
Memristive neuromimetic and reservoir computing systems 

The development of semiconductor materials and the study of their mechanisms of operation 

have allowed the creation and development of powerful computer technologies that are the 

foundation of the information civilization we see today. Analysis and processing of data in the 

domains of Internet services, finance, autonomous vehicles or intelligent infrastructure based 

on Internet of Things devices are performed using machine learning tools (in addition to 

classical statistical methods). One of the intensively developed branches of machine learning is 

artificial neural networks. In their functionality and/or structure they are modeled on biological 

nervous systems. This is due to the brain's tremendous ability to learn, recognize patterns and 

classify them. Its abilities are based mainly on highly parallel and iteratively optimized data 

processing based on a large number of interconnected neurons.  

In an attempt to improve the performance of computing devices, intensive research is being 

conducted using neuromorphic engineering. This interdisciplinary field draws inspiration from 

biology, mathematics, electronic engineering, materials engineering, and computer science 

where biological neural structures are the main template for computing systems. The use of 

modern materials technology enables the simulation of neuronal and synaptic functions of 

varying degrees of complexity, resulting in increased parallelism in areas such as pattern 

recognition and graph analysis. At the moment, neuromorphic engineering is still in the domain 

of unconventional computing, but this too is slowly changing. Many research institutes are 

conducting intensive research drawing inspiration from biological neural structures to achieve 

more efficient computational systems, potentially of universal applicability. 

One of the innovative technologies from the neuromorphic engineering domain are memristive 

devices. The use of memristive devices makes it possible to delegate some of the computational 

steps of artificial neural networks so that they are performed in materia, based directly on the 

properties of the device in question. This approach seems to circumvent the von-Neumann 

bottleneck problem. In classical computing systems, information is stored in memory and all 

calculations are performed in the microprocessor. The von-Neuman architecture assumes a 

constant flow of data between these computer components, which in effect slows down 

computation and consumes energy. Dynamic systems (both semiconductor and wetware) also 

allow computations to be performed in systems that have memory functions.  

In the classical configuration of memristive devices, a capacitive material (e.g., a dielectric or 

semiconductor) is placed between electrodes with metallic conductivity in a layered 

arrangement. Memristive devices are characterized by nonlinear current-voltage characteristics, 

which take the form of a pinched hysteresis loop. For classical memristive devices, two states 

of resistance (low and high) can be observed. By applying electrical pulses (or alternating-

voltage waveforms) with the appropriate amplitude of the electrical potential, materials can be 

switched to the appropriate conductivity states depending on the type of memristor and its initial 

state. The variability of operation depending on the frequency of the excitation pulses/scans is 

another feature of memristive devices. Because of the retention of states observed for 

memristive elements when the power source is turned off, the effect of resistive switching can 

be used as a building block for new non-volatile memory.  

One of the problems of artificial neural networks is their expensive learning process, especially 

in the case of recurrent or deep neural networks. All the connection weights between individual 



neurons, as well as the activation level of a given neuron itself, are subject to optimization. 

When the network contains recursive connections or multiple layers, each iteration of weight 

updates prolongs the training of the entire network. To solve this problem, Jaeger and Maas 

independently proposed the Echo State Network and Liquid State Machine, respectively. In 

their approach, only the portion of the network sampling the state of the information processing 

layer is trained. In their work, they pointed out the crucial importance of a multidimensional, 

rich and dynamic state space of the information processing layer to simplify the training stage 

of the reading layer as much as possible. Over time, both of these approaches for efficiently 

training neural networks were subsumed into a common conceptual framework, which was 

referred to as reservoir computing.  

To work properly, these unconventional computing systems must have several features, 

namely, they must exhibit rich internal dynamics, "fleeting" memory, and echo-state property. 

Reservoir computing circuits are based on: (i) a nonlinear element (e.g., a memristor) that also 

provides memory functions, (ii) an input layer that provides information/signal for processing, 

(iii) a readout layer, and optionally (iv) a delayed feedback loop that complements and develops 

the internal dynamics of the system. A sophisticated artificial neural network is not needed to 

read the state of the reservoir layer, but simple models such as linear regression or a binary tree 

will suffice (assuming the reservoir system performs the appropriate signal transformation). 

Single Node Echo-State Machine (SNESM) are novel reservoir computing systems that use 

only one computing node operating in a delayed feedback loop. Essentially, both the signal and 

the state of the computing node change each time the signal passes through the machine in each 

successive cycle. The evolution of the signal in the loop can potentially improve the clustering 

and classification capabilities of a reservoir computing system. The SNESM system has the 

added benefit of expanding the data set. Each successive epoch of the signal is a slightly 

different version of the primary signal due to nonlinear transformation and attenuation in the 

SNESM system. The echo of the primary signal may be easier to classify due to changes in its 

complexity and the correlation between the parameters describing it. 

The dissertation, "Memristive Neuromimetic and Reservoir Computing Systems" includes 

research on the use of several computational substrates in the domain of unconventional 

information processing. The work performed was organized to introduce successive elements 

and concepts of both system design and methods of information processing and analysis, which 

are finally synthesized in single studies. A review article is presented first, which includes a 

description of memfractors (a general model that describes memristive devices), simple 

artificial neural network models, and reservoir computing systems. A mathematical description 

of delay-based reservoir computing systems is also included. Following, research on 

photoelectrochemical artificial neuron indicates the possibility of using a simple neuromorphic 

system for the task of handwriting classification. Measurements were realized based on 

polymorphic cadmium sulfide, for which spectroscopic characteristics are also presented. The 

results show an improvement in the separability index of the input data processed by the 

neuromorphic system relative to the raw data. The paper introduces concepts for the design of 

an information processing system using a single computational node. Elements of data analysis 

are also introduced. The computational paradigm of reservoir computing is introduced directly 

in a study based on a system containing cement doped with semiconductor nanomaterials and 

metallic particles. The electrical properties of selected samples have been studied by cyclic 

voltammetry and impedance spectroscopy. The presented system was used to classify electrical 



signals of simple shapes – sinusoidal, triangular, and rectangular. In addition, one of the 

complexity parameters of the analyzed signals allows for distinguishing between doping of the 

sample. The research sustains and complements literature reports on the possibility of 

implementing reservoir computing on the simplest possible computational substrates for 

classification tasks. The possibility of using a single computational node in a SNESM system 

is presented based on a polymer field-effect transistor. The presented SNESM circuit is very 

close conceptually to the State Weaving Environment Echo Tracker algorithm, in which the 

reservoir circuit is in direct contact with the analyzed environment. The studied circuit was used 

to improve the performance of a polymer transistor in the role of an ion sensor. This was done 

by changing the data representation, made possible by signal transformation (dependent on the 

concentration of K+ ions) in the SNESM system. Research on the use of the SNESM reservoir 

system for analyzing and clustering musical intervals was realized with simulations of a bridge 

synapse. The bridge synapse consists of four memristors and an operational amplifier. The 

study presents the generation of higher harmonics in several memristive systems. A comparison 

of the effects of transforming sinusoidal signals representing musical intervals (from natural 

scale) with the consonance/sensory dissonance curve and curves determined by the Sethares 

algorithm is presented. Representation of the data in the space of harmonic component distances 

allows for partial clustering of musical intervals with respect to their degree of 

consonance/dissonance. Finally, research is presented on the physical implementation of a 

bridge synapse (based on semi-commercial KNOWM memristors) in a SNESM reservoir 

system for epilepsy attack recognition where a simple machine learning algorithm (binary tree) 

was used to train the model. The analyzed standard data set (downloaded online) was collected 

using a wearable triaxial accelerometer for simple diagnosis without the need for an EEG 

system. Complexity parameters of the analyzed signals were used as features to train the model. 

Computations of the complexity parameters were also performed for raw data to compare the 

effect of the SNESM system on a given signal and its classification quality. The F1-score – a 

balanced statistical parameter that better reflects the classification ability of the given system 

than simple precision – was used to evaluate the classification accuracy. Results are presented 

for improving the classification accuracy of signals simulating an epilepsy attack for restrictive 

conditions (small data sets) where speed and simplicity - thus affecting low cost - of training 

and testing the final classification model are important. Changes in the distributions of the 

analyzed parameters and changes in the correlation between them could be the sources of 

improvement in classification scores. In addition, the ability of the SNESM system to expand 

the data set has a beneficial effect on resulting classification accuracy. 
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