic heavy ion collisions such as

IP-Sat/Glasma approaches [131] might be helpful. Especially this may change the

energy dependence of the total or production cross section for p-air collisions at high

energies.

To our knowledge, our model is particularly interesting and useful for givin an

explicit forms of imaginary and real amplitudes that are closed and analitic. In

Chapter 7, we present a short comparative study of our amplitudes with some avail-

able models of the literature. Although the models present quantitatively different

behavior in the real and imaginary amplitudes, they have qualitatively remarkable

similar behavior. The imaginary amplitudes have the first zero very close in all the

four cases analysed, as determined by the position of the dip. The differences of the
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positions of the second real zero teaches us that more precise measurements of the

differential cross section after the dip are necessary in order to determine the real

amplitude. The slopes of the real amplitude confirm the difference with respect to

the imaginary slope, showing the necessity of further analysis of differential cross

section data, taking into account this property.

Due to the importance of the Pomeron phenomenology in soft high energy physics

in Chapter 5, we made connection of KFK amplitudes with the Pomeron-like de-

scription showing the correspondence between the two visions. The Pomeron model

is also applicable to describe the inelastic diffractive processes. So, finding some re-

lation between our amplitude and the Pomeron model may open a space to include

the inelastic channels within the SVM approach.

Among many Pomeron models, the so-called Resolved Pomeron Model described

in Chapter 8, investigates the possible partonic structure of this hypothetical par-

ticle, Pomeron. In our approach, the density of color scattering centers at a given

energy scale plays as of the important ingredient. Thus, this may give an interesting

vlue to extend our approach to include inelastic channels in the future.

In the framework of the resolved Pomeron model presented in Section 8.1, we have

analyzed prompt photon production in double Pomeron exchange (DPE) processes in

p+p collisions. We perform our calculations of inclusive and isolated photons using

the JetPhox program. This is done by substituting the regular pdfs by the diffractive

pdfs (see Eq. (8.4)) which also take into account the acceptance of the forward proton

detectors. Then, in order to obtain the DPE cross section, we multiply the results

by the gap survival probablity SDPE, which we assume to be 0.1 for a center of mass

energy 13 TeV.

The use of JetPhox allows us to compute the DPE prompt photon production

cross sections with, for the first time, next-to-leading order hard matrix elements.

Our main result is that the NLO cross sections are larger than the LO ones, by

about 20% in the inclusive case and 50% in the isolated case. NLO corrections



205

are therefore crucial in such processes in LHC at 13 TeV in LHC. In addition, we

observe that the isolation criteria is necessary in order to suppress the contribution

of fragmentation photons, radiated by high-pt partons during their fragmentation,

and to access in a clean way the direct processes of photon production.

We also show that in DPE direct photon production, the Compton partonic

sub-processes (Fig 8.1-right) clearly dominate over the annihilation ones (Fig 8.1-

left). This is largely explained by the relative magnitude of the diffractive gluon

and quark distribution shown in Fig. 8.2. As a consequence, extracting Pomeron

quark distributions from DPE prompt photon measurements will first require that

the Pomeron gluon content is already well constrained, which can be done using for

instance DPE dijet production [118].

Finally, we have analyzed different possible scenarios to be tested by LHC exper-

iments Atlas-AFP and Totem-CMS, and we expect that future data on DPE prompt

photon production will provide a quantitative way to test the validity of resolved

Pomeron model, the factorization of diffractive pdfs into a Pomeron and a Pomeron

pdf, as well as to extract the gap survival probability and understand its behavior

with increasing energy. We also hope that measurements at 13 TeV will allow to

constraint the quark and gluon structure of the Pomeron.

As steps for the future, we plan to investigate the possibility of establish the

relation between our amplitudes and the QCD evolution equation with the gluon

saturation phenomena. As mentioned before the scaling behavior appearing for high

energies motivate us to think of elastic scattering as a diffusive process in impact

parameter which can be governed by an evolution equation for high energies. We

want to understand the general mechanism responsible to give the energy dependence

of hadron-hadron scattering. Efforts in this direction was done by Giordano and

Meggiolaro [132] in an approach similar to SVM, where they made a connection

between the angle formed along the hadrons trajectories in the light cone coordinates

and the center of mass energy.
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Another challenge in SVM approach is to include the inelastic channels of diffrac-

tion. Important experimental information about the structure of diffraction obtained

in HERA is in exclusive vector meson production and deep virtual Compton scatter-

ing (DVCS), in which the electron colliding with proton in the initial state produces

vector meson/gamma in the final state, keeping the proton structure intact. The

electron recoil emits a virtual photon. An usual approach, the dipole model [133].

In this framework the photon emitted by the electron fluctuates into a color sin-

glet quark/antiquark pair, interacting with the proton strongly producing a vector

meson or photon in the final state. From QCD viewpoint the dipole interacts with

the proton via exchange of a two gluon singlet. The dipole framework is basis of

many theoretical models [134–137], and depends on nonperturbative ingredients as

the vector meson wave functions and distribution functions.

In LHC experiments, the analogous gamma production in proton-proton colli-

sions have been measured. As proton is much heavier than the electron its recoil

is much smaller and the photon exchanged in this process is almost real (Q2 ≈0).

The interaction of the photon with the proton is similar to HERA process. Essen-

tially both HERA and LHC process should share the same problems in the strong

interaction sector.

We wish to investigate other approaches such as developments of the Stochastic

Vacuum Model [17] in which the interaction occurs between Wilson quark/antiquark

loops. Details of the loop-loop calculation can be found in the literature [138–141].

This model was tested for all the vector mesons measured at HERA (ρ, ω, φ, J/ψ and

Υ) [142] and has the advantage of having no free parameters. In this sense we wish

to investigate the new processes available at the LHC in parallel with the present

HERA data comparing different approaches and different kinematical conditions of

the processes.



Appendix A

Relativistic kinematics

In this section we present the relativistic kinematics variables and the relation

between them.

The movement of objects travelling at high energies is described by the relativistic

4-momentum

P µ = (P 0, ~p) = (E/c, ~p), (A.1)

with E being the relativistic energy

E2 = |~p|2 c2 +m2 c4 , (A.2)

~p is the particle 3-momentum and m is the invariant mass. From now on, we use the

unity system where c = 1. The scalar product P µPµ is a Lorentz invariant quantity,

P µPµ = E2 − |~p|2 = m2 . (A.3)

In order to describe the process in terms of relativistic invariant quantities we

define the Mandelstam variables
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s = (P1 + P2)2 = (P3 + P4)2 , (A.4)

t = (P1 − P3)2 = (P4 − P2)2 , (A.5)

u = (P1 − P4)2 = (P3 − P2)2 , (A.6)

where P1 and P2 are the incident particle 4-momentum and P3 , P4 are refer to

the scattered particles. This set of variables contains the kinematics information of

the particles involved in the collision process. The Mandelstam variables follow the

identity

s+ t+ u =
4∑
i=1

m2
i , (A.7)

which constraints the three variables.

The description of physical processes must be invariant under change of reference

frame.

A.0.3 Center of mass frame

We indicate with stars (*) the variables in the CM system. The 3-momentum

conservation is

~p ∗1 + ~p ∗2 = ~p ∗3 + ~p ∗4 = 0 . (A.8)

We write ~p ∗1 = −~p ∗2 = ~p ∗i and ~p ∗3 = −~p ∗4 = ~p ∗f , where |~p ∗i | = p ∗i and |~p ∗f | = p ∗f .

The s variable is
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s = (E∗1 + E∗2)2 = (E∗3 + E∗4)2 . (A.9)

The energies of the particles can be written as

E∗1 =
1

2
√
s

(s+m2
1 −m2

2) , (A.10)

E∗2 =
1

2
√
s

(s+m2
2 −m2

1) , (A.11)

E∗3 =
1

2
√
s

(s+m2
3 −m2

4) , (A.12)

E∗4 =
1

2
√
s

(s+m2
4 −m2

3) . (A.13)

Replacing Eq.(A.10) in Eq.(A.2) it follows

p∗2i =
1

4s
(s− (m1 +m2)2)(s− (m1 −m2)2) , (A.14)

p∗2f =
1

4s
(s− (m3 +m4)2)(s− (m3 −m4)2) . (A.15)

In our case of pp and pp̄ elastic scattering m1 = m2 = m3 = m4 = m and

consequently p∗2i = p∗2f = p∗2 and E∗1 = E∗2 = E∗3 = E∗4 = E∗. The expressions for

the energy and 3-mometum become respectively

E∗ =

√
s

2
(A.16)

and

p∗2 =
1

4
(s− 4m2) . (A.17)

Using the expressions above, the Mandelstam variables are written in terms of the

magnitudes of particle’s 3-momentum, particle’s masses and scattering angle θcm
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between particles in initial and final states in CM frame,

s = 4(p∗2 +m2) (A.18)

t = −2p∗2(1− cos θcm) (A.19)

u = −2p∗2(1 + cos θcm) . (A.20)

A.0.4 Laboratory rest frame

Frequently analysis of experiments give physical quantities in terms of laboratory

rest frame. The general expression for total invariant energy is given by :

s = (P1 + P2)2 = 2m2 + 2E1E2(1− β1β2 cos(θ)) , (A.21)

where θ is the angle between two particles and ~β = ~p/E is the particle velocity. In

the rest frame of particle 2 the above expression simplifies

s = 2m2 + 2mE1lab . (A.22)

In the limit of high energies the particle’s masses becomes negligible and one can

approximate

s ' 2mE1lab . (A.23)

This expression will be useful to treat the PDG parametrization and connect

with dispersion relations formula and we will refer to E1lab simply as E.



Appendix B

Integral dispersion relations and

exact local DDR forms

From the unitarity conditions (2.13), the sum over final states contributes with

the imaginary part for the cases where the incident energy is greater than the in-

variant mass of the n-particle observed in the final states. On the other hand, the

imaginary part shows discontinuities of the scattering amplitude over the real axis.

These discontinuities are associated with the cuts attached to the branching points

chosen conveniently along the real axis. The analytical continuation of the ampli-

tude in the complex energy plane should contour the poles and the cuts. From

Cauchy’s integral theorem we write,

F (s, t, u) =
1

2πi

∮
F (s′, t, u)

s′ − s
ds′. (B.1)

The hypothesis of analyticity of the scattering amplitude implies that the inte-

grand of Cauchy’s integral must vanish as the modulus of s goes to infinity |s| → ∞.

The integration result depends on the remaining poles inside the circuit. In the case

of elastic scattering of pp and pp̄ there are no poles and the branching point starts

at s = 2m2, where m is the proton/antiproton’s mass, and is extended in the real

axis. The Cauchy integrals can be written as
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F (s, t, u) =
1

2πi

[∫ ∞
2m2

F (s′ + iε, t, u)− F (s′ − iε, t, u)

s′ − s
ds′

+

∫ ∞
2m2

F (−s′ + iε, t, u)− F (−s′ − iε, t, u)

s′ + s
ds′

]
. (B.2)

From Eq. (2.12) we can write the integral above in terms of the forward imaginary

amplitude .

ReF (s, u) =
1

π

[∫ ∞
2m2

ImF (s′, u)

s′ − s
ds′ +

∫ ∞
2m2

ImF (−s′, u)

s′ + s
ds′

]
(B.3)

whose left side is the real amplitude. The amplitudes can be defined by its parity

through the signal exchange in Mandelstam variables. If the amplitude is even, (e.g)

ImF (s′, u) = ImF (−s′, u) = ImF+(s′, u),

ReF+(s, u) =
2

π
P

∫ ∞
2m2

s′ ImF+(s′, u)

s′2 − s2
ds′ . (B.4)

If the imaginary amplitude is odd in s, ImF (s′, u) = −ImF (−s′, u) = ImF−(s′, u),

ReF−(s, u) =
2s

π
P

∫ ∞
2m2

ImF−(s′, u)

s′2 − s2
ds′ , (B.5)

where P the principal value of integral.

Crossing symmetry is another important feature of the scattering amplitudes. If

the amplitudes can be analytic continued over the 3 physical channels s, t and u,

then the same scattering amplitude can explain different physical processes.

Let Fpp→pp(s, t, u) be pp scattering amplitude. By crossing symmetry, replacing

s by u we obtain

Fpp→pp(s, t, u) = Fpp̄→pp̄(u, t, s) . (B.6)

The result above means that the same pp scattering amplitude gives the information
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Figure B.1: Amplitudes pp and pp̄ in complex energy plane

of pp̄ by analytical continuation in the Mandelstam plane. We can define even and

odd amplitudes by exchanging of two variables. We here fix t.

F+(s, u) ≡ [Fpp→pp(s, u) + Fpp̄→pp̄(u, s)]/2 (B.7)

and

F−(s, u) ≡ [Fpp→pp(s, u)− Fpp̄→pp̄(u, s)]/2 , (B.8)

For a fixed t, from even and odd terms we can write pp and pp̄ amplitudes

Fpp→pp(s, u) = F+(s, u) + F−(s, u) (B.9)

and

Fpp̄→pp̄(s, u) = F+(s, u)− F−(s, u) . (B.10)

If the behavior of the integral is divergent, we need to regularize the complex

amplitude by choosing a defined point s0 and subtract it, F (s, t)−F (s0, t). Applying
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the subtracted function to even DR Eq.(B.1)

F (s, u)− F (s0, u) =
1

2πi

∮
F (s′, u)

[ 1

s′ − s
− 1

s′ − s0

]
ds′ . (B.11)

As consequence the even amplitude is

ReF+(s, u)− ReF+(s0, u) =
2

π
s2P

∫ ∞
2m2

ImF+(s′)

s′(s′2 − s2)
ds′ , (B.12)

and the odd amplitude

ReF−(s, u) =
2

π
sP

∫ ∞
2m2

ImF−(s′)

s′2 − s2
ds′ , (B.13)

where K = Re F+(s0, u) is the subtraction constant. Notice that the odd amplitude

does not depend on a subtraction constant.

Now we present the derivative dispersion relation exact forms and useful inputs

for the phenomenology. The mathematical properties of dispersion relations can help

to constrain the real and imaginary amplitudes in the forward regime. For forms

of the amplitudes occurring in the phenomenology of high energy scattering, these

expressions can be substituted exactly by Derivative Dispersion Relations (DDR) ,

with well proved convergent expressions [35–37].

Accord to the most recent studies [143],the general form for the integrals is given

in Eq.(2.24)

I(n, λ, x) = P

∫ +∞

1

x′λ logn(x)

[x′2 − x2]
dx′ (B.14)

= − π

2x2

∂n

∂λn
[x1+λ cot

(π
2

(1 + λ)
)
] +

(−1)n

x2
2−(n+1)n! Φ(

1

x2
, n+ 1,

1 + λ

2
) .

These forms are valid (exact) for real x , with x > 1, n zero or positive integer,

<(λ) ≤ 1 . Cases of λ = −(2N + 1) require a limit procedure [36] because the
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trigonometric part and the Φ functions have singularities, that cancel. It was treated

in [36,37].

The functions Φ in these expressions are presented in Digital Library of Math-

ematical Functions (http://dlmf.nist.gov) Sec. 25.14. , with the name of Lerch’s

Transcendent.

We thus have (with x > 1 )

I(0, λ, x) = P

∫ +∞

1

[x′λ]

[x′2 − x2]
dx′ (B.15)

=
π

2
xλ−1 tan

(πλ
2

)
+

1

2x2
Φ(

1

x2
, 1,

1 + λ

2
) ,

I(1, λ, x) = P

∫ +∞

1

[x′λ log(x)]

[x′2 − x2]
dx′ (B.16)

=
π

2
xλ−1

[
log(x) tan

(πλ
2

)
+
π

2
sec2

(πλ
2

)]
− 1

4x2
Φ(

1

x2
, 2,

1 + λ

2
) ,

I(2, λ, x) = P

∫ +∞

1

[x′λ log2(x)]

[x′2 − x2]
dx′ (B.17)

=
π

2
xλ−1

[
log2(x) tan

(πλ
2

)
+ π sec2

(πλ
2

)
[log(x) +

π

2
tan
(πλ

2

)
]

]
+

1

4x2
Φ(

1

x2
, 3,

1 + λ

2
) .

I(3, λ, x) = P

∫ +∞

1

[x′λ log3(x)]

[x′2 − x2]
dx′ (B.18)

=
π

2
xλ−1

[
log3(x) tan

(πλ
2

)
+
π

2
sec2

(πλ
2

)(
3 log2(x) + 3π log(x) tan

(πλ
2

)
+
π2

2

[
1 + 3 tan2

(πλ
2

)
]

)]
− 3

8x2
Φ(

1

x2
, 4,

1 + λ

2
) ,
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I(4, λ, x) = P

∫ +∞

1

[x′λ log4(x)]

[x′2 − x2]
dx′ (B.19)

=
π

2
xλ−1

[
log4(x) tan

(πλ
2

)
+ π sec2

(πλ
2

)(
2 log3(x) + (3π) log2(x) tan

(πλ
2

)
+(π2) log(x)[1 + 3 tan2

(πλ
2

)
] +

π3

2
tan
(πλ

2

)
[2 + 3 tan2

(πλ
2

)
]

)]
+

3

4x2
Φ(

1

x2
, 5,

1 + λ

2
) .

The functions Φ in these expressions are the Hurwitz-Lerch transcendents, Φ
(
1/x2, N, (1+

λ)/2
)
, that for large x have the series expansions

1

2N
1

x
Φ(

1

x2
, N,

1 + λ

2
) =

x−1

(1 + λ)N
+

x−3

(3 + λ)N
+

x−5

(5 + λ)N
+ ... (B.20)

HurwitzLerchPhi is the name to call this function in Mathematica. It is presented

in Digital Library of Mathematical Functions (http://dlmf.nist.gov) Sec. 25.14. ,

with the name of Lerch’s Transcendent. Its derivative has the property used above

∂

∂λ
Φ(z,N,

1 + λ

2
) = −N

2
Φ(z,N + 1,

1 + λ

2
) . (B.21)

General Properties of Derivatives, Recurrences and Series of the Φ(z,N, q)

function

The Φ functions are defined by the identities

Φ(z, s, a+ 1) =
1

z

(
Φ(z, s, a)− 1

as

)
, (B.22)

Φ(z, s− 1, a) =

(
a+ z

∂

∂z

)
Φ(z, s, a) , (B.23)

Φ(z, s+ 1, a) = −1

s

∂

∂a
Φ(z, s, a) , (B.24)
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stemming from the series representation of the Lerch’s transcendent [?, Eq. 25.14.1]

Φ(z, s, a) =
∞∑
m=0

zm

(a+m)s
, (B.25)

a 6= 0,−1,−2, . . . , |z| < 1; <s > 1, |z| = 1 .

We rewrite the equations in forms more similar to those used in this text

∂Φ(z, ν, q)

∂q
= −ν Φ(z, ν + 1, q) , (B.26)

(
q +

∂

∂ log(z)

)
Φ(z, ν, q) = Φ(z, ν − 1, q) (B.27)

Φ(z, ν, q + 1) =
1

z
[Φ(z, ν, q)− 1

qν
] (B.28)

For z < 1 ,

Φ(z, ν, q) =
1

qν
+

z

(1 + q)ν
+

z2

(2 + q)ν
+

z3

(3 + q)N
+

z4

(4 + q)ν
+ ... (B.29)

The sums converge rapidly for energies above 10 GeV, and are easily included in

practical computations, requiring only one or a few terms of the series. The sin-

gularities of the Φ functions and of the trigonometric logarithmic part of Eq.(B.15)

occurring for λ negative odd integer exactly cancel each other, and the limit proce-

dures have been studied in [37]
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Calculation of the Coulomb phase

with BR 6= BI

Here we give details of the evaluation of the phase of West and Yennie given by

Eq. (3.54) in the case where we let BR 6= BI .

After Eq. (3.55) we define

GR =
c

c+ i
=
c(c− i)
c2 + 1

GI =
1

c+ i
=

(c− i)
c2 + 1

, (C.1)

and the integral in Eq.(3.54) is written

∫ 0

−4p2

dt′

|t′ − t|

[
1− FN(s, t′)

FN(s, t)

]
= GR

∫ 0

−4p2

dt′

|t′ − t|

[
1− eBR(t′−t)/2

]
+ iGI

∫ 0

−4p2

dt′

|t′ − t|

[
1− eBI(t′−t)/2

]
,(C.2)
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and then

Φ(s, t) = (−/+)

[
ln(− t

s
) +GR

∫ 0

−4p2

dt′

|t′ − t|

[
1− eBR(t′−t)/2

]

+ iGI

∫ 0

−4p2

dt′

|t′ − t|

[
1− eBI(t′−t)/2

]]
. (C.3)

We note that both integrals are of the form

I(B) =

∫ 0

−4p2

dt′

|t′ − t|

[
1− eB(t′−t)/2

]
(C.4)

which has been studied by V. Kundrát and M. Lokajicek [59]. With x = t′ − t and

y = Bx/2, we have

I(B) =

∫ 0

−4p2

dx

|x|

[
1− eBx/2

]
=

∫ −Bt/2
−B(4p2+t)/2

dy

|y|

[
1− ey

]
=

∫ 0

−B(4p2+t)/2

dy

|y|

[
1− ey

]
+

∫ −Bt/2
0

dy

|y|

[
1− ey

]
=

∫ B(4p2+t)/2

0

dy

|y|

[
1− e−y

]
−
∫ −Bt/2

0

dy

|y|

[
ey − 1

]
(C.5)

These expressions can be written in terms of exponential integrals, as can be seen in

the Handbook of Mathematical Functions of M. Abramowitz and L.A. Stegun [61]

as

∫ B(4p2+t)/2

0

dy

|y|

[
1− e−y

]
= E1

[
B

2

(
4p2 + t

)]
+ ln

[
B

2

(
4p2 + t

)]
+ γ (C.6)

and ∫ −Bt/2
0

dy

|y|

[
ey − 1

]
= Ei

(
− B

2
t

)
+ ln

(
− B

2
t

)
− γ (C.7)

where γ = 0.5772 is the Euler constant.
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Thus the integrals that appear in Eq. (C.2) have the functional form

I(B) = E1

[B
2

(
4p2 + t

)]
−Ei

[
− Bt

2

]
+ ln

[B
2

(
4p2 + t

)]
+ ln

[
− Bt

2

]
+ 2γ , (C.8)

and the phase can be written

Φ(s, t) = (−/+)

[
ln

(
− t

s

)
+GR I(BR) + iGI I(BI)

]
(C.9)

or

Φ(s, t) = (−/+)

[
ln

(
− t

s

)
+

1

c2 + 1

[
c2I(BR)+I(BI)

]
+ i

c

c2 + 1

[
I(BI)−I(BR)

]]
.

(C.10)
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